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Abstract

We present several problems involving geometric probability. Each is related to the

division of a simplex or cube by a family of hyperplanes. Both the classical Eulerian numbers

and their analogue for the hyperoctahedral group arise in the solutions.

0. Introduction

Consider the following general type of problem: From a convex polytope P ⊂ Rn, select

a point x = (x1, x2, . . . , xn) at random according to a certain fixed distribution. Given a

function f :P → R and a sequence of functions ρ0, ρ1, . . . , ρm : P → R, satisfying ρ0(x) ≤
ρ1(x) ≤ . . . ≤ ρm(x) and ρ0(x) ≤ f(x) ≤ ρm(x), what is the probability that ρi−1(x) ≤
f(x) ≤ ρi(x)?

For example, what is the probability that the average of the coordinates of x is at most
1
2 , if x is selected uniformly at random from P = [0, 1]n, the n-dimensional unit cube? This

arises upon choosing f (x) = x1+x2+...+xn

n , and the constant functions ρ0(x) = 0, ρ1(x) = 1
2 ,

and ρ2(x) = 1.

† Partially supported through NSF grant DMS–9108749.
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Here we present several problems of this type, in which the selection of x is done uni-

formly at random, and the functions f, ρ0, ρ1, . . . , ρm are linear. Hence, the problems can

be reformulated geometrically as follows. Let H1,H2, . . . , Hm be a sequence of affine hyper-

planes in Rn. For each i, let H+
i and H−

i be the two closed half-spaces in Rn determined

by Hi. In terms of the original formulation of the problem, the hyperplane Hi has equation

f(x) = ρi(x), and H+
i = {x ∈ Rn : f(x) ≤ ρi(x)}. If a point x is selected uniformly at

random from the polytope P , what is the probability that x lies in P ∩H−
i−1 ∩H+

i ?

Since the selection of x is done uniformly at random, this geometric probability can be

expressed in terms of the (n-dimensional) volume of the region P ∩H−
i−1 ∩H+

i . Thus, we are

led to consider problems in which the goal is to find the volumes of the regions into which a

polytope is divided by a family of hyperplanes.

When the choice of polytope is P = [0, 1]n, the selection of a point x uniformly at

random corresponds to the selection of x1, x2, . . . , xn from [0, 1] independently at random,

according to the uniform distribution. A related probabilistic question is to consider order

statistics. That is, after selecting x = (x1, x2, . . . , xn) as above, first reorder its coordinates

in weakly increasing order, and then apply the functions f and ρi to the increasingly ordered

n-tuple x≤ ∈ Rn thus obtained. Clearly, x≤ lies in the n-dimensional simplex ∆n :=

{(x1, x2, . . . , xn) ∈ Rn : 0 ≤ x1 ≤ x2 ≤ . . . ≤ xn ≤ 1}. If the selection is according to the

uniform distribution, then the desired probability can be obtained by selecting x uniformly

directly from the simplex ∆n. This leads to the question of finding the volumes of the regions

into which the simplex ∆n is divided by a family of hyperplanes.

The specific problems described here pertain to the cube [0, 1]n and the simplex ∆n, and

the answers turn out to involve well-known sequences from combinatorial enumeration. The

(n− 1)-dimensional volumes of the sections [0, 1]n ∩Hi or ∆n ∩Hi turn out to have closely

related expressions as well.

As an initial example, consider the simplex ∆n and the functions f(x) = 0, ρ0(x) = −α,

and ρi(x) = xi−α, for some real number α ∈ (0, 1) and 1 ≤ i ≤ n. If x is chosen uniformly at

random from ∆n, then the probability Pr[ρi−1(x) ≤ f(x) ≤ ρi(x)] equals Pr[xi−1 ≤ α ≤ xi]

(where x0 = 0). The values of the first i−1 coordinates, selected from [0, 1], are all from [0, α]

with probability αi−1. Similarly, the values of the ith through nth coordinates are from [α, 1]

with probability (1 − α)n−i+1. Finally, upon ordering the coordinates in increasing order,

we obtain the probability n!
(i−1)!(n−i+1)!α

i−1(1 − α)n−i+1. Equivalently, the hyperplanes Hi

with equations xi = α, for 1 ≤ i ≤ n, dissect ∆n into n + 1 regions with volumes given by

V (n)(R
(n)
i ) = 1

n!

(
n

i−1

)
αi−1(1 − α)n−i+1, for 1 ≤ i ≤ n + 1. When α = 1

2 , the volumes have

especially simple expressions proportional to binomial coefficients: V (n)(R
(n)
i ) = 1

n!2n

(
n

i−1

)
.

(This corresponds to the case of a fair coin if the problem is phrased in terms of tossing a

coin having probability α for heads.) The sections S
(n)
i := ∆n ∩Hi have (n− 1)-dimensional

volumes proportional to binomial coefficients as well (for a given i, we have xi = α, and the
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probability that x1, . . . , xi−1 ≤ α and xi+1, . . . , xn ≥ α can be computed similarly to the

previous calculation).

The preceding example involves a pencil of n hyperplanes passing through the point

(α, α, . . . , α) ∈ Rn, which are parallel to the coordinate hyperplanes, and the volumes of the

resulting regions and sections of ∆n involve binomial coefficients. In Section 2 we consider the

simplex and a different pencil of n hyperplanes passing through ( 1
2 ,

1
2 , . . . ,

1
2 ). The volumes

of the resulting regions and sections of the simplex turn out to be related to the Eulerian

numbers. These numbers are well-known in permutation enumeration. First we solve the

problem of finding the volumes of the regions through a direct geometric and inductive

argument. Then we sketch a second approach, using tools from probability theory.

The Eulerian numbers arise again in Section 3, in a problem dating back to Laplace,

concerning the cube and a certain family of parallel hyperplanes. Similar results are derived

for a different family of parallel hyperplanes and the cube, which give rise to the analogue

of Eulerian numbers for the hyperoctahedral group. This follows readily from recurrence

relations given in [ChLo], where the volumes of regions and sections are discussed. We

provide an explanation for this connection between geometry and the enumeration of signed

permutations, by adapting to the hyperoctahedral case a result for the symmetric group (the

previous problem) found by Stanley [St2] in response to a question posed by Foata [Fo].

The final section includes several open problems.

1. Eulerian numbers and the simplex

Suppose that a point x is selected uniformly at random from the simplex ∆n = {x =

(x1, x2, . . . , xn) ∈ Rn : 0 ≤ x1 ≤ x2 ≤ . . . ≤ xn ≤ 1}. What is the probability that the

average of 0, 1, and the coordinates of x falls between the (i− 1)st and ith coordinates of x?

Note that Pr[xi−1 < x1+...+xn+2

n+2 ≤ xi] with x selected from ∆n+2 gives the same distribution,

as can be seen by conditioning on the values of x1 and xn+2.

This geometric probability question arises from choosing f(x) = x1+x2+...+xn+1
n+2

, ρ0(x) =

0, and ρi(x) = xi for i = 1, 2, . . . , n. Thus, we consider the hyperplanes Hi ⊂ Rn with

equations

x1 + x2 + . . . + xn + 1 = (n + 2)xi,

for i = 1, 2, . . . , n. These form a pencil of hyperplanes through the point ( 1
2 ,

1
2 , . . . ,

1
2) ∈ Rn,

and they determine n + 1 regions, R
(n)
1 , R

(n)
2 , . . . , R

(n)
n+1 in the simplex ∆n:

R
(n)
1 = {x ∈ ∆n :

∑n
k=1 xk +1 ≤ (n+2)x1}, R(n)

i = {x ∈ ∆n : (n+2)xi−1 ≤
∑n

k=1 xk +1 ≤
(n + 2)xi} for 2 ≤ i ≤ n, and R

(n)
n+1 = {x ∈ ∆n : (n + 2)xn ≤

∑n
k=1 xk + 1}. The question

of finding

Pr
[
xi−1 <

0 + x1 + x2 + . . . + xn + 1

n + 2
≤ xi

]
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is answered then by determining the sequence of volumes
(
V (n)(R

(n)
i )

)n+1

i=1
of these regions.

For example, in dimensions n = 1, 2, 3, the volumes of the regions are:(
V (1)(R

(1)
1 ), V (1)(R

(1)
2 )

)
=

(
1
2 ,

1
2

)
,(

V (2)(R
(2)
1 ), V (2)(R

(2)
2 ), V (2)(R

(2)
3 )

)
=

(
1
12 ,

4
12 ,

1
12

)
,(

V (3)(R
(3)
1 ), V (3)(R

(3)
2 ), V (3)(R

(3)
3 ), V (3)(R

(3)
4 )

)
=

(
1

144 ,
11
144 ,

11
144 ,

1
144

)
.

These low-dimensional cases suggest that the volumes are proportional to the Eulerian num-

bers (see, e.g., [Co], [St1]). A permutation σ ∈ Sn has a descent in position i (where

1 ≤ i ≤ n − 1) if σ(i) > σ(i + 1), and the Eulerian numbers count permutations accord-

ing to their number of descents.

Theorem 1.1.

Let A(m, j) denote the Eulerian numbers, i.e., the number of permutations in the symmet-

ric group Sm having exactly j descents. Then, the hyperplanes with equations
∑n

k=1 xk +1 =

(n + 2)xi, for 1 ≤ i ≤ n, dissect the simplex ∆n into regions R
(n)
i whose volumes are given

by

V (n)(R
(n)
i ) =

A(n + 1, i− 1)

n!(n+ 1)!
,

and the (n− 1)-dimensional volumes of the sections S
(n)
i = ∆n ∩Hi for 1 ≤ i ≤ n are given

by

V (n−1)(S
(n)
i ) = c(n) ·

A(n, i− 1)

(n− 1)!n!
,

where c(n) =
√
n2 + 3n/(n + 1).

For ease of exposition, we postpone the proof of the theorem until after three preliminary

results.

Lemma 1.2.

For each i = 1, 2, . . . , n, the section S
(n)
i has i(n− i+1) vertices x whose coordinates are

x1 = x2 = . . . = xs = 0,

xs+1 = . . . = xi = . . . = xr =
n− r + 1

n− r + s + 2
,

xr+1 = . . . = xn = 1,

where 0 ≤ s < i ≤ r ≤ n. In particular, the point ( 1
2 ,

1
2 , . . . ,

1
2) belongs in the intersection of

∆n with every hyperplane Hi.

Proof. The vertices of ∆n have coordinates of the form (0, 0, . . . , 0, 1, 1, . . . , 1), with the

number of 0’s ranging between zero and n. Hence, an edge of ∆n consists of points having a
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certain number, s ≥ 0, of initial coordinates equal to 0, followed by a number, r − s ≥ 0, of

equal coordinates whose common value lies in (0, 1), followed in turn by n−r ≥ 0 coordinates

equal to 1. To determine such a point x which lies in Hi, observe that if xr+1 = . . . = xn = 1

for some r+1 ≤ i, then the equation of Hi requires s ·0+(r−s)xr +(n−r) ·1+1 = (n+2) ·1,

implying xr = r+1
r−s > 1. Since such a point x is not in ∆n, we must have i ≤ r.

Similarly, if s ≥ i, then the equation of Hi requires (r−s)xr +(n−r) ·1+1 = 0, implying

that xr < 0, so again x 6∈ ∆n.

Therefore we must have 0 ≤ s < i ≤ r ≤ n, and it follows from the equation of Hi that

xs+1 = . . . = xr = n−r+1
n−r+s+2 , and x ∈ ∆n ∩Hi.

In the sequel, we will write H
(d)
i to indicate the dimension d of the ambient Euclidean

space in which we view the hyperplane Hi.

Lemma 1.3.

For each i such that 1 ≤ i ≤ n, the region R
(n−1)
i of ∆n−1 is a projection of the section

S
(n)
i of ∆n.

Proof. First, we describe the vertices of R
(n−1)
i when i satisfies 2 ≤ i ≤ n− 1. These vertices

fall into three classes: those of the section S
(n−1)
i , those of the section S

(n−1)
i−1 , and vertices

of ∆n−1.

In the first two types we have vertices as described in Lemma 1.2 (shifting the dimension

down to n − 1). These overlap in the vertices of ∆n−1 ∩ H
(n−1)
i ∩ H

(n−1)
i−1 . There are

(i − 1)(n − i) vertices in this intersection, namely, for each choice of s, r such that 0 ≤
s < i − 1 < i ≤ r ≤ n − 1, we obtain a vertex x ∈ ∆n−1 ∩ H

(n−1)
i ∩ H

(n−1)
i−1 whose

coordinates are x1 = x2 = . . . = xs = 0, xs+1 = . . . = xi−1 = xi = . . . = xr = n−r
n−r+s+1 ,

xr+1 = . . . = xn−1 = 1.

Only one vertex of ∆n−1 appears in R
(n−1)
i . This is the vertex whose coordinates are

x1 = x2 = . . . = xi−1 = 0, xi = xi+1 = . . . = xn−1 = 1, and we denote it by v
(n−1)
i .

In particular, for 2 ≤ i ≤ n− 1, the total number of vertices of R
(n−1)
i is i(n− i) + (i−

1)(n− i + 1) − (i− 1)(n− i) + 1 = i(n− i+ 1), the same (by Lemma 1.2) as the number of

vertices of S
(n)
i .

The regions R
(n−1)
1 and R

(n−1)
n are (n− 1)-dimensional simplices. Indeed, the vertices of

R
(n−1)
1 are v

(n−1)
1 = (1, 1, . . . , 1) and the n− 1 vertices of S

(n−1)
1 as in Lemma 1.2. Similarly,

R
(n−1)
n has n affinely independent vertices (the origin v

(n−1)
n = (0, 0, . . . , 0) and the n − 1

vertices of S
(n−1)
n−1 ).

By comparing the above description of the vertices of R
(n−1)
i with the earlier description

of the vertices of S
(n)
i (Lemma 1.2), we see that the projection

5
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(x1, x2, . . . , xn) → (x1, . . . , xi−1, xi+1, . . . , xn) is a bijection between the vertices of S
(n)
i and

R
(n−1)
i , which maps S

(n)
i onto R

(n−1)
i .

Corollary 1.4.

The (n− 1)-dimensional volumes of S
(n)
i and R

(n−1)
i are related by

V (n−1)(S
(n)
i ) =

√
n2 + 3n

n + 1
· V (n−1)(R

(n−1)
i ).

Proof. Since the hyperplane H
(n)
i containing S

(n)
i has unit normal vector

N
(n)
i = (1,1,...,1,−(n+1),1,...,1)√

n2+3n
(the non-unit coordinate is the ith one), the desired relation

follows from Lemma 1.3.

Proof of Theorem 1.1. The proof is by induction on the dimension n. The result is obviously

true for n = 1, where R
(1)
1 and R

(1)
2 are segments of length 1

2 .

Consider n ≥ 2. For i = 2, 3, . . . , n, the region R
(n)
i is the union of two pyramids

with apex v
(n)
i = (0, . . . , 0, 1, . . . , 1) (the first unit coordinate is the ith one). One pyra-

mid is pyr(v
(n)
i , S

(n)
i ) over the section S

(n)
i and the other is pyr(v

(n)
i , S

(n)
i−1) over the sec-

tion S
(n)
i−1. Their intersection is the (n − 1)-dimensional pyramid with apex v

(n)
i over the

(n− 2)-dimensional intersection of S
(n)
i and S

(n)
i−1. The distance di from v

(n)
i to H

(n)
i is easily

calculated as
| − 1 − (N

(n)
i , v

(n)
i )|

||N (n)
i ||,

and is equal to

di =
i√

n2 + 3n
.

Similarly, the distance di−1 between v
(n)
i and H

(n)
i−1 is

di−1 =
n− i + 2√
n2 + 3n

.

Together with Corollary 1.4, this implies that for 2 ≤ i ≤ n,

V (n)(R
(n)
i ) =

1

n
· di · V (n−1)(S

(n)
i ) +

1

n
· di−1 · V (n−1)(S

(n)
i−1)

=
1

n(n+ 1)
[i · V (n−1)(R

(n−1)
i ) + (n− i+ 2) · V (n−1)(R

(n−1)
i−1 )].
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By induction, we obtain

V (n)(R
(n)
i ) =

1

n!(n + 1)!
[iA(n, i− 1) + (n− i + 2)A(n, i− 2)]

=
1

n!(n + 1)!
A(n + 1, i− 1).

The last equality follows from the standard recurrence relation satisfied by the Eulerian

numbers (see, e.g., [Co]).

For i = 1, the volume of the simplex R
(n)
1 can be computed directly via a determinant

evaluation or, using the notation established above,

V (n)(R
(n)
1 ) =

1

n
· d1 · V (n−1)(S

(n)
1 ),

in which we have d1 = 1√
n2+3n

and, by Corollary 1.4, V (n−1)(S
(n)
1 ) =

√
n2+3n
n+1 V (n−1)(R

(n−1)
1 ).

Again, inductively we have V (n−1)(R
(n−1)
1 ) = A(n,0)

(n−1)!n!
= 1

(n−1)!n!
, and it follows that

V (n)(R
(n)
1 ) = A(n+1,0)

n!(n+1)! . We omit the calculation of V (n)(R
(n)
n+1) which follows through a

similar direct computation, or simply by symmetry.

Using Theorem 1.1 we derive an expression for the partial sums of the Eulerian num-

bers. As before, let x = (x1, . . . , xn) denote a random point in the simplex ∆n. Successive

differences xj − xj−1 are called spacings. We may model the spacings as follows (see [Py]):

xj−xj−1 =
yj

y1+y2+...+yn+1
, for 1 ≤ j ≤ n+1, where each yj is a standard exponential random

variable and where we define x0 = 0 and xn+1 = 1. Next, rewriting the probability in terms

of the y’s, we get for 1 ≤ j ≤ n:

Pr
[x1 + x2 + . . . + xn + 1

n + 2
≤ xj

]

= Pr
[
(n− j + 1)yj+1 + . . . + 3yn−1 + 2yn + yn+1 ≤ y1 + 2y2 + 3y3 + . . . + jyj

]
. (∗)

Each yj has probability density function (p.d.f.)

g(t) =

{
e−t if t ≥ 0,
0 if t < 0.

For distinct, positive values cj (1 ≤ j ≤ k), the p.d.f. for Y = c1y1 + c2y2 + . . .+ ckyk is (see

[JK], p.222)

gY (t) =
k∑

i=1

ck−2
i∏

j 6=i (ci − cj)
e−t/ci , for t ≥ 0.

7
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Let Y1 = (n − j + 1)yj+1 + . . . + 3yn−1 + 2yn + yn+1 and Y2 = y1 + 2y2 + 3y3 + . . . + jyj.

With this notation, (∗) is given by

∫ ∞

0

gY2
(t) dt

∫ t

0

gY1
(s) ds,

where

gY1
(s) =

n−j+1∑

a=1

(−1)n+j+1−aan−j−1

(a− 1)!(n− j + 1 − a)!
e−s/a

and

gY2 (t) =

j∑

i=1

(−1)j−iij−2

(i− 1)!(j − i)!
e−t/i.

Performing the integration gives

Pr
[x1 + x2 + . . . + xn + 1

n + 2
≤ xj

]
=

j∑

i=1

n−j+1∑

a=1

(−1)n+1−i+aan−jij

(i+ a)(i− 1)!(j − 1)!(a− 1)!(n− j + 1 − a)!
.

Equivalently, we get the following expression for the partial sums of the Eulerian numbers:

j−1∑

k=0

A(n + 1, k) = (n + 1)n

(
n− 1

j − 1

) j∑

i=1

n−j+1∑

a=1

(−1)n+1−i−a

i + a

(
j − 1

i− 1

)(
n− j

a− 1

)
an−j ij,

for 1 ≤ j ≤ n.

2. Eulerian numbers and the cube

Turning to a cube as the choice of polytope P , we will consider two problems. The

first one corresponds to the choice of functions f(x) = x1 + x2 + . . . + xn, ρ0(x) = 0 and

ρi(x) = i for 1 ≤ i ≤ n − 1. Thus, this problem concerns the volumes of the n regions of

[0, 1]n determined by the n− 1 hyperplanes Hi : x1 + x2 + . . . + xn = i, for 1 ≤ i ≤ n− 1.

We denote the regions as R
(n)
i = {x ∈ [0, 1]n : i − 1 ≤

∑n
k=1 xk ≤ i}, for 1 ≤ i ≤ n. The

solution to this problem is implicit in the work of Laplace [Lap] and it appears in [Fo], in the

context of results about combinatorial statistics on permutations.

The Eulerian numbers arise again: the volumes of the regions are given by

V (n)(R
(n)
i ) =

1

n!
A(n, i− 1),

and the (n−1)-dimensional volumes of the sections are also proportional to Eulerian numbers.

The expression for the volume V (n)(R
(n)
i ) suggests that (up to a set of measure zero) the

8
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region R
(n)
i may be partitioned by the images, under a measure-preserving transformation,

of A(n, i − 1) n-dimensional simplices, each of volume 1
n! . Moreover, these simplices may

be in natural correspondence with the permutations in Sn which have i − 1 descents. The

existence of such a map would provide an alternative proof of the volume formulas for the

regions, reflecting the combinatorial nature of the formulas. In reponse to a question asked by

Foata, Stanley [St2] exhibited such a map. The map ϕ whose description follows is essentially

that given in [St2].

First, it is well-known that the unit cube, [0, 1]n, is dissected by the hyperplanes xi = xj,

1 ≤ i < j ≤ n, into n! simplices, each having volume 1
n! . For each such simplex, there exists

a permutation σ ∈ Sn which permutes in increasing order the coordinates of every point in

the interior of the simplex. Denote the simplex by ∆σ . Now, the desired map ϕ on [0, 1]n

less the measure zero set of points having any equal consecutive coordinates, is defined by

ϕ(x) = y ∈ [0, 1]n, where

yn = 1 − xn,

and

yi =

{
xi+1 − xi if xi < xi+1,
1 + xi+1 − xi if xi > xi+1,

for i = 1, 2, . . . , n − 1. Note that if x ∈ ∆σ , then f(y) =
∑n

k=1 yk = des(σ) + 1 − x1,

where des(σ) denotes as usual the number of descents of σ. Thus, ϕ(∆σ) ⊂ R
(n)
des(σ)+1. Note

also that ϕ is an affine transformation on each of the 2n−1 regions determined by a choice

of xi+1 > xi or xi+1 < xi for each i = 1, 2, . . . , n − 1, and that the determinant of the

transformation is equal to (−1)n. Therefore ϕ is measure-preserving. The inverse of ϕ is

defined on [0, 1]n less the set of measure zero {y ∈ [0, 1]n :
∑n

k=i yk ∈ Z, for some i}, and

is given by ϕ−1(y) = x, where xi = 1 + b
∑n

k=i ykc −
∑n

k=i yk for each i.

The remainder of this section is devoted to analogous results for a second problem in-

volving the cube. Let again P = [0, 1]n, f(x) = x1 + x2 + . . . + xn, and ρ0(x) = 0, and

consider the functions ρi(x) = i − 1
2 , for 1 ≤ i ≤ n. These give rise to n parallel hyper-

planes, Hi : x1 + x2 + . . . + xn = i − 1
2 , for 1 ≤ i ≤ n. The volumes of the resulting

n + 1 regions and n sections were investigated by Chakerian and Logothetti [ChLo], who

established recurrence relations satisfied by the sequence of volumes. We denote the regions

by R
(n)
i+1 = {x ∈ [0, 1]n : i− 1

2 ≤
∑n

k=1 xk ≤ i + 1
2}, for 0 ≤ i ≤ n.

Proposition 2.1. ([ChLo])

For i = 0, 1, . . . , n, let S(i, n− i) = 2nn!V (n)(R
(n)
i+1). Then

S(i, n− i) = (2i + 1)S(i, n− i− 1) + (2n− 2i + 1)S(i− 1, n− i),

with S(0, 0) = 1.

9
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It turns out that this recurrence implies that the volumes are proportional to the Eulerian

numbers for signed permutations. A signed permutation on n letters is a permutation of

{1, 2, . . . , n} in which each letter may bear a minus sign. The signed permutations on n

letters form the hyperoctahedral group of order 2nn!. For notational convenience, we will

write m instead of −m. The notion of descent for signed permutations is based on the linear

ordering 1 < 2 < . . . < n < n < n− 1 < . . . < 2 < 1 of the symbols, together with the

fact that if the last letter in the permutation is negative (“barred”), then the last position

contributes a descent. For example, the signed permutation 2 4 5 1 6 3 has 3 descents

(occurring in positions 1, 3, and 6). For 0 ≤ i ≤ n, let A(n, i) denote the number of signed

permutations on n letters, having exactly i descents. For example, when for n = 2, we have

A(2, 0) = 1, A(2, 1) = 6, and A(2, 2) = 1.

Corollary 2.2.

Let A(n,m) denote the Eulerian numbers for the hyperoctahedral group on n letters. Then

the hyperplanes with equations
∑n

k=1 xk = i − 1
2 , for 1 ≤ i ≤ n, dissect the unit cube [0, 1]n

into regions R
(n)
i whose volumes are given by

V (n)(R
(n)
i ) =

A(n, i− 1)

2nn!
, 1 ≤ i ≤ n + 1.

Proof. In Proposition 2.1 one recognizes, as explained below, the recurrence relation for the

hyperoctahedral Eulerian numbers, leading to the conclusion S(i, n − i) = A(n, i) for all

0 ≤ i ≤ n. Indeed, it can easily be checked that

A(n, i) = (2i + 1) A(n− 1, i) + (2n− 2i + 1) A(n− 1, i− 1),

by examining how a signed permutation counted by the left-hand-side can arise from the

insertion of either 1 or 1 into a signed permutation τ on {2, 3, . . . , n}. Clearly, if 1 is inserted

into τ , then it will be the absolute minimum of the resulting signed permutation, while if

1 is inserted into τ , then it will be the absolute maximum. Therefore, if des(τ) = i, then

one of 1 or 1 should be inserted so that the number of descents will be preserved. There are

precisely 2i + 1 such insertions, of which 2i are of type (i) and one is of type (ii), as follows:

(i) insert either 1 or 1 after the larger element of one of the i descents of τ ; (ii) insert 1 at

the front of τ . This gives the first term on the right-hand-side. The second term is obtained

similarly: if des(τ) = i − 1, then the number of descents must be increased by one. This is

achieved through each of precisely the following 2(n− i)+1 insertions: (i) insert either 1 or 1

after the smaller element of one of the ascents of τ ; (ii) insert 1 at the front of τ . The initial

conditions are obvious and the desired conclusion follows.

10
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Next, observe that the hyperplanes xi = 1
2 , xi = xj, and xi + xj = 1 for 1 ≤ i, j ≤ n

dissect the cube [0, 1]n into 2nn! simplices, each of volume 1
2nn! . Now let x be any point from

the interior of such a simplex. Let x′ = (x′
1, x

′
2, . . . , x

′
n), where

x′
i =

{
xi if xi < 1/2,
1 − xi if xi > 1/2.

Clearly, x′ has distinct coordinates. Let σ be the (ordinary) permutation which orders the

coordinates of x′ increasingly. Finally, we obtain a signed permutation σ by placing a bar

over σ(i) if xi >
1
2 . For example, if x = (0.4, 0.8) ∈ [0, 1]2, then x′ = (0.4, 0.2), leading to

σ(1)σ(2) = 21 and, finally, to σ = 21. All points from the interior of a simplex give rise

to the same signed permutation, and we denote by ∆σ the simplex corresponding to σ. An

adaptation of the map found by Stanley for the previous problem plays the analogous role

here, mapping the simplex ∆σ to the region R
(n)
des(σ)+1.

Proposition 2.3.

The map ϕ given by ϕ(x) = y where

yn =

{
1/2 − xn if xn < 1/2,
3/2 − xn if xn > 1/2,

and, for i = 1, 2, . . . , n− 1,

yi =

{
xi+1 − xi if xi < xi+1,
1 + xi+1 − xi if xi > xi+1,

is defined on [0, 1]n, measure-preserving, and invertible on [0, 1]n, up to measure-zero sets.

Moreover, for each j = 0, 1, . . . , n, the region R
(n)
j+1 of [0, 1]n is partitioned, up to a set of

measure zero, by the images of the interiors of the simplices ∆σ for those signed permutations

satisfying des(σ) = j.

Proof. The former part of the conclusion follows from arguments as in [St2]. For the latter

part, using the description of x′, it is easy to check that the second case in the definition

of yi, for all 1 ≤ i ≤ n, corresponds precisely to a descent in position i for the signed

permutation σ corresponding to x. Thus,
∑n

k=1 yk = des(σ) + 1
2
− x1 lies in the interval

(des(σ)− 1
2 ,des(σ) + 1

2 ), and ϕ maps each ∆σ as claimed.

3. Remarks and open questions.

a) For dimensions n = 1, 2, 3, the sections S
(n)
i exhibit the following property: they

form a dissection of an (n− 1)-dimensional simplex (Section 1) or parellelipiped (Section 2).

In particular, the union of the sections S
(n)
i from Section 1 is, informally put, a “folded”

11
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(n− 1)-dimensional simplex, with the folds occurring along the intersections S
(n)
i ∩S

(n)
i+1, for

1 ≤ i ≤ n− 1. Does this property hold in every dimension, and under what conditions does

it hold for more general choices of the polytope P and the functions f and ρi’s? Arguments

based on tiling may prove fruitful in this regard.

b) In each of the problems discussed here, the sequence of the volumes of regions turns out

to be symmetric and unimodal; in fact, even logarithmically concave. Is there a connection

between these sequences and mixed volumes (see, e.g., [Lag, p. 946]), also known to be

logarithmically concave?

c) The regions arising from the dissections considered here are themselves convex poly-

topes, and their vertices have rational coordinates. Upon scaling, they can be transformed

into integral polytopes, and thus, the information about the volumes of the regions corre-

sponds to the leading coefficients of the Ehrhart polynomials of the regions (expositions on

the Ehrhart polynomial appear, e.g., in [St1], [Hi], in addition to the original treatment

[E]). Do the sequences of coefficients of lower-order terms of the Ehrhart polynomial admit

enumerative interpretations as well?

d) The symmetric group and the group of signed permutations are, in fact, the Weyl

groups for the root systems An−1 and Bn, respectively. In both cases, the notion of a descent

is motivated by the geometric context of reflection groups. Is there a unified approach to the

results presented here, in the framework of Coxeter systems?

e) A direct combinatorial proof of Theorem 1.1 would be desirable.

f) What other combinatorial sequences arise naturally as volumes of regions and sections

of polytopes?
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Birkhäuser, Basel and Stuttgart, 1977.

[Fo] D. Foata, Distributions eulériennes et mahoniennes sur le groupe de permutations, in

“Higher Combinatorics” (M. Aigner, ed.), NATO Adv. Study Inst. Series, Series C:

Mat. and Phys. Sci., D. Reidel, Dordrecht, 1977, p. 27-48.

12



the electronic journal of combinatorics 4 (no. 2) (1997), #R18 13

[Hi] T. Hibi, “Algebraic Combinatorics on Convex Polytopes,” Carslaw Publications, Glebe,

Australia, 1992.

[JK] N. Johnson and S. Kotz, “Continuous Univariate Distributions - 1,” Houghton-Mifflin,

Boston, 1970.

[Lag] J. Lagarias, Point lattices, in “Handbook of Combinatorics” (R. Graham, M. Grötschel

and L. Lovász, eds.), MIT Press, Cambridge, 1995, p. 919-966.

[Lap] Marquis de Laplace, “Oeuvres complètes,” vol. 7, 1820; reprinted by Gauthiers-Villars,

Paris, 1886, p. 257 ff.

[Py] R. Pyke, Spacings, Royal Stat. Soc. (B) 27 (1965) 395-436.

[St1] R. Stanley, “Enumerative Combinatorics,” vol. 1, Wadsworth & Brooks/Cole, Monterey,

1986; second edition, Cambridge Univ. Press, to appear.

[St2] R. Stanley, Eulerian partitions of a unit hypercube, in “Higher Combinatorics” (M.

Aigner, ed.), NATO Adv. Study Inst. Series, Series C: Mat. and Phys. Sci., D. Reidel,

Dordrecht, 1977, p. 49.

13


