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Abstract

A bijection is given from major sequences of length n (a variant of parking
functions) to trees on {0, . . . , n} that maps a sequence with sum

(n+1
2

)
+ k to

a tree with external activity k.
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We present a bijection from major seqeunces (a variant of parking funtions) of
length n to trees on {0, . . . , n} that takes area to external activity. Our main tool is
a decomposition of major sequences due to Kreweras [6].

An integer sequence S = (s1, . . . , sn) is called a major sequence of length n [6] if
its non-decreasing rearrangement (z1, . . . , zn) satisfies

zi ≥ i for all 1 ≤ i ≤ n and zn ≤ n.

Another way to view (z1, . . . , zn) is as a lattice path from (0, 0) to (n, n) that never
drops below the main diagonal. In Figure 1 the top lattice path represents the non-
decreasing rearrangement of the major sequence

(7, 8, 8, 3, 3, 5, 3, 7)

and the bottom represents the identity

(1, 2, 3, 4, 5, 6, 7, 8).
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Figure 1: The nondecreasing rearrangement of the major sequence (7, 8, 8, 3, 3, 5, 3, 7) with length 8
and area 8.

We note that (s1, . . . , sn) is a major sequence iff (n− s1, . . . , n− sn) is a parking
function as defined in Stanley [7, 8], i.e., a sequence of n integers between 0 and n−1
at most i of which are ≥ n− i for all 1 ≤ i ≤ n.

The area of the major sequence S = (s1, . . . , sn) is defined as

a(S) =

n∑
i=1

si −
(
n + 1

2

)
.
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It is non-negative and is the area between the lattice path and the main diagonal.
The area of the sequence in Figure 1 is 8, as illustrated by the shaded boxes. We
denote by Mn(k) the set of major sequences of length n and area k, and define the
area enumerator for major sequences of length n as

Mn(t) =
∑
S

ta(S),

where the sum is over all major sequences of length n.
To define external activity, we consider a complete graph K on {0, . . . , n}. We

order its edges lexicographically, i.e., edge ij with i < j is smaller than edge kl with
k < l iff (i < k) or (i = k, j < l). Let T be a spanning tree of K. An edge of K − T
is called externally active for T if it is the smallest edge in the unique cycle that it
closes with edges of T . For example, the tree T in Figure 2 has exactly 8 externally
active edges, namely 01, 02, 03, 04, 05, 23, 26 45.
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Figure 2: A tree with external activity 8 and 10 inversions.

The external activity e(T ) is the number of externally active edges for T . We denote
by En+1(k) the set of trees on the vertex set {0, . . . , n} with external activity k, and
define the external activity enumerator for trees on {0, . . . , n} as

En+1(t) =
∑
T

te(T ),

where the sum is over all trees on {0, . . . , n}. We remark that En+1(t) is the Tutte
polynomial of K evaluated at (1, t). See Gessel [3] and Gessel and Sagan [4] for many
properties of the Tutte polynomial and further references.

If T is a tree on {0, . . . , n}, an inversion of T is a pair (i, j) such that 1 ≤ j < i ≤ n
and i lies on the path from 0 to j in T . For example, the tree T in Figure 2 has exactly
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10 inversions, namely (2, 1), (3, 1), (3, 2), (6, 1), (6, 2), (6, 3), (7, 4), (7, 5), (8, 1), (8, 2).
We denote by i(T ) the number of inversions of T . We also denote by In+1(k) the set
of trees on {0, . . . , n} with k inversions and define the inversion enumerator for trees
on {0, . . . , n} as

In+1(t) =
∑
T

ti(T ),

where the sum is over all trees on {0, . . . , n}.
Björner discovered that

In+1(t) = En+1(t), (1)

using his results on shellability and homology in matroids as well as a result of Gessel
and Wang [5] (see Exercise 7.7 (c), page 271 of [2]). Beissinger [1] proved (1) by
providing a bijection from In+1(k) to En+1(k).

Kreweras [6] showed that
Mn(t) = In+1(t), (2)

and gave a bijection from Mn(k) to In+1(k).
An immediate consequence of (1) and (2) is

Mn(t) = En+1(t). (3)

We prove (3) by presenting a direct bijection fromMn(k) to En+1(k). It uses the de-
composition of major sequences that Kreweras used, but because it avoids inversions,
it is simpler than both the bijections of Kreweras and of Beissinger.

We reproduce Kreweras’ decomposition below for completeness. In preparation
for it we note that, by definition, if (s1, . . . , sn) is a major sequence and we increase
sn (or any other si) to a larger integer not exceeding n, the new sequence is still
major. Conversely, if we repeatedly decrease sn by 1, eventually the sequence will no
longer be major. We denote by s∗n the smallest integer s such that (s1, . . . , sn−1, s) is
still a major sequence, and call (s1, . . . , sn−1, s

∗
n) the reduced form of (s1, . . . , sn). For

example, for the major sequence (7, 8, 8, 3, 3, 5, 3, 7) that we saw in Figure 1, s∗8 = 4,
and the nondecreasing rearrangement of its reduced form is shown in Figure 3.

If x = (x1, . . . , xn) is an integer sequence, we denote its nondecreasing rear-
rangement by sort(x) = sort(x1, . . . , xn). For any integer c, we denote the sequence
(x1 + c, . . . , xn + c) by x + c.

The Decomposition Lemma Let (s1, . . . , sn) be a major sequence and let

(z1, . . . , zn) = sort(s1, . . . , sn−1, s
∗
n)

be the nondecreasing rearrangement of its reduced form. Then
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Figure 3: The nondecreasing rearrangement of (7, 8, 8, 3, 3, 5, 3, 4), the reduced form of the major
sequence (7, 8, 8, 3, 3, 5, 3, 7) of Figure 1.

1. There exists a unique l satisfying zl = s∗n, namely l = s∗n;

2. zl−1 < zl < zl+1 (where z0 and zn+1 are understood to be 0 and n + 1, respec-
tively);

3. (z1, . . . , zl−1) and (zl+1, . . . , zn)− l are major sequences;

4. a(s1, . . . , sn−1, s
∗
n) = a(z1, . . . , zl−1) + a((zl+1, . . . , zn) − l), and consequently

a(s1, . . . , sn) = a(z1, . . . , zl−1) + a((zl+1, . . . , zn)− l) + (sn − s∗n).

Proof. 1. Clearly zl = s∗n for some l. Since (z1, . . . , zn) is a major sequence, we have
zl ≥ l and therefore s∗n ≥ l. But if this inequality is strict, then (z1, . . . , zl−1, zl −
1, zl+1, . . . , zn), which is a rearrangement of (s1, . . . , sn−1, s

∗
n − 1), would still be a

major sequence, contrary to the definition of s∗n. Hence s∗n = l.
2. This follows immediately from 1) above, for if zl±1 = zl, then s∗n would equal both
l and l± 1.
3. This also follows from 1) above, since the lattice path returns to the main diagonal
at (l, l), and is also easy to verify algebraically using 2).
4. This too follows from the fact that the lattice path returns to the main diagonal
at (l, l), and is verifiable by an easy calculation. �



the electronic journal of combinatorics 4 (no. 2) (1997), #R4 6

The Bijection

We now construct a mapping f from the set of major sequences to the set of labeled
trees that maps Mn(k) to En+1(k) as follows.

1. Given a major sequence S = (s1, . . . , sn), find its reduced form

(s1, . . . , sn−1, s
∗
n).

2. Set

E1 = {i : 1 ≤ i ≤ n − 1, si < s∗n}, E2 = {i : 1 ≤ i ≤ n − 1, si > s∗n}.

By Part 2 of the Decomposition Lemma, E1 and E2 partition {1, . . . , n − 1}.
Set

S1 = (si : i ∈ E1), S2 = (si : i ∈ E2)− s∗n.
By part 3 of the Decomposition Lemma, S1 and S2 are major sequences of
length l − 1 and n − l, respectively, with l = s∗n as in the lemma. Recursively
obtain the trees T1 = f(S1) and T2 = f(S2) on {0, . . . , l− 1} and {0, . . . , n− l}
respectively, with e(T1) = a(S1) and e(T2) = a(S2), and thus by Part 4 of the
Decomposition Lemma

e(T1) + e(T2) + (sn − s∗n) = a(S).

3. Relabel the vertices of T1−{0} with the elements of E1, preserving their order,
which gives the tree T ′1 with e(T ′1) = e(T1). Relabel the vertices of T2 with
the elements of E2 ∪ {n}, preserving their order, which gives the tree T ′2 with
e(T ′2) = e(T2).

4. Let r be the (sn − s∗n + 1)-st smallest vertex in T ′2 (this vertex exists since
1 ≤ sn − s∗n + 1 = sn − l + 1 ≤ n− l + 1). Connect vertex 0 of T ′1 with vertex r
of T ′2 to obtain the tree T = f(S) on {0, . . . , n}.

5. We have
e(T ) = e(T ′1) + e(T ′2) + (sn − s∗n)

because the only externally active edges of T between T ′1 and T ′2 are the sn− s∗n
edges joining 0 with the vertices of T ′2 smaller than r. Therefore

e(T ) = a(S),

as required.
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For example, given our major sequence (7, 8, 8, 3, 3, 5, 3, 7), we find that s∗8 = 4,
S1 = (3, 3, 3), S2 = (3, 4, 4, 1) and E1 = {4, 5, 7}, E2 = {1, 2, 3, 6}. Note that in
Figure 3, sort(S1) is shown to the left of the bar of height s∗n = 4 and sort(S2) is
shown above the dotted line to the right of that bar. Note also that E1 and E2

are the sets of positions of those elements of S that are used to form S1 and S2,
respectively. The trees T1 and T2, obtained recursively, are shown in Figure 4.
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Figure 4: Trees T1 and T2 obtained in Step 2 of the bijection.

The relabelings T ′1 and T ′2 obtained in Step 3 are shown in Figure 5. The vertex r in
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Figure 5: Trees T ′1 and T ′2 obtained in Step 3 of the bijection.

Step 4 is the fourth smallest vertex in T ′2, namely r = 6, and the final tree T is the
one shown in Figure 2.

We now present the inverse mapping f−1 from trees to major sequences.

1. Given a tree T on {0, . . . , n}, let 0r be the first edge along the path from 0 to
n in T . Deleting this edge leaves two subtrees: T ′1 with l vertices including 0,
and T ′2 with n + 1− l vertices including r.

2. Relabel the vertices of T ′1 as 0, . . . , l − 1, preserving their order, to obtain the
tree T1. Recursively obtain the major sequence

S1 = (a1, . . . , al−1) = f−1(T1).
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This S1 will be a subsequence of the sequence S that we are constructing.
Specifically, put the elements of S1 in order into the positions of S indexed by
the vertices of T ′1 − {0}, i.e., if i is the j-th smallest vertex in T ′1 − {0}, set
si = aj. Relabel the vertices of T ′2 as 0, . . . , n − l, preserving their order, to
obtain the tree T2. Recursively obtain the major sequence

S2 = (b1, . . . , bn−l) = f−1(T2).

Put the elements of S2 +l in order into the positions of S indexed by the vertices
of T ′2 − {n}, i.e., if i is the j-th smallest vertex in T ′2 − {n}, set si = bj + l.

3. We assert that (s1, . . . , sn−1, l) is a major sequence. Indeed, since the elements
of S1 are smaller than l and the elements of S2 + l are larger than l, we have

sort(s1, . . . , sn−1, l) = (z1, . . . , zl−1, l, zl+1, . . . , zn),

where (z1, . . . , zl−1) = sort(S1) and (zl+1, . . . , zn) = sort(S2+l). Hence zi ≥ i for
1 ≤ i ≤ l−1 and zl+i ≥ l+i for 1 ≤ i ≤ n−l, and furthermore zn ≤ (n−l)+l = n,
proving the assertion.

4. Put sn = l+ q, where q is the number of vertices of T ′2 smaller than r. We have

sn ≤ (number of vertices of T ′1) + (number of vertices of T ′2 − 1) = n.

Since we have obtained S = (s1, . . . , sn) from the major sequence (s1, . . . , sn−1, l)
by increasing its last component, but not above n, S is a major sequence.

5. Using induction and the familiar arguments, we obtain

a(S) = a(z1, . . . , zl−1) + a((zl+1, . . . , zn)− l) + q

= a(S1) + a(S2) + q

= e(T1) + e(T2) + q

= e(T ′1) + e(T ′2) + q

= e(T ).

Furthermore, the major sequence S just constructed satisfies s∗n = l, as can be
seen from the argument in 3 above. From this it follows easily that f(S) = T ,
and therefore we have indeed inverted f , so f is a bijection.

We remark that in mapping major sequences to trees, Kreweras’ algorithm and
ours use the same decomposition, but obtain different trees. The algorithms differ,
first, in how vertex r is chosen and, second, in the fact that Kreweras’ algorithm
permutes a subset of the labels of T ′2 (to obtain the correct number of inversions)
and ours does not have to. A similar permutation of a subset of labels also occurs in
Beissinger’s algorithm.
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