Finite vector spaces and certain lattices

Thomas W. Cusick

106 Diefendorf Hall, Department of Mathematics, State University of New York at Buffalo, Buffalo, NY 14214-3093 E-mail: cusick@acsu.buffalo.edu

Submitted: January 6, 1998; Accepted: March 18, 1998

Abstract

The Galois number $G_n(q)$ is defined to be the number of subspaces of the *n*-dimensional vector space over the finite field GF(q). When q is prime, we prove that $G_n(q)$ is equal to the number $L_n(q)$ of *n*-dimensional mod q lattices, which are defined to be lattices (that is, discrete additive subgroups of n-space) contained in the integer lattice \mathbf{Z}^n and having the property that given any point P in the lattice, all points of \mathbf{Z}^n which are congruent to $P \mod q$ are also in the lattice. For each n, we prove that $L_n(q)$ is a multiplicative function of q.

Keywords: Multiplicative function; Lattice; Galois numbers; Vector space; Identities 1991 Mathematical Reviews subject numbers: Primary 05A15 05A19 11A25 11H06 Secondary 05A30 94A60 11T99

1 Introduction

The well known *Gaussian coefficient* (or q-binomial coefficient)

$$\binom{n}{r}_{q} = \frac{(q^{n}-1)(q^{n-1}-1)\cdots(q^{n-r+1}-1)}{(q^{r}-1)(q^{r-1}-1)\cdots(q-1)}$$

is equal to the number of r-dimensional vector subspaces of the n-dimensional vector space $V_n(q)$ over the finite field GF(q). We let $G_n = G_n(q)$ denote the total number of vector subspaces of $V_n(q)$. The numbers G_n were named the *Galois numbers* by Goldman and Rota [4, p. 77].

Goldman and Rota [4] proved the recursion formula

$$G_{n+1} = 2G_n + (q^n - 1)G_{n-1} \tag{1}$$

for the Galois numbers.

Nijenhuis, Solow and Wilf [4] gave a different proof of (1) by using the observation that the r-dimensional vector subspaces of $V_n(q)$ are in one-to-one correspondence with the n by n matrices over GF(q) which have rank r and are in reduced row echelon form (rref). Recall that such a matrix is in rref if its last n - r rows are all zeros; in each of the first r rows the first nonzero entry is a 1; the index of the *i*-th column (called a *pivotal column*) in which one of these r 1's occurs strictly increases as *i* increases; and each of these r pivotal columns has only a single nonzero entry. We let E(r, n, q) denote the number of n by n matrices with rank r over the field GF(q) which are in rref. Then it was proved in [4] that

$$G_n(q) = \sum_{r=0}^{n} E(r, n, q).$$
 (2)

The correspondence mentioned above gives

$$E(r,n,q) = \binom{n}{r}_{q}.$$
(3)

For example, E(r, 4, 2) for r = 0, 1, 2, 3, 4 is 1, 15, 35, 15 and 1, respectively.

We shall need the concept of an *n*-dimensional mod q lattice, which is defined to be an n-dimensional lattice contained in the integer lattice \mathbb{Z}^n and having the special property that given any point P in the lattice, all points of \mathbb{Z}^n which are congruent to P mod q are also in the lattice. Later in this paper we shall show how the mod q lattices are connected to the Galois numbers $G_n(q)$. It also turns out that the mod q lattices have an important application in cryptography, which we discuss elsewhere [2]. The set of mod q lattices contains various special subsets which can be used in the design of a novel kind of public-key cryptosystem. This idea originated with Ajtai [1].

2 The multiplicative property

We let $L_m(q)$ denote the number of *m*-dimensional mod *q* lattices. Our first goal is to prove that $L_m(q)$ is a multiplicative function, that is, for any positive integers *r* and *s* with gcd(r, s) = 1 we have $L_m(rs) = L_m(r)L_m(s)$.

Theorem 1. The function $L_m(q)$ is multiplicative for each $m = 2, 3, \ldots$

Proof. Clearly, every *m*-dimensional mod *q* lattice is the solution space of some system

$$A\mathbf{x} \equiv 0 \bmod q,\tag{4}$$

where A is an m by m matrix over the integers mod q. Conversely, the solution space of any system (4) is a mod q lattice. (Note that if $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_m$ is the standard basis for \mathbf{R}^m , then the m linearly independent vectors $q\mathbf{e}_i$ $(1 \le i \le m)$ are always solutions of (4), so the solution space is always a lattice of dimension m.)

If gcd(r, s) = 1, there is a bijection between the set of *m*-dimensional mod *rs* lattices and the set of pairs of *m*-dimensional lattices made up of one mod *r* lattice and one mod *s* lattice. The bijection is defined as follows: Given a mod *rs* lattice which is the solution space of $A\mathbf{x} \equiv 0 \mod rs$, we associate with it the pair of lattices which are solution spaces of

$$B\mathbf{x} \equiv 0 \bmod r \text{ and } C\mathbf{x} \equiv 0 \bmod s, \tag{5}$$

where the matrices B and C are defined by

$$A \equiv B \mod r \text{ and } A \equiv C \mod s; \tag{6}$$

and conversely, given (5) we define a matrix A by (6).

To prove that this is a bijection, we must first show that different lattice pairs give different mod rs lattices. Given relatively prime integers r and s, by the definition of $L_m(q)$ we can choose two sets of matrices $\{B_i : 1 \leq i \leq L_m(r)\}$, where B_i is defined over the integers mod r, and $\{C_i : 1 \leq i \leq L_m(s)\}$, where C_i is defined over the integers mod s, such that every m-dimensional mod r lattice is the solution space of exactly one of the systems $B_i \mathbf{x} \equiv 0 \mod r$, $1 \leq i \leq L_m(r)$, and every m-dimensional mod s lattice is the solution space of exactly one of the systems $C_j \mathbf{x} \equiv 0 \mod s$, $1 \leq j \leq L_m(s)$. Since gcd(r, s) = 1, the theory of linear congruences in one variable shows that each pair of simultaneous congruences

$$A \equiv B_i \mod r, \ A \equiv C_j \mod s, \ 1 \le i \le L_m(r), \ 1 \le j \le L_m(s)$$
(7)

defines a unique m by m matrix $A = A_{ij}$, say, over the integers mod rs, and these matrices are all different since the pairs B_i, C_j are. We shall show that the solution spaces (which are the mod rs lattices) of the systems

$$A_{ij}\mathbf{x} \equiv 0 \mod rs, \ 1 \le i \le L_m(r), \ 1 \le j \le L_m(s)$$

are all distinct.

4

Let A_{IJ} and A_{KL} be any two different matrices chosen from the A_{ij} 's. Then by (7),

$$\{\mathbf{x} \bmod r : A_{IJ}\mathbf{x} \equiv 0 \bmod rs\} = \{\mathbf{x} : B_I\mathbf{x} \equiv 0 \bmod r\}$$

and

$$\{\mathbf{x} \bmod s : A_{IJ}\mathbf{x} \equiv 0 \bmod rs\} = \{\mathbf{x} : C_J\mathbf{x} \equiv 0 \bmod s\};\$$

similar equations hold for A_{KL} . Since the pairs B_I, C_J and B_K, C_L are different, we have either

$$\{\mathbf{x}: B_I \mathbf{x} \equiv 0 \mod r\} \neq \{\mathbf{x}: B_K \mathbf{x} \equiv 0 \mod r\}$$

or

$$\{\mathbf{x}: C_J \mathbf{x} \equiv 0 \mod s\} \neq \{\mathbf{x}: C_L \mathbf{x} \equiv 0 \mod s\}$$

so the solution spaces for A_{IJ} and A_{KL} are different.

Finally we must show that different mod rs lattices give different lattice pairs. This is clear since each congruence $A\mathbf{x} \equiv 0 \mod rs$ gives a unique pair of congruences (5), where the matrices B and C are defined by (6).

3 Counting mod q lattices

Our first goal is to prove explicit formulas for the number of *m*-dimensional mod q lattices, which we denote by $L_m(q)$, when m is small.

Theorem 2. The numbers $L_2(q)$ and $L_3(q)$ are given by

$$L_2(q) = \sum_{k_1|q} \sum_{k_2|q} \gcd\left(k_1, \frac{q}{k_2}\right)$$
(8)

and

$$L_3(q) = \sum_{k_1|q} \sum_{k_2|q} \sum_{k_3|q} \gcd\left(k_1, \frac{q}{k_3}\right) \gcd\left(k_2, \frac{q}{k_3}\right) \gcd\left(k_1, \frac{q}{k_2}\right).$$
(9)

We shall prove formula (8) first. We fix an x_1, x_2 Cartesian coordinate system in \mathbb{R}^2 . Given any 2-dimensional mod q lattice Λ , we have a basis-free representation for it as follows: The x_1 axis contains infinitely many points of Λ , with a density $1/k_1$, where k_1 is a positive integer which divides q. Every line $x_2 = c$ either contains no points of Λ or contains a shifted copy of the set of lattice points on $x_2 = 0$. If $x_2 = k_2$ is the line $x_2 = c > 0$ which is closest to the x_1 axis and has points of Λ , then k_2 is a divisor of q. A line $x_2 = c$ contains points of Λ if and only if has the form $x_2 = tk_2$ for some integer t. We say that Λ has jump k_2 (in the x_2 direction). If we

5

let $C_2(\Lambda)$ denote the 2-dimensional volume of a fundamental cell of Λ , then we have $C_2(\Lambda) = k_1 k_2$.

To count the 2-dimensional mod q lattices which have given values of k_1 and k_2 , it suffices to count the number of distinct 1-dimensional sublattices on $x_2 = k_2$ which give a mod q lattice. We define the *shift* s, where s is an integer such that $0 \le s < k_1$, to be the amount by which the 1-dimensional sublattice on $x_2 = k$ is shifted with respect to the 1-dimensional sublattice on $x_2 = 0$. In order to give a mod q lattice, the shift s must give a 1-dimensional sublattice on $x_2 = q$ which is an unshifted copy of the same sublattice on $x_2 = 0$. The sublattice on $x_2 = q$ is shifted from the one on $x_2 = 0$ by qs/k_2 , so the shift s gives a mod q lattice if and only if

$$k_1 ext{ divides } qs/k_2.$$
 (10)

Clearly (10) holds for given k_1 and k_2 if and only if $k_1k_2/\gcd(k_1k_2,q) = D$, say, divides s. Thus there are $k_1/D = \gcd(k_1,q/k_2)$ allowable values of s in the range $0 \le s < k_1$. This proves (8).

Now we prove formula (9). Each 3-dimensional mod q lattice Λ is made up of a 2-dimensional mod q sublattice in the x_1, x_2 plane, which we denote by P_0 , and shifted copies of this sublattice in each of various planes P_i (*i* nonzero integer) which are equally spaced parallel to P_0 . As before, we let $1/k_1$ denote the density of the points of Λ on the x_1 axis and we let k_2 denote the jump in the x_2 direction for the sublattice in P_0 (and so for Λ). The plane P_1 nearest to P_0 is at a distance k_3 , where k_3 is a divisor of q. We say that Λ has jump k_3 in the x_3 direction. If we let $C_3(\Lambda)$ denote the 3-dimensional volume of a fundamental cell of Λ , then we have $C_3(\Lambda) = k_1k_2k_3$.

To count the 3-dimensional mod q lattices with given k_1, k_2 and k_3 , for each 2dimensional mod q sublattice on P_0 we count the number of distinct 2-dimensional sublattices in $x_3 = k_3$ (i.e., the plane P_1) which give a mod q lattice. We let s denote the shift for the 1-dimensional sublattices in P_0 , as before, and we define the (vector) shift $\mathbf{s} = (s_1, s_2)$, where $0 \le s_i < k_i$ (i = 1, 2), to be the amount by which $\mathbf{0}$ in P_0 is moved when we go to the sublattice in P_1 . The shift \mathbf{s} gives a mod q lattice if and only if

$$k_1$$
 divides qs_1/k_3 and k_2 divides qs_2/k_3 , (11)

that is, if and only if the orthogonal projection of $(q/k_3)(s_1, s_2, k_3)$ into the plane P_0 is a lattice point. Now (11) holds for given k_1, k_2 and k_3 if and only if $k_i k_3 / \gcd(k_i k_3, q) = D_i$, say, divides s_i (i = 1, 2). Thus there are $k_i/D_i = \gcd(k_i, q/k_3)$ allowable values of s_i in the range $0 \le s_i < k_i$. This proves (9).

It is possible to extend the formula in Theorem 2 to the case of general m, but complicated m-fold sums are involved. Since we do not need this result, we do not give it here.

A multiplicative function is completely determined by its values at prime powers, so it is of interest to examine $L_m(p^a)$ for prime p. Direct calculation using (8) gives

$$L_2(p^a) = \sum_{i=0}^{a} (1+2i)p^{a-i} = \frac{(p+1)p^{a+1} - (2a+3)p + 2a+1}{(p-1)^2}.$$

Computer calculations using (9) give Table 1, which shows the expansion of $L_3(p^a)$ in powers of p for small a. There does not seem to be any nice explicit formula for $L_3(p^a)$, though various properties of the coefficients in the table can be deduced. Table 2 gives some values for $L_2(q)$ and $L_3(q)$.

$a, j \rightarrow$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	4	2	2												
2	7	6	6	5	3										
3	10	10	12	10	10	8	4								
4	13	14	18	17	18	14	15	11	5						
5	16	18	24	24	28	22	24	20	20	14	6				
6	19	22	30	31	38	32	35	30	30	27	25	17	7		
7	22	26	36	38	48	42	48	42	42	38	38	34	30	20	8

Table 1: Coefficients of p^j in the expansion of $L_3(p^a)$, $a \leq 7$.

	2	3	4	5	7	8	9	11	13	16	17	19	23
$L_2(q)$	5	6	15	8	10	37	23	14	16	83	20	22	26
$L_3(q)$	16	28	131	64	116	830	457	268	368	4633	616	1016	1108

Table 2: Values of $L_2(q)$ and $L_3(q)$ for small prime powers q.

4 The connection with Galois numbers

Because of (2), our next theorem shows that $L_m(q) = G_m(q)$ whenever q is a prime.

Theorem 3. For any prime q, we have

$$L_m(q) = \sum_{r=0}^m E(r, m, q).$$

Proof. We have already seen that every *m*-dimensional mod *q* lattice is the solution space of some system (4), where *A* is an *m* by *m* matrix over the integers mod *q*. Conversely, the solution space of any system (4) is an *m*-dimensional mod *q* lattice. Since *q* is prime, the mod *q* lattices are thus in one-to-one correspondence with the *m* by *m* reduced row echelon forms of matrices over GF(q) and we have the desired equation.

Because of (3), it is easy to compute E(r, m, q) for given values of r, m, q.

If q is not prime, the first two sentences in the proof of Theorem 3 are still true, so the one-to-one correspondence between the mod q lattices and solution spaces of systems (4) is still valid. What is lost is the link with matrices over a field which are in reduced row echelon form (rref). Thus this paper shows that there are two different natural extensions of the Galois numbers $G_n(q)$, q prime. One extension leads to the Galois numbers $G_n(q)$ for arbitrary positive integers q, as given in [4]. In that paper a formal definition of a rref matrix over a set of q symbols is given and finite fields play no role. For each n, the numbers $G_n(q)$ are fixed polynomials in q, and the recursion (1) holds as a polynomial identity. The other extension leads to the multiplicative functions $L_n(q)$ in this paper. If q is not prime, then $L_n(q)$ is not a polynomial in q and the analog of (1) does not hold.

References

- [1] MIKLOS AJTAI, Generating hard instances of lattice problems, in: *Proc. 28th ACM Symposium on the Theory of Computing*, 1996, pp. 99-108.
- [2] THOMAS W. CUSICK, The Ajtai random class of lattices, to appear.
- [3] JAY GOLDMAN AND GIAN-CARLO ROTA, The number of subspaces of a vector space, in: *Recent Progress in Combinatorics*, ed. W. T. Tutte (Academic Press, 1969), pp. 75-83.
- [4] ALBERT NIJENHUIS, ANITA E. SOLOW AND HERBERT S. WILF, Bijective methods in the theory of finite vector spaces, J. Combin. Theory (A) 37 (1984), 80-84.