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Abstract: WE PROVE THE STATEMENT OF THE TITLE, THEREBY SOLVING A $100 PROBLEM OF RON GRAHAM.

THIS WAS SOLVED INDEPENDENTLY BY TOMASZ SCHOEN.

Tianjin, June 29, 1996: In a fascinating invited talk at the SOCA 96 combinatorics conference
organized by Bill Chen, Ron Graham proposed (see also [GRR], p. 390):

Problem ($100): Find (asymptotically) the least number of monochromatic Schur triples {4, j,i+
j} that may occur in a 2-coloring of the integers 1,2,...,n.

By naming the two colors 0 and 1, the above is equivalent to the following

Discrete Calculus Problem: Find the minimal value of

F(.’El,...,fL‘n) = Z [CCZCC]CCZ+]+(1—$1)(1—$])(1—(E1+]) ],
1<i<j<n
i+j<n
over the n-dimensional (discrete) unit cube {(z1,...,z,)|z; = 0,1}. We will determine all local

minima (with respect to the Hamming metric), then determine the global minimum.

Partial Derivatives: For any function f(z1,...,z,) on {0,1}" define the discrete partial deriva-
tives Op f by Orf(z1, ... Trye o Xp) = f(T1,. . Tpye oy @n) — f(21,. .o, L — Ty, Tp).
If (21,...,2y) is a local minimum of F', then we have the n inequalities:

OrF(z1,...,2) <0 , 1<r<n.

A purely routine calculation shows that (below x(.5) is 1(0) if S is true(false))
O F(x1,...,2p) =

(Zmr—l){;xi +;m — (n— {gJ) — x(r> g) — (22, —1) +a,x(r> g) +1— (2 +a2,)X(r < g)} .

Since we are only interested in the asymptotic behavior, we can modify F' by any amount that is
O(n). In particular, we can replace F(z1,...,%,) by

n/2

1 n
G(I‘l,... ,:L‘n) = F(CCl,... ,$n) +ZCC1(1’21 — 1) — 52561
=1 =1
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Noting that (2z, — 1)2 =1 and (2, — 1)z, = x,. on {0,1}", we see that for 1 <r <mn,

0,G(x1,. .. n) = 2&:7«—1{2%—1—2% [—J)—%X(rgn/Q)}—%X(TSR/Q)—I/Q.

Let k = > | z;. By symmetry we may assume that k£ > n/2. Since at a local minimum (z1, ..., 2,)
we have 0,G(z1,...,2,) <0, it follows that any local minimum (z1, ..., z,) satisfies the

Ping-Pong Recurrence: Let
_J0 ify=>q
He(y) = { 1, ify<e

Forr=n,n—1,...,n—|n/2| +1

zr=Hypp | k—n+ {gJ + zi |, (Right Volley)
1

r

J

n

1
Zp_ry1 = Hy 2k—n—1/2—|—{ T+J sz , (LeftVolley)

and if n is odd then z(,11)/2 = Hyjo(k —n+ 2] + Z(" D/2 zj).

These equations uniquely determine z (if it exists), in the order z,, 21, 2,1, 22, . ... When we solve
the Ping-Pong recurrence we forget the fact that > | z; = k. Most of the time, the unique solution
will not satisfy this last condition, but when it does, we have a genuine local minimum. Note that

any local minimum must show up in this way.

The Solution of the Ping-Pong Recurrence: By playing around with the Maple package RON
(available from either author’s website), we were able to find the following explicit solution, for n
sufficiently large, to the Ping-Pong recurrence. As usual, for any word (or letter) W, W™ means
‘W repeated m times’.

Let w = 2k —n, k > n/2 (the case k = n/2 is treated seperately). Then 0 < w < n. If w > n/2
then the (only) solution is 0™. If w < n/2, then let s be the (unique) integer 0 < s < oo, that
satisfies n/(12s + 14) < w < n/(12s + 2).

Case I: If n/(12s + 8) < w < n/(12s + 2) then the unique solution is

ole)1n—L%l—w-1gu+1 for s = 0;
04w(16w—106w—1)551 - (()610—1161“—1)5_1 for s odd;
04w(16w—106w—1)552 —1(p6w—116w—1)3quw+l otherwise.

Case II: If n/(12s + 14) < w < n/(12s + 8) then the unique solution is

04w(16w 1p6w— 1)5 16w—1gn—(12s+5)w+2s—116w— I(Oﬁw 116w— 1) for s odd:
04w (16w 1pbw— 1) 5 1n—(12s+5)w+2s—1 (06w 116w— 1) sQwtl for s even.
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Case III: if w =0 (i.e. s = 00), the unique solution is

1(0313)k/612(0313)(+=6)/6¢3 if k=0 (mod 6);
1(0313)(k=1/6013(0%13)(*=7/603 if k = 1 (mod 6);
1(0%13)(k=2)/3¢3 if k=2 (mod 6);
1(0313)(k=3)/602(0313)(k=3)/603  if k = 3 (mod 6);
1(0313)(k=4/6031(0313)(k=9/603  if k = 4 (mod 6);
1(0313)(k=2)/3¢3 if k=5 (mod 6).

Proof: Routine verification!

Now it is time to impose the extra condition that >_" ; z; = k (= (w 4+ n)/2). With Case I we get
n+2(s+1)
12s+11

minimum for n sufficiently large. Case III gives a local minimum when k£ = 0,1 (mod 6). Hence

a contradiction of the applicable range of w, but Case II yields that w = which is a local

The Local Minima Are:

Z = 0w (10wsm1g0wsm1) §10wem3 (0w 110wy S uatl  for 0 < s < oo (where w, == 2T,
70 = 1(031%)k/612(0313)(k—6)/603 for w =0 and k =0 (mod 6), and

Z1 =1(0°13)(k=1/6013(0313)(k=7)/603 for w =0 and k = 1 (mod 6).

A routine calculation [R] shows that for 0 < s < oo

12s + 8

F(Z,) = 16(12s + 11)

n? + O(n),

which is strictly increasing in s. An easy calculation shows F(Z2) = F(ZX) = (1/16)n? + O(n).
...And The Winner Is: Z, = 0%/11167/11gn/11 getting the world-record of (1/22)n? + O(n).
Note: Tomasz Schoen[S], a student of Tomasz Luczak, has independently solved this problem.

An Extension: Here we note that our result implies a good lower bound for the general r-coloring
of the first n integers; if we r-color the integers (with colors Cj ... C,.) from 1 to n then the minimum
number of monochromatic Schur triples is bounded above by

n2

32811 + O(n).

This comes from the following coloring;:

Color(i) = C; if 3% <2<2J1 for1<j<r-—2,
Color(i) = Cr—1 if 1 < i< An on_ 4 < Tt

' : 7211 OF 3201
Color(i) = C, if <i <

27—211"

2T 211
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