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Abstract

The Galois number Gn(q) is defined to be the number of subspaces of the
n-dimensional vector space over the finite field GF (q). When q is prime, we
prove that Gn(q) is equal to the number Ln(q) of n-dimensional mod q lattices,
which are defined to be lattices (that is, discrete additive subgroups of n-space)
contained in the integer lattice Zn and having the property that given any point
P in the lattice, all points of Zn which are congruent to P mod q are also in
the lattice. For each n, we prove that Ln(q) is a multiplicative function of q.

Keywords: Multiplicative function; Lattice; Galois numbers; Vector space; Identities

1991 Mathematical Reviews subject numbers: Primary 05A15 05A19 11A25 11H06

Secondary 05A30 94A60 11T99



the electronic journal of combinatorics 5 (1998), #R17 2

1 Introduction

The well known Gaussian coefficient (or q-binomial coefficient)(
n

r

)
q

=
(qn − 1)(qn−1 − 1) · · · (qn−r+1 − 1)

(qr − 1)(qr−1 − 1) · · · (q − 1)

is equal to the number of r-dimensional vector subspaces of the n-dimensional vector
space Vn(q) over the finite field GF (q). We let Gn = Gn(q) denote the total number
of vector subspaces of Vn(q). The numbers Gn were named the Galois numbers by
Goldman and Rota [4, p. 77].

Goldman and Rota [4] proved the recursion formula

Gn+1 = 2Gn + (qn − 1)Gn−1 (1)

for the Galois numbers.
Nijenhuis, Solow and Wilf [4] gave a different proof of (1) by using the observation

that the r-dimensional vector subspaces of Vn(q) are in one-to-one correspondence
with the n by n matrices over GF (q) which have rank r and are in reduced row
echelon form (rref). Recall that such a matrix is in rref if its last n − r rows are all
zeros; in each of the first r rows the first nonzero entry is a 1; the index of the i-th
column (called a pivotal column) in which one of these r 1’s occurs strictly increases
as i increases; and each of these r pivotal columns has only a single nonzero entry.
We let E(r, n, q) denote the number of n by n matrices with rank r over the field
GF (q) which are in rref. Then it was proved in [4] that

Gn(q) =
n∑
r=0

E(r, n, q). (2)

The correspondence mentioned above gives

E(r, n, q) =

(
n

r

)
q
. (3)

For example, E(r, 4, 2) for r = 0, 1, 2, 3, 4 is 1, 15, 35, 15 and 1, respectively.
We shall need the concept of an n-dimensional mod q lattice, which is defined to

be an n-dimensional lattice contained in the integer lattice Zn and having the special
property that given any point P in the lattice, all points of Zn which are congruent
to P mod q are also in the lattice. Later in this paper we shall show how the mod q
lattices are connected to the Galois numbers Gn(q). It also turns out that the mod
q lattices have an important application in cryptography, which we discuss elsewhere
[2]. The set of mod q lattices contains various special subsets which can be used
in the design of a novel kind of public-key cryptosystem. This idea originated with
Ajtai [1].
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2 The multiplicative property

We let Lm(q) denote the number of m-dimensional mod q lattices. Our first goal is
to prove that Lm(q) is a multiplicative function, that is, for any positive integers r
and s with gcd(r, s) = 1 we have Lm(rs) = Lm(r)Lm(s).

Theorem 1. The function Lm(q) is multiplicative for each m = 2, 3, . . . .

Proof. Clearly, every m-dimensional mod q lattice is the solution space of some system

Ax ≡ 0 mod q, (4)

where A is an m by m matrix over the integers mod q. Conversely, the solution space
of any system (4) is a mod q lattice. (Note that if e1, e2, . . . , em is the standard basis
for Rm, then the m linearly independent vectors qei (1 ≤ i ≤ m) are always solutions
of (4), so the solution space is always a lattice of dimension m.)

If gcd(r, s) = 1, there is a bijection between the set of m-dimensional mod rs
lattices and the set of pairs of m-dimensional lattices made up of one mod r lattice
and one mod s lattice. The bijection is defined as follows: Given a mod rs lattice
which is the solution space of Ax ≡ 0 mod rs, we associate with it the pair of lattices
which are solution spaces of

Bx ≡ 0 mod r and Cx ≡ 0 mod s, (5)

where the matrices B and C are defined by

A ≡ B mod r and A ≡ C mod s; (6)

and conversely, given (5) we define a matrix A by (6).
To prove that this is a bijection, we must first show that different lattice pairs give

different mod rs lattices. Given relatively prime integers r and s, by the definition
of Lm(q) we can choose two sets of matrices {Bi : 1 ≤ i ≤ Lm(r)}, where Bi is
defined over the integers mod r, and {Ci : 1 ≤ i ≤ Lm(s)}, where Ci is defined
over the integers mod s, such that every m-dimensional mod r lattice is the solution
space of exactly one of the systems Bix ≡ 0 mod r, 1 ≤ i ≤ Lm(r), and every
m-dimensional mod s lattice is the solution space of exactly one of the systems
Cjx ≡ 0 mod s, 1 ≤ j ≤ Lm(s). Since gcd(r, s) = 1, the theory of linear congruences
in one variable shows that each pair of simultaneous congruences

A ≡ Bi mod r, A ≡ Cj mod s, 1 ≤ i ≤ Lm(r), 1 ≤ j ≤ Lm(s) (7)

defines a unique m by m matrix A = Aij , say, over the integers mod rs, and these
matrices are all different since the pairs Bi, Cj are. We shall show that the solution
spaces (which are the mod rs lattices) of the systems

Aijx ≡ 0 mod rs, 1 ≤ i ≤ Lm(r), 1 ≤ j ≤ Lm(s)

are all distinct.
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Let AIJ and AKL be any two different matrices chosen from the Aij ’s. Then by
(7),

{x mod r : AIJx ≡ 0 mod rs} = {x : BIx ≡ 0 mod r}

and

{x mod s : AIJx ≡ 0 mod rs} = {x : CJx ≡ 0 mod s};

similar equations hold for AKL. Since the pairs BI , CJ and BK , CL are different, we
have either

{x : BIx ≡ 0 mod r} 6= {x : BKx ≡ 0 mod r}

or

{x : CJx ≡ 0 mod s} 6= {x : CLx ≡ 0 mod s},

so the solution spaces for AIJ and AKL are different.
Finally we must show that different mod rs lattices give different lattice pairs.

This is clear since each congruence Ax ≡ 0 mod rs gives a unique pair of congruences
(5), where the matrices B and C are defined by (6).

3 Counting mod q lattices

Our first goal is to prove explicit formulas for the number of m-dimensional mod q
lattices, which we denote by Lm(q), when m is small.

Theorem 2. The numbers L2(q) and L3(q) are given by

L2(q) =
∑
k1|q

∑
k2|q

gcd

(
k1,

q

k2

)
(8)

and

L3(q) =
∑
k1|q

∑
k2|q

∑
k3|q

gcd

(
k1,

q

k3

)
gcd

(
k2,

q

k3

)
gcd

(
k1,

q

k2

)
. (9)

We shall prove formula (8) first. We fix an x1, x2 Cartesian coordinate system in
R2. Given any 2-dimensional mod q lattice Λ, we have a basis-free representation
for it as follows: The x1 axis contains infinitely many points of Λ, with a density
1/k1, where k1 is a positive integer which divides q. Every line x2 = c either contains
no points of Λ or contains a shifted copy of the set of lattice points on x2 = 0. If
x2 = k2 is the line x2 = c > 0 which is closest to the x1 axis and has points of Λ,
then k2 is a divisor of q. A line x2 = c contains points of Λ if and only if has the form
x2 = tk2 for some integer t. We say that Λ has jump k2 (in the x2 direction). If we
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let C2(Λ) denote the 2-dimensional volume of a fundamental cell of Λ, then we have
C2(Λ) = k1k2.

To count the 2-dimensional mod q lattices which have given values of k1 and k2,
it suffices to count the number of distinct 1-dimensional sublattices on x2 = k2 which
give a mod q lattice. We define the shift s, where s is an integer such that 0 ≤ s < k1,
to be the amount by which the 1-dimensional sublattice on x2 = k is shifted with
respect to the 1-dimensional sublattice on x2 = 0. In order to give a mod q lattice,
the shift s must give a 1-dimensional sublattice on x2 = q which is an unshifted copy
of the same sublattice on x2 = 0. The sublattice on x2 = q is shifted from the one on
x2 = 0 by qs/k2, so the shift s gives a mod q lattice if and only if

k1 divides qs/k2. (10)

Clearly (10) holds for given k1 and k2 if and only if k1k2/ gcd(k1k2, q) = D, say,
divides s. Thus there are k1/D = gcd(k1, q/k2) allowable values of s in the range
0 ≤ s < k1. This proves (8).

Now we prove formula (9). Each 3-dimensional mod q lattice Λ is made up of
a 2-dimensional mod q sublattice in the x1, x2 plane, which we denote by P0, and
shifted copies of this sublattice in each of various planes Pi (i nonzero integer) which
are equally spaced parallel to P0. As before, we let 1/k1 denote the density of the
points of Λ on the x1 axis and we let k2 denote the jump in the x2 direction for
the sublattice in P0 (and so for Λ). The plane P1 nearest to P0 is at a distance k3,
where k3 is a divisor of q. We say that Λ has jump k3 in the x3 direction. If we
let C3(Λ) denote the 3-dimensional volume of a fundamental cell of Λ, then we have
C3(Λ) = k1k2k3.

To count the 3-dimensional mod q lattices with given k1, k2 and k3, for each 2-
dimensional mod q sublattice on P0 we count the number of distinct 2-dimensional
sublattices in x3 = k3 (i.e., the plane P1) which give a mod q lattice. We let s denote
the shift for the 1-dimensional sublattices in P0, as before, and we define the (vector)
shift s = (s1, s2), where 0 ≤ si < ki (i = 1, 2), to be the amount by which 0 in P0 is
moved when we go to the sublattice in P1. The shift s gives a mod q lattice if and
only if

k1 divides qs1/k3 and k2 divides qs2/k3, (11)

that is, if and only if the orthogonal projection of (q/k3)(s1, s2, k3) into the plane P0 is
a lattice point. Now (11) holds for given k1, k2 and k3 if and only if kik3/ gcd(kik3, q) =
Di, say, divides si (i = 1, 2). Thus there are ki/Di = gcd(ki, q/k3) allowable values
of si in the range 0 ≤ si < ki. This proves (9).

It is possible to extend the formula in Theorem 2 to the case of general m, but
complicated m-fold sums are involved. Since we do not need this result, we do not
give it here.

A multiplicative function is completely determined by its values at prime powers,
so it is of interest to examine Lm(pa) for prime p. Direct calculation using (8) gives

L2(pa) =
a∑
i=0

(1 + 2i)pa−i =
(p+ 1)pa+1 − (2a+ 3)p+ 2a+ 1

(p− 1)2
.
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Computer calculations using (9) give Table 1, which shows the expansion of L3(pa)
in powers of p for small a. There does not seem to be any nice explicit formula for
L3(pa), though various properties of the coefficients in the table can be deduced.
Table 2 gives some values for L2(q) and L3(q).

a, j → 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 4 2 2
2 7 6 6 5 3
3 10 10 12 10 10 8 4
4 13 14 18 17 18 14 15 11 5
5 16 18 24 24 28 22 24 20 20 14 6
6 19 22 30 31 38 32 35 30 30 27 25 17 7
7 22 26 36 38 48 42 48 42 42 38 38 34 30 20 8

Table 1: Coefficients of pj in the expansion of L3(pa), a ≤ 7.

2 3 4 5 7 8 9 11 13 16 17 19 23
L2(q) 5 6 15 8 10 37 23 14 16 83 20 22 26
L3(q) 16 28 131 64 116 830 457 268 368 4633 616 1016 1108

Table 2: Values of L2(q) and L3(q) for small prime powers q.

4 The connection with Galois numbers

Because of (2), our next theorem shows that Lm(q) = Gm(q) whenever q is a prime.

Theorem 3. For any prime q, we have

Lm(q) =
m∑
r=0

E(r,m, q).

Proof. We have already seen that every m-dimensional mod q lattice is the solution
space of some system (4), where A is an m by m matrix over the integers mod q.
Conversely, the solution space of any system (4) is an m-dimensional mod q lattice.
Since q is prime, the mod q lattices are thus in one-to-one correspondence with the
m by m reduced row echelon forms of matrices over GF (q) and we have the desired
equation.

Because of (3), it is easy to compute E(r,m, q) for given values of r,m, q.
If q is not prime, the first two sentences in the proof of Theorem 3 are still true,

so the one-to-one correspondence between the mod q lattices and solution spaces of
systems (4) is still valid. What is lost is the link with matrices over a field which
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are in reduced row echelon form (rref). Thus this paper shows that there are two
different natural extensions of the Galois numbers Gn(q), q prime. One extension
leads to the Galois numbers Gn(q) for arbitrary positive integers q, as given in [4].
In that paper a formal definition of a rref matrix over a set of q symbols is given and
finite fields play no role. For each n, the numbers Gn(q) are fixed polynomials in q,
and the recursion (1) holds as a polynomial identity. The other extension leads to
the multiplicative functions Ln(q) in this paper. If q is not prime, then Ln(q) is not
a polynomial in q and the analog of (1) does not hold.

References

[1] Miklos Ajtai, Generating hard instances of lattice problems, in: Proc. 28th ACM
Symposium on the Theory of Computing, 1996, pp. 99-108.

[2] Thomas W. Cusick, The Ajtai random class of lattices, to appear.

[3] Jay Goldman and Gian-Carlo Rota, The number of subspaces of a vector
space, in: Recent Progress in Combinatorics, ed. W. T. Tutte (Academic Press,
1969), pp. 75-83.

[4] Albert Nijenhuis, Anita E. Solow and Herbert S. Wilf, Bijective methods
in the theory of finite vector spaces, J. Combin. Theory (A) 37 (1984), 80-84.


