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Abstract

We find all nonnegative integer r, s, p for which the sum
∑sn
k=rn

(pn
k

)
has

closed form.

Let

fp,r(n) =
rn∑
k=0

(
pn

k

)
.

where 0 ≤ r ≤ p are fixed integers. This is a definite sum in the sense that the
summation limits and the summand are not independent. As we all know,

fr,r(n) = 2rn,

f2r,r(n) =
1

2

(
4rn +

(
2rn

rn

))
.

Thus fr,r(n) is a hypergeometric term, and f2r,r(n) is a linear combination of two
hypergeometric terms.

∗Supported in part by the Office of Naval Research

1



the electronic journal of combinatorics 4 (no. 2) (1997), #R21 2

Following [PWZ], let us say that a function f(n) has closed form if there is a fixed
integer m and hypergeometric terms {ti(n)}mi=1 such that f (n) =

∑m
i=1 ti(n) for all

sufficiently large n. Our main results are as follows.

Theorem 1 Let 0 < r < p and p 6= 2r. Then fp,r(n) does not have closed form.

Theorem 2 Let 0 ≤ r < s ≤ p be fixed integers. Then

Sp,r,s(n) =
sn∑

k=rn

(
pn

k

)

does not have closed form, unless r = 0, p = 2s, or p = s = 2r, or r = 0, p = s.

1 Reduction to an indefinite sum

We begin by briefly discussing the method. One might anticipate that we would
first find a recurrence formula that, say, fp,r(n) satisfies, using Zeilberger’s algorithm,
and then prove, using Petkovšek’s theorem, that the recurrence has no closed form
solution. As described in [PWZ], this method is quite effective in many cases.

In the present situation, however, the recurrence that fp,r(n) satisfies will grow
in complexity with p, r. So for each fixed p, r the argument would work, but without
further human input it could not produce a general proof, i.e., a proof for all p, r.
This is somewhat analogous to the sums of the pth powers of all of the binomial
coefficients of order n. There too, the methods described in [PWZ] can show that no
closed form exists for specific fixed values of p, but the general question remains open
for p ≥ 9 or thereabouts.

Hence we resort to a somewhat different tactic. We will first reduce the definite
sum fp,r(n) to an indefinite sum, and then we invoke Gosper’s algorithm to show that
the resulting indefinite sum is not Gosper summable.

Indeed, since
(
n
k

)
=
∑
j

(
p
j

)(
n−p
k−j

)
by the Chu-Vandermonde convolution formula,

we have

fp,r(n+ 1) =
rn+r∑
k=0

(
pn + p

k

)
=

rn+r∑
k=0

∑
j

(
p

j

)(
pn

k − j

)
=
∑
j

(
p

j

)
rn+r−j∑
l=0

(
pn

l

)

=

 r∑
j=0

+
p∑

j=r+1

(p
j

)
rn+r−j∑
l=0

(
pn

l

)
= ΣI + ΣII ,
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say. Now

ΣI =
r∑
j=0

(
p

j

) rn∑
l=0

+
rn+r−j∑
l=rn+1

(pn
l

)

= fp,r(n)
r∑
j=0

(
p

j

)
+

r−1∑
j=0

(
p

j

)
r−j∑
i=1

(
pn

rn + i

)
,

ΣII =
p∑

j=r+1

(
p

j

) rn∑
l=0

−
rn∑

l=rn+r−j+1

(pn
l

)

= fp,r(n)
p∑

j=r+1

(
p

j

)
−

p∑
j=r+1

(
p

j

)
j−r−1∑
i=0

(
pn

rn− i

)
.

Therefore,

fp,r(n+ 1) = 2pfp,r(n) +
r−1∑
j=0

(
p

j

)
r−j∑
i=1

(
pn

rn+ i

)
−

p∑
j=r+1

(
p

j

)
j−r−1∑
i=0

(
pn

rn− i

)
.

For each fixed p and r this is a first-order inhomogeneous recurrence with a hyperge-
ometric (and closed form) right hand side. Solving it, we find that fp,r(n)/2pn can be
written as an indefinite sum,

fp,r(n) = 2pn
n∑
k=0

tk,

where

tk = 2−pk

r−1∑
j=0

(
p

j

)
r−j∑
i=1

(
pk − p

rk − r + i

)
−

p∑
j=r+1

(
p

j

)
j−r−1∑
i=0

(
pk − p

rk − r − i

)
is a hypergeometric term for each fixed p and r. Note that this means fp,r(n) satisfies
a homogeneous second-order recurrence with polynomial coefficients in n, which could
be written down explicitly.

Example. Take p = 3 and r = 1. Then we have shown that

f3,1(n) =
n∑
k=0

(
3n

k

)
= 8n

n∑
k=0

8−k
((

3k − 3

k

)
− 4

(
3k − 3

k − 1

)
−

(
3k − 3

k − 2

))

= 8n
(

1

2
−

n∑
k=2

5k2 + k − 2

23k+1(k − 1)(2k − 1)

(
3k − 3

k

))
(n ≥ 1)
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2 Application of Gosper’s algorithm

In view of the result of the previous section, we now have that fp,r(n) has a closed
form if and only if tk is Gosper-summable. To see if this is the case we “run” Gosper’s
algorithm on tk.

In Step 1 of Gosper’s algorithm1 we rewrite tk as

tk =

(
pk
rk

)
2pk
(
pk
p

)Pk, k > 0,

where Pk is a polynomial in k,

Pk =
r−1∑
j=0

(
p

j

)
r−j∑
i=1

(
rk
r−i

)(
pk−rk
p−r+i

)
(
p
r−i

) −
p∑

j=r+1

(
p

j

)
j−r−1∑
i=0

(
rk
r+i

)(
pk−rk
p−r−i

)
(
p
r+i

) ,

and t0 = 1. Then

tk+1

tk
=

(
p
r

)(
pk
p

)
2p
(
r(k+1)
r

)(
(p−r)(k+1)

p−r

) Pk+1

Pk
, k > 0,

is a rational function of k.
In Step 2 we note that the roots ri of

(
pk

p

)
are 0, 1/p, . . . , (p − 1)/p while the

roots sj of
(
r(k+1)
r

)(
(p−r)(k+1)

p−r

)
are −1,−(r − 1)/r, . . . ,−1/r; −1,−(p − r − 1)/(p −

r), . . . ,−1/(p− r). But sj − ri is never a nonnegative integer. Hence

tk+1

tk
=
akck+1

bkck

is a possible Gosper’s normal form for tk+1/tk, where

ak =

(
p

r

)(
pk

p

)
,

bk = 2p
(
r(k + 1)

r

)(
(p− r)(k + 1)

p− r

)
,

ck = Pk.

1Our description of the steps of Gosper’s algorithm follows the exposition of Chapter 5 of [PWZ].
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In Step 3 we have to determine the degrees and leading coefficients of ak, bk and
ck. Obviously,

deg ak = deg bk = p,

lc ak =

(
p

r

)
pp

p!
,

lc bk = 2p
rr

r!

(p− r)p−r

(p− r)!
.

When is lc ak = lc bk, or equivalently,

pp = 2prr(p− r)p−r? (1)

Claim: All integer solutions 0 < r < p of equation (1) are of the form

p = 2r.

To prove the claim, let p = 2kq, r = 2ms, where q, s are odd. Then (1) turns into

2kpqp = 2p+mrsr(2kq − 2ms)p−r. (2)

For an integer n and a prime u, let εu(n) denote the largest exponent e such that
ue divides n. Let L and R denote the left and right sides of (2), respectively. So
ε2(L) = kp.

If k < m, ε2(R) = kp+ p− r(k −m) , so p = r(k −m) < 0, which is false.
If k = m, ε2(R) > mp + p , so k > m+ 1, a contradiction.
If k > m, ε2(R) = mp + p , so k = m+ 1 and (2) turns into

qp = sr(2q − s)p−r.

Let u be an odd prime, εu(q) = a, εu(s) = b.
If a < b, εu(qp) = ap and εu(sr(2q−s)p−r) = br+a(p−r), so a = b, contradiction.
If a > b, εu(qp) = ap and εu(sr(2q − s)p−r) = br + b(p − r) = bp, so a = b,

contradiction.
It follows that a = b. So q and s have identical prime factorization and are

therefore equal. Thus p = 2kq = 2m+1s = 2r, proving the claim.

Since we are assuming that p 6= 2r, the leading coefficients of ak and bk are
different, and we are in Case 1 of Gosper’s algorithm.
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Obviously deg ck = degPk ≤ p, so any polynomial xk satisfying Gosper’s equation

akxk+1 − bk−1xk = ck, (3)

must be constant. After a little computation we find that the coefficient of kp in Pk
is

p− r

(p− 2r)p!
(pp − 2prr(p− r)p−r),

which is non-zero. Comparing leading coefficients in Gosper’s equation we find that

xk =
p− r

(p− 2r)
(
p
r

) .
But then one can verify that the coefficient of the first power of k in the polynomial
on the left of (3) is (−1)p−1(p − r)/(p − 2r), while the corresponding coefficient on
the right is (−1)p−1(p− r)/p. This discrepancy proves that Gosper’s equation has no
polynomial solution, and thus fp,r(n) no closed form, when p 6= 2r, completing the
proof of Theorem 1.

To prove Theorem 2, we see that if r = 0 then Sp,r,s(n) = fp,s(n), and if s = p then

Sp,r,s(n) = 2pn−fp,r(n)+
(
pn
rn

)
, so in these two cases the assertion follows immediately

from Theorem 1.
If r 6= 0 and s 6= p then write

Sp,r,s(n) = fp,s(n) − fp,r(n) +

(
pn

rn

)
.

As in the proof of Theorem 1, fp,s(n) − fp,r(n) can be written as the indefinite sum

of two hypergeometric terms, one similar to
(
pn
rn

)
and the other to

(
pn
sn

)
. Since r < s,

these two terms are not similar to each other, hence Sp,r,s(n) has a closed form if and
only if both fp,s(n) and fp,r(n) have it2. According to Theorem 1, this is possible only
if p = 2s = 2r, contradicting the assumption r < s. 2

3 Discussion

A number of interesting combinatorial sequences have already been proved not to be of
closed form. In [PWZ] there are several examples, including the number of involutions

2See section 5.6 of [PWZ]
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of n letters, the “central trinomial coefficient,” and others. The arguments there were
made sometimes with Gosper’s algorithm, and sometimes with Petkovšek’s algorithm,
which decides whether a linear recurrence with polynomial coefficients does or does
not have closed form solutions.

In the earlier literature there are one or two related results. One elegant and

difficult theorem of de Bruijn [Bru] asserts that the sums
∑
k(−1)k

(
2n
k

)s
do not have

closed form if s is an integer ≥ 3. The idea of his proof was to compare the actual
asymptotic behavior of the given sum, for fixed s and n → ∞, with the asymptotic
behavior of a hypothetical closed form, and to show that the two could never be the
same.

In Cusick [Cus] there is a method that can, in principle, yield the recurrence that

is satisfied by the sum fp(n) =
∑
k

(
n

k

)p
, for fixed p, and a few examples are worked

out. Zeilberger’s algorithm (see, e.g., [PWZ]) can do the same task very efficiently.
Using these recurrences, it has been shown, by Petkovšek’s algorithm, that these sums
fp(n) do not have closed form if p ≤ 8 (but, starting with 6th powers, we have proved
this only over fields which are at most quadratic extensions of the rational number
field). The general case for these pth power sums remains open, as far as we know.
McIntosh [McI] has investigated the order of some related recurrences, as a function
of p, and also showed that the Apéry numbers cannot be expressed in a certain form
which is a restriction of our notion of closed form. Again, with Petkovšek’s algorithm
it is quite simple to show that the Apéry numbers are not of closed form, in the wider
sense that we use here.
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