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Abstract

The Galois number G, (q) is defined to be the number of subspaces of the
n-dimensional vector space over the finite field GF'(q). When ¢ is prime, we
prove that G, (q) is equal to the number L, (q) of n-dimensional mod ¢ lattices,
which are defined to be lattices (that is, discrete additive subgroups of n-space)
contained in the integer lattice Z™ and having the property that given any point
P in the lattice, all points of Z™ which are congruent to P mod ¢ are also in
the lattice. For each n, we prove that L, (q) is a multiplicative function of g.
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1 Introduction

The well known Gaussian coefficient (or q-binomial coefficient)

(n) (=D =) (T -
") q (" =1(g" ' =1)---(g—1)

is equal to the number of r-dimensional vector subspaces of the n-dimensional vector
space V,,(q) over the finite field GF(q). We let G,, = G,(q) denote the total number
of vector subspaces of V,(¢). The numbers G, were named the Galois numbers by
Goldman and Rota [4, p. 77].

Goldman and Rota [4] proved the recursion formula

Gn+1 = QGn + (qn - 1)Gn71 (1)

for the Galois numbers.

Nijenhuis, Solow and Wilf [4] gave a different proof of (1) by using the observation
that the r-dimensional vector subspaces of V,(q) are in one-to-one correspondence
with the n by n matrices over GF'(¢q) which have rank r and are in reduced row
echelon form (rref). Recall that such a matrix is in rref if its last n — r rows are all
zeros; in each of the first » rows the first nonzero entry is a 1; the index of the i-th
column (called a pivotal column) in which one of these r 1’s occurs strictly increases
as ¢ increases; and each of these r pivotal columns has only a single nonzero entry.
We let E(r,n,q) denote the number of n by n matrices with rank r over the field
GF(q) which are in rref. Then it was proved in [4] that

Gnlq) = Y B(r,n,q). (2)
r=0
The correspondence mentioned above gives

E(r,n,q) = (”)q 3)

r

For example, E(r,4,2) for r =0,1,2,3,4is 1,15,35,15 and 1, respectively.

We shall need the concept of an n-dimensional mod q lattice, which is defined to
be an n-dimensional lattice contained in the integer lattice Z™ and having the special
property that given any point P in the lattice, all points of Z™ which are congruent
to P mod ¢ are also in the lattice. Later in this paper we shall show how the mod ¢
lattices are connected to the Galois numbers G, (q). It also turns out that the mod
q lattices have an important application in cryptography, which we discuss elsewhere
[2]. The set of mod ¢ lattices contains various special subsets which can be used
in the design of a novel kind of public-key cryptosystem. This idea originated with
Ajtai [1].
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2 The multiplicative property

We let L,,(q) denote the number of m-dimensional mod ¢ lattices. Our first goal is
to prove that L,,(q) is a multiplicative function, that is, for any positive integers r
and s with ged(r, s) = 1 we have L,,(rs) = Ly, (r) Ly (s).

Theorem 1. The function L,,(q) is multiplicative for each m = 2,3, . ...

Proof. Clearly, every m-dimensional mod ¢ lattice is the solution space of some system
Ax = 0 mod g, (4)

where A is an m by m matrix over the integers mod q. Conversely, the solution space
of any system (4) is a mod q lattice. (Note that if e1, e, ... , e, is the standard basis
for R™, then the m linearly independent vectors ge; (1 < i < m) are always solutions
of (4), so the solution space is always a lattice of dimension m.)

If ged(r,s) = 1, there is a bijection between the set of m-dimensional mod rs
lattices and the set of pairs of m-dimensional lattices made up of one mod r lattice
and one mod s lattice. The bijection is defined as follows: Given a mod rs lattice
which is the solution space of Ax = 0 mod rs, we associate with it the pair of lattices
which are solution spaces of

Bx =0 mod r and Cx = 0 mod s, (5)
where the matrices B and C' are defined by
A= Bmodr and A= C mod s; (6)

and conversely, given (5) we define a matrix A by (6).

To prove that this is a bijection, we must first show that different lattice pairs give
different mod rs lattices. Given relatively prime integers r and s, by the definition
of L,,(q) we can choose two sets of matrices {B; : 1 < i < L,,(r)}, where B; is
defined over the integers mod r, and {C; : 1 < i < L,(s)}, where C; is defined
over the integers mod s, such that every m-dimensional mod r lattice is the solution
space of exactly one of the systems B;x = Omodr, 1 < i < L,(r), and every
m-~dimensional mod s lattice is the solution space of exactly one of the systems
Cjx=0mod s, 1 <j < L,(s). Since ged(r, s) = 1, the theory of linear congruences
in one variable shows that each pair of simultaneous congruences

A=B;modr, A=C;mod s, 1 <i<Ly(r), 1 <j<Ly(s) (7)

defines a unique m by m matrix A = A;;, say, over the integers mod rs, and these
matrices are all different since the pairs B;, C; are. We shall show that the solution
spaces (which are the mod rs lattices) of the systems

Ajx=0modrs, 1 <i<Ly(r), 1 <j < Ly(s)

are all distinct.
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Let Ary and Ak, be any two different matrices chosen from the A;;’s. Then by

(7),

{xmod r: Arjx =0mod rs} = {x: Byx =0mod r}
and

{xmod s: Aryx =0mod rs} = {x: Cjx =0mod s};

similar equations hold for Agx. Since the pairs By, C'; and B, C}, are different, we
have either

{x:Bx=0modr} # {x: Bgx=0modr}
or
{x:Cyx=0mod s} # {x: Crx =0 mod s},

so the solution spaces for A;; and Agy, are different.

Finally we must show that different mod rs lattices give different lattice pairs.
This is clear since each congruence Ax = 0 mod rs gives a unique pair of congruences
(5), where the matrices B and C are defined by (6). O

3 Counting mod ¢ lattices

Our first goal is to prove explicit formulas for the number of m-dimensional mod ¢
lattices, which we denote by L,,(q), when m is small.

Theorem 2. The numbers Ly(q) and L3(q) are given by

) = S e (b L) ®)

kilg k2lq

and

L) =Y 33 gd <k1, k%) ged (kQ, k%) ged (kl, k%) . (9)

kilg kz2|q kslq

We shall prove formula (8) first. We fix an z;, 25 Cartesian coordinate system in
R?2. Given any 2-dimensional mod ¢ lattice A, we have a basis-free representation
for it as follows: The z; axis contains infinitely many points of A, with a density
1/ky, where k; is a positive integer which divides ¢q. Every line 25 = ¢ either contains
no points of A or contains a shifted copy of the set of lattice points on xo = 0. If
Ty = ko is the line o = ¢ > 0 which is closest to the x; axis and has points of A,
then k5 is a divisor of q. A line x5 = ¢ contains points of A if and only if has the form
Ty = tky for some integer t. We say that A has jump ko (in the z, direction). If we
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let Cy(A) denote the 2-dimensional volume of a fundamental cell of A, then we have
Co(A) = kqks.

To count the 2-dimensional mod ¢ lattices which have given values of k; and ks,
it suffices to count the number of distinct 1-dimensional sublattices on x5 = ko which
give a mod ¢ lattice. We define the shift s, where s is an integer such that 0 < s < ky,
to be the amount by which the 1-dimensional sublattice on x5 = k is shifted with
respect to the 1-dimensional sublattice on o = 0. In order to give a mod q lattice,
the shift s must give a 1-dimensional sublattice on zo = ¢ which is an unshifted copy
of the same sublattice on x5 = 0. The sublattice on x5 = ¢ is shifted from the one on
xo = 0 by gs/ks, so the shift s gives a mod ¢ lattice if and only if

ki divides gs/ks. (10)

Clearly (10) holds for given k; and ko if and only if kiko/ ged(k1ks,q) = D, say,
divides s. Thus there are k1/D = gcd(ky, q/ks) allowable values of s in the range
0 < s < ky. This proves (8).

Now we prove formula (9). Each 3-dimensional mod ¢ lattice A is made up of
a 2-dimensional mod ¢ sublattice in the zi, x5 plane, which we denote by F,, and
shifted copies of this sublattice in each of various planes P; (i nonzero integer) which
are equally spaced parallel to Fy. As before, we let 1/k; denote the density of the
points of A on the x; axis and we let ks denote the jump in the z, direction for
the sublattice in Py (and so for A). The plane P; nearest to Py is at a distance ks,
where k3 is a divisor of q. We say that A has jump ks in the z3 direction. If we
let C5(A) denote the 3-dimensional volume of a fundamental cell of A, then we have
C3(A) = kykaoks.

To count the 3-dimensional mod ¢ lattices with given ki, ko and ks, for each 2-
dimensional mod ¢ sublattice on Fy we count the number of distinct 2-dimensional
sublattices in x3 = k3 (i.e., the plane P;) which give a mod ¢ lattice. We let s denote
the shift for the 1-dimensional sublattices in Py, as before, and we define the (vector)
shift s = (s1, s3), where 0 < s; < k; (i = 1,2), to be the amount by which 0 in F is
moved when we go to the sublattice in P;. The shift s gives a mod ¢ lattice if and
only if

ki divides ¢s1/ks and ko divides gsa/ks, (11)

that is, if and only if the orthogonal projection of (q/k3)(s1, s2, k3) into the plane P is
a lattice point. Now (11) holds for given ki, ko and k3 if and only if k;k3/ ged(kiks, q) =
D;, say, divides s; (i = 1,2). Thus there are k;/D; = ged(k;, q/ks) allowable values
of s; in the range 0 < s; < k;. This proves (9).

It is possible to extend the formula in Theorem 2 to the case of general m, but
complicated m-fold sums are involved. Since we do not need this result, we do not
give it here.

A multiplicative function is completely determined by its values at prime powers,
so it is of interest to examine L,,(p®) for prime p. Direct calculation using (8) gives

a

“ Nai (+Dp™ —(2a+3)p+2a+1
i=0
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Computer calculations using (9) give Table 1, which shows the expansion of L3(p*)
in powers of p for small a. There does not seem to be any nice explicit formula for
Ls(p*), though various properties of the coefficients in the table can be deduced.
Table 2 gives some values for Ly(q) and L3(q).

aj—|{ 0] 12|34 |5 |6 |7|8|9]|10(11|12]13]|14
4 12| 2
716116153
1010|1210 10| 8 | 4

14 |18 |17 |18 |14 | 15|11 | 5
16 |18 |24 |24 |28 122242020 |14| 6
1912213031 (38|32(35|30|30 27|25 |17 | 7
22 126 |36 | 38|48 42|48 42|42 3838343020 8

| o O | W o] |
—_
w

Table 1: Coefficients of p’ in the expansion of L3(p®), a < 7.

213 4 5|7 8 9 11 | 13 16 17 19 23
Ly(q) | 5| 6| 15| 8| 10 | 37 | 23 | 14 | 16 | 8 | 20 | 22 26
Ls(q) | 16 | 28 | 131 | 64 | 116 | 830 | 457 | 268 | 368 | 4633 | 616 | 1016 | 1108

Table 2: Values of Ly(q) and L3(q) for small prime powers g.

4 The connection with Galois numbers

Because of (2), our next theorem shows that L,,(¢) = G(q) whenever ¢ is a prime.

Theorem 3. For any prime q, we have
Lm(q) - Z E(T‘, m, Q)

Proof. We have already seen that every m-dimensional mod ¢ lattice is the solution
space of some system (4), where A is an m by m matrix over the integers mod gq.
Conversely, the solution space of any system (4) is an m-dimensional mod ¢ lattice.
Since q is prime, the mod ¢ lattices are thus in one-to-one correspondence with the
m by m reduced row echelon forms of matrices over GF(¢q) and we have the desired
equation. [

Because of (3), it is easy to compute E(r,m,q) for given values of r,m,q.

If g is not prime, the first two sentences in the proof of Theorem 3 are still true,
so the one-to-one correspondence between the mod ¢ lattices and solution spaces of
systems (4) is still valid. What is lost is the link with matrices over a field which
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are in reduced row echelon form (rref). Thus this paper shows that there are two
different natural extensions of the Galois numbers G,(q), ¢ prime. One extension
leads to the Galois numbers G, (q) for arbitrary positive integers ¢, as given in [4].
In that paper a formal definition of a rref matrix over a set of ¢ symbols is given and
finite fields play no role. For each n, the numbers G, (q) are fixed polynomials in ¢,
and the recursion (1) holds as a polynomial identity. The other extension leads to
the multiplicative functions L, (q) in this paper. If ¢ is not prime, then L,(q) is not
a polynomial in ¢ and the analog of (1) does not hold.
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