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Abstract.

We give a new proof of Szekeres’ formula for P (n, k), the number of partitions of
the integer n having k or fewer positive parts. Our proof is based on the recursion
satisfied by P (n, k) and Taylor’s formula. We make no use of the Cauchy integral
formula or any complex variables. The derivation is presented as a step-by-step
procedure, to facilitate its application in other situations. As corollaries we obtain
the main term of the Hardy-Ramanujan formulas for p(n) = the number of unre-
stricted partitions of n, and for q(n) = the number of partitions of n into distinct
parts.
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1 Introduction.

A partition of an integer n into k parts is a solution to the system

n = x1 + x2 + · · ·xk, x1 ≥ x2 ≥ · · · ≥ xk > 0.

Let P (n, k) be the number of partitions of n into k or fewer parts. We will prove
the following.

Theorem. (Szekeres) Let ε > 0 be given. Then, uniformly for k ≥ n1/6,

P (n, k) =
f (u)

n
exp

{
n1/2g(u) + O

(
n−1/6+ε

)}
.

Here, u = k/n1/2, and the functions f (u), g(u) are:

f(u) =
v

23/2πu

(
1 − e−v − 1

2
u2e−v)−1/2 (1.1)

g(u) =
2v

u
− u log(1 − e−v), (1.2)

where v (= v(u)) is determined implicitly by

u2 = v2
/∫ v

0

t

et − 1
dt. (1.3)

Remarks. The estimate can be made uniform for the entire range k ≥ 1 by adding
1/k to the big-oh term. The last equation uniquely determines v because the right
hand side is an increasing function of v.

Szekeres presents his results in two papers [12, 13], using substantially different
approaches for two distinct though slightly overlapping ranges of k. The papers
are remarkable both for the depth of the analysis contained in them, and for the
precision of their results. Indeed, Szekeres’ is the only known proof that p (n, k)
is unimodal in k for fixed n. (p (n, k) = P (n, k) − P (n, k − 1) is the number of
partitions of n with exactly k parts. No combinatorial proof of this unimodality
result is known, and Szekeres’ proof itself holds only for n sufficiently large.)

As a partial justification for publishing the reproof of an old theorem, I offer
the following quotation from the famous paper [7, p. 78]: (recall that Hardy and
Ramanujan used the theory of linear transformations of elliptic functions to prove
their asymptotic formula for p (n), the total number of partitions of n.)

“It is very important, in dealing with such a problem as this, to distinguish
clearly the various stages to which we can progress by arguments of a pro-
gressively ‘deeper’ and less elementary character. . . . the more elementary
methods are likely to be applicable to other problems in which the more subtle
analysis is impracticable.”
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Erdös [6] has given an elementary (meaning complex-variable-free) derivation of the
main term in the Hardy-Ramanujan formula using the recursion:

np (n) =
∑

ν,µ

νp (n− µν).

Our proof also uses a recursion, and differs from Szekeres’ in the absence of complex
variables. It is perhaps noteworthy that we can recover all of Szekeres’ result,
including the leading constant, and can consolidate his two formulas into the one
given in the Theorem above. Moreover, our method can be used to estimate other
two-dimensional arrays of combinatorial significance.

For this last reason, we present in the next section a derivation of our result
in the form of a step-by-step procedure intended to be generally applicable. In the
procedure section we give only the key formulas while the next section of the paper
contains more details and justification. In the procedure section we do not give the
specific definitions of the functions a(u), A1(u), A2(u); these are found in the later
section.

The origin of the method presented here is [2], and a later example is [3]. Both
of these deal with graphical enumeration problems. The present paper differs in the
area of application (partitions), the n1/2 term exponentiated in the approximation
formula, and in the procedural style of presentation. This style was chosen both
to facilitate future applications and also as a first step toward possible software
implementation.

Knessl and Keller [8, 9] demonstrate a method with similarities to the one
presented here. As they point out, their method is formal. Formulas found via
their formal method are observed to be asymptotically correct over a certain range
by comparison to known results. However, proof of asymptotic correctness is not a
part of their method. The reader will see that the first four steps in the following
procedure section constitute a formal procedure for arriving at a putative formula;
the remaining eighteen steps provide a general approach to proving a big-oh bound
on the error.

For a comprehensive overview of asymptotic methods in enumeration, the
reader may consult [11].

2 Procedure.

Step 1. Start with a recursion for the doubly-indexed sequence to be estimated.

P (n, k) = P (n− k, k) + P (n, k − 1).

Step 2. Guess the form of the estimate.

P (n, k) ≈ n−1 exp{n1/2g(u) + a(u)}, u = k/n1/2.

Step 3. Express the right side of the recursion in terms of u, g(u), a(u), using
Taylor series.

P (n− k, k) ≈ n−1 exp{n1/2g(u) + a(u) − ug(u)/2 + u2g′(u)/2 +
A1(u)

n1/2
+ · · ·}

P (n, k − 1) ≈ n−1 exp{n1/2g(u) + a(u) − g′(u) +
A2(u)

n1/2
+ · · ·}.
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Remarks. Because of its frequent appearance, we define v to be the following
function:

v(u) = ug(u)/2 − u2g′(u)/2.

It emerges after solving for g(u) in Step 4 that this function v(u) is given by (1.3).
For typographical brevity we often omit the argument u from functions such as v,
g, a, g′, A1, and A2.

Step 4. Substitute the guessed form into the recursion; equate coefficients of like
powers of n on both sides, and solve the resulting differential equations for g(u),
a(u). Dividing through by n−1 exp{n1/2g + a}, and expanding the exponential
function,

1 = e−v
(
1 +

A1

n1/2
+ · · ·

)
+ e−g′(

1 +
A2

n1/2
+ · · ·

)
;

this gives one differential equation determining g(u):

1 = e−v + e−g′
, (2.1)

and another determining a(u):

0 = e−vA1 + e−g′
A2. (2.2)

Step 5. Solve for P (n, k) when k is sufficiently small, by other means.

P (n, k) =
1

k!

(
n− 1

k − 1

)
exp

{
O(k3/n)

}
, for k = O(n1/3),

=
1/2π

n
exp

{
k log

(ne2

k2

)
+ O(k3/n + 1/k)

}
.

Remark. The first equality above is due to Erdös and Lehner [5].

Step 6. Define b(n, k) to be the relative error of the approximation.

P (n, k) = n−1 exp{n1/2g(u) + a(u)}
(
1 + b(n, k)

)
.

Step 7. Expand the functions g(u), a(u) for small u to see how the approximator
behaves for k small.

g(u) = −2u log(u) + 2u + O(u3)

a(u) = − log(2π) + O(u4)

n−1 exp{n1/2g(u) + a(u)} =
1/2π

n
exp

{
k log

(ne2

k2

)
+ O(k3/n)

}
.

Step 8. Compare Steps 5 and 7 to bound b(n, k) for k sufficiently small.

b(n, k) = O(k3/n + 1/k), for k = O(n1/3).
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Step 9. Hypothesize a bound of the form kα/nβ for b(n, k), and a range for which
it is true.

|b(n, k)|
?
≤ Ckα/nβ , for k ≥ nδ1 .

Step 10. Determine conditions on α, β such that hypothesis
?
≤ holds for sufficiently

large C in some initial infinite segment of k. To achieve

max(k3/n, 1/k) ≤ Ckα/nβ, nδ1 ≤ k ≤ nδ2 ,

it suffices to have

β ≤ (1 + α)δ1, (3 − α)δ2 ≤ 1 − β, δ1 < δ2 < 1/3

Step 11. In preparation for a proof by induction of the hypothesized bound on
|b(n, k)|, give a recursion for the latter. Using the definition of Step 6,

1 + b(n,k)

=
(n − k)−1 exp{(n − k)1/2g(k(n− k)−1/2) + a(k(n− k)−1/2)}

n−1 exp{n1/2g(u) + a(u)}
(
1 + b(n− k, k)

)

+
n−1 exp{n1/2g((k − 1)n−1/2) + a((k − 1)n−1/2)}

n−1 exp{n1/2g(u) + a(u)}
(
1 + b(n, k − 1)

)

= T1(n, k)
(
1 + b(n − k, k)

)
+ T2(n, k)

(
1 + b(n, k − 1)

)
,

say.
Step 12. When using the above b(n, k) recursion in the inductive step, take ad-
vantage of k − 1 in place of k:

(k − 1)α

nβ
=

kα

nβ

(
1 − α/k + O(k−2)

)
;

and compensate fairly for n − k in place of n:

kα

(n− k)β
=

kα

nβ

(
1 + βk/n + O(k2n−2)

)
.

Small u
Steps 13 through 16 involve small u: u ≤ ε0. The correct choice of ε0 appears in
Step 15. All big-oh assertions in Steps 13 through 16 are uniform for u ≤ ε0.

Step 13. Using Taylor series with remainder for g(u), a(u), find estimates beyond
the A1 and A2 terms for T1(n, k) and T2(n, k) that hold uniformly for u ≤ ε0.

T1 = e−v
(
1 +

A1

n1/2
+ O(u2n−1)

)

T2 = e−g′
(
1 +

A2

n1/2
+ O(u−2n−1)

)
.
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Step 14. Rewrite the recursion of Step 11 using the known form of T1 + T2.
Since e−g′

= O(u2), the two differential equations (2.1,2.2) imply that T1 + T2 =
1 + O(n−1). Hence,

b(n, k) = O(n−1) + T1 · b(n− k, k) + T2 · b(n, k − 1).

In view of the final two terms in the latter and the admonition of Step 12, we make
the following calculation:

e−v
(
1 +

A1

n1/2
+ O(u2n−1)

)(
1 + βk/n + O(k2n−2)

)

+ e−g′
(
1 +

A2

n1/2
+ O(u−2n−1)

)(
1 − α/k + O(k−2)

)

= 1 +
βe−vk

n
− αe−g′

k
+ O(n−1).

Step 15. The difference αe−g′
/k − βe−vk/n turns out to be crucial; determine a

lower bound for small u by taking the first terms of the Taylor series:

αe−g′
/k − βe−vk/n >

α − β

2

u

n1/2
for u ≤ ε0.

This inequality is the defining property of ε0.

Step 16. Determine conditions on α and β so that the inductive step in a proof

of hypothesis
?
≤ goes through for sufficiently large C and k in the range nδ2 ≤ k ≤

ε0n
1/2:

|b(n, k)| ≤ O(n−1) +Ckα/nβ
(
1 +

βe−vk

n
− αe−g′

k
+ O(n−1)

)

?
≤ Ckα/nβ .

Since 1/n = o(u), the induction goes through provided

1

n
≤ C

kα

nβ

α− β

3

u

n1/2
,

for which it suffices

β ≤ (1 + α)δ2, α > β

Large u
Steps 17 through 20 involve large u: ε0 ≤ u ≤ 25 logn. The value of ε0 is inherited
from Step 15. The upper bound 25 log n is small enough that u = o(n1/2), thus
making approximations like the first in (3.1) still valid; and it is large enough to
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make Steps 21 and 22 easy. All big-oh assertions in Steps 17 through 20 are uniform
for ε0 ≤ u ≤ 25 logn.

Step 17. Repeat Step 13 for large u:

T1 = e−v
(
1 +

A1

n1/2
+ O(u4n−1)

)

T2 = e−g′
(
1 +

A2

n1/2
+ O(u2e−vn−1)

)
.

Step 18. Repeat Step 14 for large u.

e−v
(
1 +

A1

n1/2
+ O(u4n−1)

)(
1 + βk/n + O(k2n−2)

)

+ e−g′
(
1 +

A2

n1/2
+ O(u2e−vn−1)

)(
1 − α/k + O(k−2)

)

= 1 +
βe−vk

n
−

αe−g′

k
+ O(ue−vn−1).

Step 19. Find a positive lower bound for the crucial difference discussed in Step
15 holding when u ≥ ε0.

αe−g′
/k − βe−vk/n > c1(α− β)/k,

where c1 is the minimum of 1 − e−v for u ≥ ε0.

Step 20. Find a condition on α, β, and C so that the induction step goes through
for large u. We need to know for the range ε0n

1/2 ≤ k ≤ 25n1/2 log n that

ue−v

n
≤ C

kα

nβ

c1(α− β)

k
;

for this it suffices to have

(1 − α)/2 < 1 − β, α > β

Step 21. Make a special argument for the range of extraordinarily large k; that is,
k > 25n1/2 log n.

Step 22. Choose α and β subject to the accumulated restrictions so as to prove
the best possible bound on b(n, k) of the form n−c. Taking α slightly larger than
1/3, and β = 1/3, and again making a special argument for k > 25n1/2 log n, we
obtain the result stated in the Theorem.

3 Details.
Within this part of the paper we’ll label our remarks as Comment 1, Comment 2,
etc. to parallel the labeling of the Steps in the previous section.
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Comment 1. This is a well known recursion, and here is a proof: (see [4, p. 96],
for example) if a partition has fewer than k parts, then it is counted by P (n, k−1);
on the other hand, if it has exactly k strictly positive parts, then each part can be
reduced by 1 and there results a partition counted by P (n− k, k).

Comment 2. This step requires creativity. In the problem under consideration, the
number of partitions P (n, k), one can glean the correct form from Szekeres’ papers.
In attacking a previously unsolved recursion, one might carry out Step 5 first,
making an educated guess based on that. Presumably any incorrect assumptions
will be exposed as frauds in later steps. Note that the function f(u) in the theorem
appears at this point in logarithmic form: f = exp{a}.

Comment 3. This step involves calculating a number of Taylor expansions. For
now we ignore error bounds and carry each expansion out to enough terms to find the
differential equations in the next step. Later, in Comments 13 and 17, the quantity
indicated by the ellipsis · · · in each equation must be filled in. (In Comment 13 we
find suitable big-oh terms for the · · ·’s when u is restricted to be smaller than ε0; in
Comment 17 we do the same for large u.) First, for the term P (n − k, k),

k(n − k)−1/2 = u +
(
u2/2n1/2 + 3u3/8n + · · ·

)

g
(
k(n − k)−1/2

)
= g(u) + u2g′(u)/2n1/2 +

(
3u3g′(u) + u4g′′(u)

)
/8n + · · ·

a
(
k(n − k)−1/2

)
= a(u) + u2a′(u)/2n1/2 + · · ·

(n − k)1/2 = n1/2 − u/2 − u2/8n1/2 + · · · (3.1)

n(n− k)−1 = 1 + k(n − k)−1 = exp{u/n1/2 + · · ·}
P (n− k, k) ≈ (n− k)−1 exp

{
(n− k)1/2g

(
k(n − k)−1/2

)
+ a

(
k(n− k)−1/2

)}

= n−1 exp
{
n1/2g(u) + a(u)

}

× e−v
(
1 +

−uv/4 + u4g′′(u)/8 + u2a′(u)/2 + u

n1/2
+ · · ·

)
.

Second, for the term P (n, k − 1), which is computationally simpler,

(k − 1)n−1/2 = u − n−1/2

g
(
(k − 1)n−1/2

)
= g(u) − g′(u)/n1/2 + g′′(u)/2n + · · ·

a
(
(k − 1)n−1/2

)
= a(u) − a′(u)/n1/2 + · · · (3.2)

P (n, k − 1) ≈ n−1 exp
{
n1/2g

(
(k − 1)n−1/2

)
+ a

(
(k − 1)n−1/2

)}

= n−1 exp
{
n1/2g(u) + a(u)

}

× e−g′
(
1 +

g′′(u)/2 − a′(u)

n1/2
+ · · ·

)
.

¿From these we read off the formulas

A1 = −uv/4 + u4g′′(u)/8 + u2a′(u)/2 + u

A2 = g′′(u)/2 − a′(u). (3.3)
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Comment 4. Let us begin by computing all the derivatives we will need from here
on. Assume that g,v, and a are given by (1.2), (1.3) and the logarithm of (1.1);
then

v′ = v/u +
uv/2

ev − 1 − u2/2

g′ = − log(1 − e−v)

g′′ =
−v/u

ev − 1 − u2/2

g′′′ =
(v/u)2ev(ev − 1)

(ev − 1 − u2/2)3
−

3v/2

(ev − 1 − u2/2)2
(3.4)

a(u) = − log(23/2π) + log
v

u
− 1

2 log
(
1 − e−v(1 + u2/2)

)

a′(u) =
u− v/2u− uv/4

ev − 1 − u2/2
−

u3v/8 + uv/4

(ev − 1 − u2/2)2

a′′(u) =

4∑

j=1

pj
(ev − 1 − u2/2)j

, pj = polynomial in u, v, u−1.

In the last expression only p1 = 1 + v2/4− 3v/2 + v2/2u2 will be needed explicitly.
The calculation of g′ verifies relation (2.1). With A1 and A2 defined by (3.3), we
want to check relation (2.2). Since only a′(u), and not a(u), enters into the latter
relation, the function a(u) is determined by this relation only up to an additive
constant. The value − log(23/2π) chosen above gives the right hand limit

a(0+) = − log 2π, (3.5)

which is needed later in Comment 7. Since each of A1, A2, e
v, and e−g′

= 1 − e−v

is a rational function of u, v, and ev, verification of the relation (2.2) is reduced to
some (albeit tedious) rational algebra in three variables.

Comment 5.We follow Erdös and Lehner [5] for this step. It is well known [4,
p. 123] that the binomial coefficient

(
n−1
k−1

)
counts the number of integer k-tuples

satisfying

n = x1 + · · · + xk; xi > 0,

because each such solution corresponds to choosing k − 1 out of the n − 1 gaps
available when n dots are placed in a row. Such k-tuples differ from partitions in
that the order of the summands counts; they are called compositions.

How many (n, k)-compositions contain a repeated part ? This was answered
first in [5], and has been readdressed in later literature. The number in question is
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certainly bounded above by
(
k

2

) ∑

h≥1

(
n− 2h− 1

k − 3

)
≤

(
k

2

) ∑

h≥1

(
n− 2 − h

k − 3

)

=

(
k

2

)(
n− 2

k − 2

)

= O(k3/n)

(
n− 1

k − 1

)
.

The number of (n, k)-compositions with no repeated part is equal to k! times
the number of partitions of n into k positive distinct parts. Reducing the smallest
part by 1, the next smallest part by 2, etc., the latter number of partitions is seen
to be P (n −

(
k+1
2

)
, k), and so

P (n−
(
k + 1

2

)
, k) =

1

k!

(
n− 1

k − 1

)
exp{O(k3/n)}.

The first equation in Step 5 follows, and the second is obtained by using
(
n− 1

k − 1

)
=

k

n

nk

k!
exp{O(k2/n)}

and Stirling’s formula.

Comment 6. No comment necessary.

Comment 7. We want estimates of g and a for small u. In Comment 13 we need
similar estimates for the higher derivatives of these functions, so we record them all
here. The big-oh terms are uniform for bounded u. The right side of the equation
(1.3) is readily seen to be v + v2/4 + O(v3); this can be inverted to obtain

v = u2 − u4/4 + O(u6).

This and (3.4) lead to the formulas stated below for g and its derivatives. For a′′(u)
a different argument is needed since our explicit formula is incomplete. By the
Reversion Theorem and other standard results on real power series [10, Chapter 5,
esp. Section 21] it follows that first v(u), then a(u) due to fortuitous cancelling
among logarithmic terms, are represented by convergent power series in some inter-
val (−η,+η) about u = 0. Given this, the assertions about a′ and a′′ follow from
that about a.

g(u) = −2u log u + 2u + O(u3)

g′(u) = −2 log u + O(u2)

g′′(u) = −2/u + O(u)

g′′′(u) = 2/u2 + O(1) (3.6)

a(u) = − log 2π + O(u4)

a′(u) = O(u3)

a′′(u) = O(u2).
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Again, these estimates are uniform for bounded u.

Comments 8 through 12. No comment necessary.

Recall that throughout Comments 13 through 16 we have u ≤ ε0, and all big-oh
assertions are uniform for that range.

Comment 13. Reexamining the definition in Step 11 of T1 and T2, we see that
what’s needed is to make modifications in the formal expansions of Step 3 so that
the imprecise ≈ signs can be replaced with exact equalities =. This is accomplished
by determining rigorous big-oh terms for the ellipses · · · in those expansions. Refer
to the series of calculations (3.1). If we find suitable big-oh terms for the six · · ·’s
appearing in that series of calculations, the final one is in fact the desired T1 formula.
Likewise the three · · ·’s in (3.2) for T2. All that’s needed is Taylor’s formula with
remainder, which we state here in generic form:

G(u + ∆u) = G(u) + ∆uG′(u) + 1
2(∆u)2G′′(u) + 1

6 (∆u)3G′′(ξ),

with ξ between u and u + ∆u. The latter is appropriate for the expression (n −
k)1/2g(k(n − k)−1/2); for a(k(n − k)−1/2) one less term suffices. Replacing ∆u by
u2/2n1/2 + 3u3/8n + O(u4n−3/2), using the bounds (3.6), and noting ∆u = o(u)
so that g′′′(ξ) = O(u−2), we find that the first five · · ·’s in (3.1) can be filled
in with, respectively: O(u4n−3/2), O(u4 log(u)n−3/2), O(u3n−1), O(u3n−1), and
O(u2n−1). These five combine algebraically to determine the sixth as the desired
O(u2n−1). In like manner the three ellipses · · · in (3.2) may be filled in with
O(u−2n−3/2), O(u2n−1), and O(u−2n−1).

Comment 14. The first assertion, about b(n, k), is immediate from the previous
step. The second follows by straightforward algebra, using A1 = O(u) and A2 =
O(u−1) for the two products, and then the relations (2.1,2.2) to simplify the sum.
The fact that e−g′

= O(u2) is needed.

Comment 15. By (3.6) we have e−g′
= u2 +O(u4), and by (2.1) e−v = 1+O(u2);

hence,

αe−g′
/k − βe−vk/n =

(
αe−g′/u − βe−vu

)/
n1/2

=
(
αu − βu + O(u3)

)/
n1/2,

which gives the desired lower bound if ε0 is set sufficiently small.

Comment 16. No comment necessary.

Recall that throughout Comments 17 through 20 we assume that u ≤ ε0; further,
all big-oh assertions are uniform for that range.

Comment 17. This step is completed in much the same manner as was Step 13.
First we need the large u analog of the small u approximations appearing in (3.6).
Observe that ∫ ∞

0

t

et − 1
dt =

π2

6
,
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as can be seen by expanding (et − 1)−1 as
∑∞

m=1 e
−mt and using the well known∑∞

m=1 m
−2 = π2/6. By this we conclude from (1.3) that

v

u
→ π/61/2 as u → ∞. (3.7)

Thus for u ≥ ε0 the ratio v/u is confined to a closed interval [η,M ], 0 < η < M < ∞.
This plus formulas (1.2) and (3.4) suffice to prove

g = O(1), g′, g′′, g′′′ = O(e−v), a′, a′′ = O(u2e−v). (3.8)

Consider again the series of equations (3.1). Because ∆u = O(u2n−1/2), it follows
that v(ξ), the v-value corresponding to ξ, equals v(u)+o(1); hence, g′′′(ξ1) = O(e−v)
and a′′(ξ2) = O(u2e−v). We may then calculate that the proper substitutions for
the six ellipses · · · appearing in (3.1), when u ≥ ε0, are O(u4n−3/2), O(u6e−vn−3/2),
O(u6e−vn−1), O(u3n−1), O(u2n−1), and O(u4n−1). In like manner the three
ellipses appearing in (3.2) are filled in with O(u2e−vn−3/2), O(u2e−vn−1), and
O(u2e−vn−1).

Comment 18. This is similar to Step 14, and is straightforward using A1 = O(u2),
A2 = O(u2e−v).

Comment 19. Because t(et − 1)−1 is a decreasing function of t, we have

v2

u2
=

∫ v

0

t

et − 1
dt ≥ v

v

ev − 1
=

v2

ev − 1
,

and so
ev − 1 ≥ u2.

Hence,

αe−g′
/k − βe−vk/n =

(
αe−g′ − βe−vu2

)
/k

≥
(
α(1 − e−v) − βe−v(ev − 1)

)/
k

= (α − β)(1 − e−v)/k,

as needed.

Comment 20. No comment necessary.

Comments 21 and 22. Define k1, u1 by

k1 = b25n1/2 log nc, u1 = k1/n
1/2.

The following lemma is the key to Steps 21 and 22.

Lemma. Assume 4 ≥ α− β > 0, and

|b(ν, k)| ≤ Ckα/νβ for ν < n or (ν = n and k ≤ k1).
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Then, uniformly for C ≥ 1 and k ≥ k1

1 + b(n, k) =
(
1 + b(n, k1)

)(
1 + O(Cn−24)

)

Proof. The desired result follows from

g(u) − g(u1) = O(n−25) for u > u1 (i)

a(u) − a(u1) = O(n−24) for u > u1 (ii)

P (n, k)/P (n, k1) = 1 + O(Cn−24) for n ≥ k > k1. (iii)

To see (i), recall (3.8) that g′(u) = O(e−v), and (3.7) that v/u → π/61/2 > 1. For
the range of u under discussion e−v = o(e−u), and so

g(u) = g(u1) +

∫ u

u1

g′(t)dt < g(u1) + e−u1 = g(u1) + O(n−25).

Relation (ii) is handled similarly. Since 1 + Cνα−β ≤ 2Cνα−β and g is increasing,
we have

p(ν) = P (ν, ν) < c2Cνα−β−1ec3
√
ν for ν < n,

where
c2 = 2 max

u
ea(u), c3 = lim

u→∞
g(u) = π(2/3)1/2 > 5/2.

The above limit is determined by (3.7) and (1.2). Since P (n, k) increases with
k, it suffices to prove (iii) for k = n. Using (n − k1)

1/2 < n1/2 − 12 log n and
c3 = g(u1) + O(n−24), we have for large n

P (n, n) − P (n, k1) =
∑

n≥k>k1

P (n − k, k)

< (n− k1)p(n − k1)

< c2C(n − k1)
α−βec3

√
n−k1

< Cnα−β−30ec3
√
n

< Cnα−β−29 exp{n1/2g(u1)}.

Dividing through by P (n, k1) = n−1 exp{n1/2g(u1) + O(1)}, we obtain (iii). The
proof of the lemma is complete.

To complete Step 21, use the Lemma and the known result on b(n, k1) to find,
for n ≥ k > k1,

|b(n, k)| ≤ |b(n, k1)| + O(Cn−24) ≤ C
(kα

1

nβ
+ O(n−24)

)
.

Collecting the conditions needed to prove the Lemma with conditions sufficient to
prove the rightmost term above is ≤ C(k1 + 1)α/nβ , we impose
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C ≥ 1, 4 ≥ α− β > 0, β < 24 + min{0, (α − 1)/2}

We now turn to Step 22. Choosing α = 1/3 + ε, β = 1/3, δ2 = 1/4, and
δ1 sufficiently close to δ2 satisfies the four accumulated constraints on α and β.
Hence, |b(n, k)| ≤ Cn−1/6+ε/3 for n large and k ≤ k1 by the Ckα/nβ bound. By
the Lemma, we see that |b(n, k)| ≤ Cn−1/6+ε/4 for large n and all k. Since ε is
arbitrary, the Theorem has been proved.

4 Conclusion.
Hardy and Ramanujan gave a complete asymptotic expansion for p(n), and

Szekeres did the same for P (n, k). Later Rademacher extended earlier work to
find a convergent sum for p(n). I do not know any of the later terms in Szekeres’
expansion explicitly, or any results concerning convergence of his expansion. It
seems possible that the method described in this paper could produce at least one
additional asymptotic term, but I have not done it.

As for the size of the overall relative error, O(n−1/6+ε), improving on this
requires starting the induction in the Erdös-Lehner range with something more
accurate. For instance, if we show by a combinatorial argument more involved than
the one in Comment 5 that

P (n, k) =

(
n− 1

k − 1

)
exp{c4k3/n + O(k5/n2)}, k = O(n2/5), (4.1)

then our conclusion in Step 8 becomes

b(n, k) = O(k5/n2 + 1/k), k = O(n2/5),

and the first constraint on α and β in Step 10 improves to

β ≤ (1 + α)δ1, (5 − α)δ2 ≤ 2 − β, δ1 < δ2 < 2/5.

The correct value of c4 in (4.1), by [13], is −1/4, but I do not have a combinatorial
proof of this. Such a revised start to the induction improves the O(n−1/6+ε) error
to O(n−1/4+ε). For any ε > 0, an overall error of O(n−1/2+ε) can be achieved by
a sufficiently accurate (hence increasingly complex) combinatorial argument at the
start of the induction. To break the O(n−1/2) barrior, however, requires introducing
an additional term in the exponent of the guessed form, making it n1/2g(u)+a(u)+
a1(u)n−1/2, as alluded to in the previous paragraph.

As shown by Szekeres [13], classical asymptotic formulas for p(n) and q(n)
follow from the Theorem.

Corollary 1. (Hardy and Ramanujan [7]) Let p(n) be the number of partitions of
n; for any ε > 0,

p(n) =
1

4 · 31/2n
eπ
√

2n/3
(
1 + O(n−1/6+ε)

)
.
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Proof. Using (3.7), (1.1), and (1.2)

g(u) → π(2/3)1/2, f (u) → 1/4 · 31/2, as u → ∞.

This yields Corollary 1.

Corollary 2. (Hardy and Ramanujan [7]) Let q(n) be the number of partitions of
n into distinct parts; for any ε > 0,

q(n) =
1

4 · 31/4n3/4
eπ
√

n/3
(
1 + O(n−1/6+ε)

)
.

Proof. Let q(n, k) be the number of partitions of n into k distinct parts. Since
q(n, k) = P (n −

(
k+1
2

)
, k), we have uniformly for ε1n

1/2 ≤ k ≤ (21/2 − ε1)n
1/2, (ε1

fixed)

q(n, k) =
F (u)

n
exp

{
n1/2G(u) + O(n−1/6+ε)

}
,

where
F (u) = (1 − u2/2)−1f

(
u(1 − u2/2)−1/2

)
exp{− 1

2
v∗(u)}

G(u) = (1 − u2/2)1/2g
(
u(1 − u2/2)−1/2

)

v∗(u) = v
(
u(1 − u2/2)−1/2

)
.

Let u0 satisfy the equation G′(u0) = 0; then uniformly for t = O(n1/3)

q(n, u0n
1/2 + t) =

F (u0)

n
exp

{
n1/2G(u0) + 1

2
t2G′′(u0)n

−1/2 + O(n−1/6+ε)
}
.

By a standard argument in asymptotic methods ([11], 5.1), a key step of which is
∑

|t|≤n1/3

exp( 1
2t

2G′′n−1/2) = n1/4(1+o(1))
∫ +∞
−∞ eG

′′x2/2dx = n1/4(−2π/G′′)1/2(1+o(1)),

with a relative error o(1) much smaller than the O(n−1/6+ε) precision which we are
maintaining, one may show that terms q(n, k) with |k − u0n

1/2| > n1/3 contribute
insignificantly to

∑
k q(n, k) and conclude

q(n) =
F (u0)

n3/4

√
2π

−G′′(u0)
exp

{
n1/2G(u0) + O(n−1/6+ε)

}
.

To obtain the corollary, one must evaluate u0, G(u0), F (u0), and G′′(u0), an in-
triguing exercise for aficionados of algebra and analysis. In the interest of bringing
the paper to a close, we will just mention two highlights of the calculation. First,
G′(u) has a nice form:

G′(u) = −v∗(u) − log(1 − e−v∗(u)).

Hence, to make G′ vanish we need

v∗(u0) = log 2.

Determining u0 requires (see [1], 27.7.7 and 27.7.3)
∫ log 2

0

t

et − 1
dt = − 1

2
(log 2)2 + π2

12
.
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