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Abstract

A random greedy algorithm, somewhat modified, is analyzed by using a real time context
and showing that the variables remain close to the solution of a natural differential equation.
Given a (k + 1)-uniform simple hypergraph on N vertices, regular of degree D, the algorithm
gives a packing of disjoint hyperedges containing all but O(ND−1/k lncD) of the vertices.

Let H = (V, E) be a (k+ 1)-uniform hypergraph on N vertices. A packing P is a family of disjoint
edges. Given P we correspond the set S = V −

⋃
P of those vertices v not in the packing, these v

we call surviving vertices. We shall assume:
• H is simple. That is, any two vertices are in at most one edge.
• H is regular of degree D. That is, every vertex v lies in precisely D e ∈ E.

We are interested in the asymptotics for k fixed, D,N → ∞. We assume k ≥ 2 is fixed
throughout. We show
Theorem. There exists a packing with

|S| = O(ND−1/k lncD)

where c depends on k. (We make no attempt to optimize c.)
Our approach is to give a real time random process that produces a packing with E[|S|] meeting

these bounds. The process, as described in §1,2, can be thought of as the random greedy algorithm
with some “stabilization mechanisms” added. Placing the algorithm in a real time context allows
for simulation of the variables by a differential equation and the analysis of our discrete, albeit
asymptotic, procedure becomes quite continuous in nature.

The study of asymptotic packing can be said to date from the proof by V. Rödl [3] of a classic
conjecture of Paul Erdős and Haim Hanani [2]. Rödl showed that for l < k fixed and n→∞ there
exists a “packing” P of ∼

(
n

l

)
/
(
k

l

)
k-element subsets of an n-element universe Ω so that every l

points of Ω lie in at most one of the k-sets. This was nicely generalized by N. Pippenger in work
appearing [5] jointly with this author. He showed that any k-uniform hypergraph on N vertices
with deg(v) ∼ D for every v and any two vertices v,w having o(D) common edges has a packing
P with |S| = o(n). (Here k is fixed, N,D →∞.) Recent work has centered on lowering the size of
|S| in terms of D. Our main result has also been shown (indeed, without the logarithmic term for
k ≥ 3) in our joint paper [1] by quite different techniques.
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1 Two Simple Algorithms

We first define the discrete random greedy algorithm in a natural way. Randomly order e1, . . . , eω,
ω = |E|, the edges of H. Set P0 = ∅, S0 = V . For 1 ≤ i ≤ ω if ei ⊆ Si−1 then set Pi = Pi−1 ∪ {ei}
and Si = Si−1 − ei, else keep Pi = Pi−1 and Si = Si−1. That is, consider the edges in random
sequential order and add each to the packing if you can. We conjecture that E[|Sω|] meets the
bounds of our Theorem. This author [6] and, independently, V. Rödl and L. Thoma [4] have shown
that E[|Pω|] ∼

N
k+1

or equivalently that E[|Sω|] = o(N). Viewed in this light we are now looking at
a second order term, just how close to a “perfect packing” can we get. Unfortunately, this natural
algorithm has eluded more refined analysis. We feel it would be most interesting even to prove that
the exponent of D is the correct one, that

E[|Sω|] = O(ND−1/k+o(1)) (??) (1)

Now we define the realtime random greedy algorithm. We let time t go continuously starting
from zero. The packing P = Pt will vary with time as will St = V −

⋃
Pt. We let Ht denote the

restriction of H to St. If by time t edge e ⊆ St has not yet been born then it is born in the next
dt with probability et dt

kD
. When e is born it is added to P . In particular, all e′ with e′ ∩ e 6= ∅ are

no longer considered.
Observe that the edges are being born in a random order. Thus if we continue this process until

H has no edges the distribution of S will be precisely that of the discrete random greedy algorithm.
It will be more convenient, however, to stop the process at time ω = lnD. We now give a heuristic
guide which should motivate the full process we define later. Let degt(v) be (for v ∈ St) the degree
of v in Ht and suppose all degt(v) ∼ f(t)D. There would be ∼ kf2(t)D2 pairs (e, e′) where e is an
edge containing v and e′ is an edge intersecting e, but not at v. Each e′ is born in the next dt with
probability et dt

kD
and if born diminishes deg(v) by one for each (e, e′). (If e itself is born then v is

removed from H.) On average deg(v) is decreased by kf2(t)D2et dt
kD

= etf2(t)D · dt. If this is to be
f(t+ dt)D then we would need

f(t+ dt) = f(t)− etf2(t)dt

f ′(t) = −etf2(t)

so that, as f(0) = 1, we would have f(t) = e−t. Indeed, the choice of birth intensity was designed
so that f (t) would have this particularly convenient form.

Suppose v has survived to time t. It lies on ∼ De−t edges, each is born with probability et dt
Dk

in the next dt so v is removed from S with probability dt
k

. The probability that v survives to time t

starting at time zero would then be exp[−
∫ t

0
dt
k

] = e−t/k. Since we want deg(v) ∼ De−t but deg(v)
is integral we can only hope to carry this approximation through time ω = lnD. At that time
Pr[v ∈ St] would be e−t/k = D−1/k. By Linearity of Expectation we would have E[|Sω|] = ND−1/k.
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As we said earlier we are unable to make this argument rigorous and it is only conjecture that
the result is correct. We see the basic problem as one of stability of a random system. The values
degt(v) are random variables that will naturally oscillate around their means. The difficulty is that
once some degt(v

′) are abnormally off their mean then it affects the change in degt(v). (If v′, v
have a common edge e then deg(v′) affects the number of (e, e′) which affects the expected change
of deg(v).) The N different degt(v) are all oscillating off their means and the oscillation of one
can have an adverse affect on the oscillations of another. To handle this problem we modify the
realtime random greedy algorithm by what we think of as stabilization mechanisms.

2 Stabilization

As before the basic event is the birth of an edge e. If by time t e has not yet been born it is born in
the next dt with probability et dt

kD
. That edge is added to P , all v ∈ e are removed from S and all e′

containing any such v are deleted. We add two stabilization mechanisms. On certain occasions we
waste a vertex v. When this occurs v is removed from S and all edges e containing v are deleted.
On certain occasions when an edge e has been born and v ∈ e we revive v. When this occurs v
is “put back” into S and the edges e′ 6= e containing v are put back into H. (A vertex v ∈ e is
revived at the moment e is born or not at all. More formally we can say that when e is born e is
deleted and all nonrevived v ∈ e are removed from S as are all edges e′ containing such v. The
term “revive” gives the sense we aim for that this occurs rarely.)

Here are the probabilities. Suppose degt(v) = De−t −∆ with ∆ ≥ 0. Then v is wasted in the
time interval [t, t + dt] with probability ∆

kDe−t
dt. Suppose degt(v) = De−t + Γ with Γ ≥ 0. If an

edge e containing v is born then v is revived with probability Γ
De−t+Γ

. The a priori probability that
v is revived is then

degt(v)
dt

kDe−t
Γ

De−t + Γ
=

Γ

kD−t
dt

This gives a convenient symmetry:

Pr[v revived or wasted] =
| degt(v)−De

−t|

kDe−t
dt (2)

Consider any v at time t. Suppose degv(t) = De−t − ∆ with ∆ ≥ 0. In the next dt there
is probability degt(v)

kDe−t
dt that some e containing v is born (and v can’t be revived as ∆ ≥ 0) and

probability ∆
kDe−t

dt that v is wasted; so probability dt
k

that v 6∈ St+dt. Suppose degt(v) = De−t + Γ
with Γ ≥ 0. Then v cannot be wasted and the probability that some e containing v is born and v
is not revived is degt(v)

kDe−t
(1 − Γ

De−t+Γ
) = dt

k
. That is, for any value Ht of the process at time t with

v ∈ St

Pr[v 6∈ St+dt | Ht] =
dt

k
(3)
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Indeed, (3) is the purpose of our stabilization. We deduce

Pr[v ∈ St] = e
−
∫ t

0

dt
k = e−t/k (4)

Let X be any random variable that depends only on the history of the process up to time s. Then

E[X|w ∈ St] = E[X|w ∈ Ss] (5)

The reason is that any history up to time s with w ∈ Ss has precisely the same probability e−(t−s)/k

of being extended to a history up to time t with w ∈ St.

3 The Big Picture

We set
ω = lnD −K ln lnD (6)

(K a suitably large constant) and continue the process (starting at time zero) to time ω. Call e
a false birth if e is born at time t but at some time t′ < t some v′ ∈ e was revived when some e′

was born. The number of false births is at most the number of revivals since we can associate e
with that revival t′, v′ with t′ < t maximal and this association is injective. False births actually do
overlap previous births. (Anthropomorphically speaking, though, the process does not know that
a birth is false.) The set of born edges e which are not false births gives the packing P ∗ that we
desire. Set S∗ = V −

⋃
P ∗.

For each vertex w let SURVw be the indicator for w ∈ Sω; WASTEw the number of times (zero
or one) that w is wasted; REV IV Ew the number of times w is revived. S∗ consists of surviving
vertices, wasted vertices, and vertices in false births so

|S∗| ≤
∑
w

SURVw +WASTEw + (k + 1)REV IV Ew

As constants do not concern us we define

LOSSw = WASTEw +REV IV Ew

so we can bound more conveniently

|S∗| ≤
∑
w

SURVw + (k + 1)LOSSw

Now Linearity of Expectation comes into play. The expectation of this sum is the sum of the
expectations so that it suffices to appropriately bound E[SURVw], E[LOSSw] for a given w. From
(4)

E[SURVw] = Pr[w ∈ Sω ] = e−ω/k = D−1/k lnK/kD
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Now it suffices to show
E[LOSSw] = O(D−1/k lncD) (7)

Fix w and consider E[LOSSw]. For every t (2) gives the probability w is wasted or revived.
However, this is conditional on w ∈ St which occurs with probability e−t/k. Thus

E[LOSSw] =
∫ ω

t=0

e−t/k

kDe−t
E[|degt(w)−De−t| | w ∈ St]dt

We shall show
E[|degt(w)−De−t| | w ∈ St] = O((D(t+ 1)e−t)1/2) (8)

We note that (t + 1)1/2(De−t)−1/2e−t/k is maximized at t = ω where it is at most ln1/2D so that,
given (8), (7) holds with c = 3

2
.

4 Phantom Edges

Given degt(w) what do we expect of degt+dt(w)? Let e be an edge containing w at time t. Roughly
speaking each v ∈ e, v 6= w is removed with probability dt

k
so e is removed with probability dt. Then

degt(w) would drop by degt(w)dt in time dt giving exponential decay. Renormalizing, et degt(w)
would be a martingale.

Well, not exactly. The condition that w itself survives has a (small) effect. For one thing, it
may happen that an e containing w is born and w is revived. It is helpful then to think of that e
as a phantom edge which then experiences exponential decay. Formally we define

PHANt =
∑
t′

e−(t−t′) (9)

where the sum is over all those times t′ ≤ t when w has been revived. (If w hasn’t been revived
PHANt = 0.) Note PHAN is never negative. We define the adjusted degree Xt by

Xt = degt(w) + PHANt

and normalize by setting
Zt = etXt (10)

so that
|degt(w)−De−t| ≤ e−t|Zt −D|+ PHANt

so that (8) will follow from

E[|Zt −D| | w ∈ St] = O((D(t+ 1)et)1/2) (11)



the electronic journal of combinatorics 4 (no. 2) (1997), #R19 6

and the relatively easier

E[PHANt | w ∈ St] = O((D(t+ 1)e−t)1/2) (12)

We show (11) by employing the general inequality E[|W |] ≤ E[W 2]1/2 and showing

E[(Zt −D)2 | w ∈ St] = O(D(t+ 1)et) (13)

We think of (13) as the core of our argument. The idea will be that Zt is a continuous time
martingale. But not exactly. Essentially, conditioning on w surviving means the edges e containing
w are not born so the vertices v on such edges have slightly less chance of being removed. But it
will be close enough. Indeed, this motivates our choice (6) of ω since we want the difference of one
in the degree to have negligible effect.

5 Almost a Martingale

We want to show (13) for a given t ≤ ω. We shall examine Xs for 0 ≤ s ≤ t.
Claim: Let 0 ≤ s < t and let Hs be any value with w ∈ Hs. Then

E[Xs+ds −Xs | Hs, w ∈ St] = −Xsds+ αXsds

with 0 ≤ α ≤ 1
De−s

.
The α represents an “error term” caused by the effective degree loss. Applying (5) it suffices to

show
E[Xs+ds −Xs | Hs, w ∈ Ss+ds] = −Xsds+ αXsds (14)

with 0 ≤ α ≤ 1
De−s

.
If an edge e with w ∈ e is born and w is revived then the new term in PHANs+ds balances the

loss in degs+dsw. (The edge is counted as a phantom edge.) Now consider the contribution to the
expectation when no such e is born. Automatically

PHANs+ds = PHANse
−ds = PHANs − PHANsds

so PHAN has no error term. Dealing with degs+ds(w) is somewhat more technical.
Let v be a vertex sharing a common edge e with w. Suppose degs(v) = De−s −∆ with ∆ ≥ 0.

There are degs(v) − 1 edges e′ 6= e containing e that might be born and v might be wasted so v
has probability dt

k
(1 − 1

De−s
) of being removed. Suppose degs(v) = De−s + Γ with Γ ≥ 0. There

are degs(v)− 1 edges e′ 6= e containing v that might be born and v then must not be revived so v
has probability dt

k
(1− 1

De−s+Γ
) of being removed. In any case it has probability dt

k
(1− α) of being

removed with 0 ≤ α ≤ 1
De−s

.
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Let e be an edge containing w. No event (we’ve excluded the birth of e already) can remove
two v, v′ ∈ e since they share only the one common edge e. (H is simple.) Thus e is removed with
probability (1− α)dt with 0 ≤ α ≤ 1

De−s
. By Linearity of Expectation

E[degs+ds(w)− degs(w)] = −degs(w)(1− α)ds

with 0 ≤ α ≤ 1
De−s

. As PHAN is positive or zero, degs(w) ≤ Xs and

E[Xs+ds −Xs] = −Xsds+ αdegs(w)ds = −Xsds+ αXsds

where the new α still satisfies 0 ≤ α ≤ 1
De−s

. This completes (14) and hence the Claim.
Remark. The above claim can also be stated and proven without the use of infinitesimals, giving a
bound on E[Xs+∆s−Xs]. In that case there would be an additional additive term OH((∆s)2) with
the implicit constant dependent on the hypergraphs H. Letting ∆s → 0 the results below would
be the same.

We normalize with Zs given by (10). Then

E[Zs+ds −Zs] = (es + esds)(Xs −Xsds+ αXsds)− e
sXs = αZsds (15)

which, as α is small, justifies our statement that Zs is almost a martingale. We close with two
rough upper bounds that shall be convenient later. As α is always nonnegative E[Zt+dt|Zt] ≥ Zt
for all t so for any s′ ≤ s

E[Zs|Zs′ ] ≥ Zs′

As α ≤ 1
De−t

we have in the other direction

E[Zt+dt|Zt] ≤ Zt

(
1 +

dt

De−t

)
≤ Zt exp

(
dt

De−t

)
so for any s′ ≤ s

Zs′ ≤ E[Zs|Zs′] ≤ Zs′ exp[
∫ s

s′

dt

De−t
] = Zs′e

(es−es
′
)/D (16)

Our choice of ω assures that (es− es
′

)/D is small so employing the inequality ex ≤ 1 + 2x valid
for 0 ≤ x < 1 we rewrite (16) as

Zs′ ≤ E[Zs|Zs′ ] ≤ Zs′ [1 + 2
es − es

′

D
] (17)

and our choice of ω further assures

Zs′ ≤ E[Zs|Zs′] ≤ Zs′ [1 +O(ln−K D)]

for all s′, s. Recall Z0 = D. This assures the very rough, but useful

E[Zs] ≤ 2D (18)
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6 The Variance

Our object here will be to show (13) in the form

E[(Zt −D)2] ≤ cD(t+ 1)et (19)

where, for definiteness, we set
c = 80

We actually show the following.
Lemma: If E[(Zs −D)2] ≤ cD(s+ 1)es for all s ≤ t then E[(Zt −D)2] < cD(t+ 1)et.

Assume this Lemma and consider the function f(t) = E[(Zt − D)2] − cD(t + 1)et. f is a
continuous function for 0 ≤ t ≤ ω and f(0) = −cD < 0. If some f (t1) > 0 then by the Intermediate
Value Theorem some f(t2) = 0 and by continuity there would be a minimal t with f(t) = 0. But
then f(s) ≤ 0 for s ≤ t so f(t) < 0, a contradiction. Hence all f(t1) ≤ 0, which is precisely (19).

Note Z0 = D, constant. Our idea is that Zs, 0 ≤ s ≤ t, is almost a continuous time martingale.

6.1 The SplitUp

We split [0, t] into intervals [s, s+ ds] and write

Zt −D =
∑
s

(Zs+ds −Zs)

with s from 0 to t− ds in steps of ds. (Again we can avoid infinitesimals by making these steps ∆s
and letting ∆s→ 0 at the end.) Squaring and taking expectation

E[(Zt −D)2] = VAR+ COV

where the squared terms give the “variance”

VAR =
∑
s

E[(Zs+ds − Zs)
2] (20)

and the crossterms give the “covariance”

COV = 2
∑
s

∑
s<s′

E[(Zs+ds −Zs)(Zs′+ds′ − Zs′)]

For fixed s the inner sum over s′ telescopes giving

COV = 2
∑
s

E[(Zs+ds − Zs)(Zt −Zs+ds)] (21)
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6.2 The Variance Terms

Here we bound V AR by bounding each term. When degs+ds(w) = degs(w) or when an edge e
containing w was born but w was revived then Zs+ds − Zs is a ds term and since it is squared we
can ignore it. For each edge e containing w there is probability at most ds that some v ∈ e is
removed so in total there is probability at most degs(w)ds ≤ Xsds that deg(w) goes down. We
come to a key point called limited effect. The birth of a single edge e′ can only decrease deg(w) by
at most k + 1. The reason is that e′ has only k + 1 vertices v and each v can lie on at most one
common edge e with w. (Here we make critical use of H being simple.) Such a birth will decrease
Z by at most es(k+ 1). Therefore the contribution to E[(Zs+ds−Zs)2] from such births is at most
e2s(k + 1)2Xsds = (k + 1)2esZsds. That is,

E[(Zs+ds − Zs)
2] ≤ (k + 1)2esZsds

and “summing” gives

V AR ≤ (k + 1)2

∫ t

0

esE[Zs]ds ≤ 2(k + 1)2Det

employing the rough bound (18).

6.3 The Covariance Terms

Remark. It is here that our approach differs from previous sequential approaches (including our
own!) to asymptotic packing. With sequential approaches at each step there are random oscillations
and the degrees move from what they should be. With previous approaches the total “error” for
a degree is basically the sum of the errors. But here we create a martingale (almost) environment
so that the errors are basically independent of each other. With that the square of the total error
will be close to the sum of the squares of the individual errors.

Here we bound COV . Consider a term of (21) with s < t. We first bound E[|Zs+ds − Zs|].
As E[Zs+ds − Zs] ≥ 0 we bound by twice the contribution with Zs+ds ≥ Zs. This occurs when
“nothing” happens and deg(w) remains the same. Then Zs+ds ≤ Zseds = Zs +Zsds (neglecting the
squared infinitesimal terms) so that

E[|Zs+ds − Zs|] ≤ 2Zsds

We employ (17) to give

0 ≤ E[Zt − Zs+ds] ≤ Zs+ds
2(et − es+ds)

D
≤ Zs

4et

D
(22)

for any value of Hs+ds. Unfortunately, the two variables Zs+ds −Zs, Zt −Zs+ds are not necessarily
independent. But since (22) holds for any H we bound

E[|(Zs+ds − Zs)(Zt − Zs+ds)|] ≤ 2Z2
s

4et

D
ds
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and hence

COV ≤
8et

D

∑
s

E[Z2
s ]ds

We need a bound on E[Z2
s ] for s ≤ t. We first bound

E[Z2
s ] ≤ E[Zs]

2 + V ar[Zs] ≤ 4D2 + E[(Zs −D)2]

using (18) and the bound V ar[Z] ≤ E[(Z−a)2] valid for any a. Now the assumption of our Lemma
gives

E[Z2
s ] ≤ 4D2 + cD(s+ 1)es ≤ 5D2

since s ≤ ω. Therefore

COV ≤
8et

D

∫ t

0

5D2 · dt ≤ 40tetD

so that
E[(Zt −D)2] ≤ V AR+COV ≤ 80(t+ 1)etD

completing the Lemma.

7 Few Phantoms

Bounding E[PHANt] is eased by the rough idea that the revival of w at time s makes revivals at
later times less likely as it lowers the degree. More formally, as Xs ≥ degs(w) the probability w is
revived at time s is at most

|Xs −De−s|

kDe−s
ds

For if degs(w) ≤ De−s then w cannot be revived and otherwise |Xs − De−s| = Xs − De−s ≥
degs(w)−De−s.

We condition on w ∈ St. For s ≤ t our main (8) (combined with general principle (5)) gives

E[|Xs −De−s|]

kDe−s
= O((D(s+ 1)e−s)−1/2)

A revival at time s has weight es−t in PHANt so that

E[PHANt] = O

(∫ t

s=0
(D(s+ 1)e−s)−1/2es−tds

)
But then E[PHANt] = O(D−1/2(t+1)−1/2et/2) which is actually o(1) so that (12) holds with room
to spare. This completes our proof.
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