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Abstract

We identify a set of d! signed points, called Toeplitz points, in Zd, with the following
property: for every n > 0, the excess of the number of lattice walks of n steps, from the
origin to all positive Toeplitz points, over the number to all negative Toeplitz points,
is equal to

( n
n/2
)

times the number of permutations of {1, 2, . . . , n} that contain no
ascending subsequence of length > d. We prove this first by generating functions, using
a determinantal theorem of Gessel. We give a second proof by direct construction of
an appropriate involution. The latter provides a purely combinatorial proof of Gessel’s
theorem by interpreting it in terms of lattice walks. Finally we give a proof that uses
the Schensted algorithm.
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1 Introduction

The subject of walks on the lattice in Euclidean space is one of the most important areas
of combinatorics. Another subject that has been investigated by many researchers in recent
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years is that of permutations without long ascending subsequences. In this paper we find a
link between the counting functions of these two families of combinatorial objects.

An ascending subsequence of length d of a permutation π of the letters {1, 2, . . . , n} is a
set 1 ≤ i1 < i2 < . . . < id ≤ n of letters such that π(i1) < π(i2) < . . . < π(id). For example,
the permutation (

1 2 3 4 5 6 7 8
4 2 8 5 1 3 6 7

)

has an ascending subsequence of length 3 at positions 1,4,8 since the values 4,5,7 are in
ascending order.

If un(d) is the number of permutations of {1, 2, . . . , n} that have no ascending subsequence
of length > d, then, for example, {un(2)} are well known to be the Catalan numbers.
Regarding un(d), a great deal is known. The asymptotic behavior of the sequence has been
determined by Regev [6]. An explicit generating function of the sequence has been found by
Gessel [1], in the form ∑

n≥0

un(d)
n!2

x2n = det (I|r−s|(2x))r,s=1,...,d. (1)

in which the Iν ’s are the Bessel functions of imaginary argument. We will use the result (1)
in section 2 to establish our correspondence with lattice walks. Interestingly, however, by
providing a combinatorial proof of this correspondence, in section 3 below, we will be giving
an independent and purely combinatorial proof of the theorem (1).

As an open problem, we mention that it would be of interest to illuminate the connection
between Theorem 1 below and the result of [8], which, at least superficially, have striking
similarities of form.

2 The generating function approach

2.1 Generating functions for lattice walks

Let cn,k denote the number of walks of n steps from the origin to the point k = (k1, . . . , kd) ∈
Zd, where each step is a change of ±1 in one coordinate. If d = 1 it is clear that cn,k =

(
n

n+k
2

)
,

from which we have the exponential generating function

∑
n≥0

cn,k

n!
xn =

∑
n≥0

xn

(n+k
2 )!(n−k

2 )!
=
∑
n≥0

x2n+k

n!(n+ k)!
= Ik(2x),

where Ik(t) is the Bessel function of imaginary argument.



the electronic journal of combinatorics 5 (1998), #R2 3

Since in Zd all walks of n steps from the origin to k are shuffles of independent 1-
dimensional walks to the coordinates of k, we have the d-dimensional exponential generating
function ∑

n≥0

cn,k

n!
xn =

d∏
ν=1

Ikν (2x). (2)

2.2 Connection with permutations without long ascending subse-
quences

The connection between lattice walks and the class of permutations that we are studying here
is obtained by comparing Gessel’s determinant in (1) with the generating function (2). Notice
that the determinant on the right side of (1) is a sum of d! terms, each of which is a product
of d Bessel functions. Products of d Bessel functions, according to (2) above, count lattice
walks in d-space that begin at the origin and end at the lattice point whose coordinates
are the subscripts of the Bessel functions that occur in the product. Consequently, the
determinant above is an alternating sum of generating functions each of which counts lattice
walks that end at a certain point.

To quantify this, we sum eq. (2) above, with appropriate signs, with appropriate values
of the terminal point k, and thereby relate such permutations to lattice walks.

For each permutation σ of {1, . . . , d}, the Toeplitz point T (σ) is the point (1 − σ(1), 2 −
σ(2), . . . , d− σ(d)) ∈ Zd. The number of Toeplitz points in Zd is obviously d!. The sign of
T (σ) is the parity (= ±1) of σ.

For example, the six Toeplitz points in Z3, together with their signs, are

sign = +1 : (0, 0, 0), (−1,−1, 2), (−2, 1, 1) (3)
sign = −1 : (0,−1, 1), (−1, 1, 0), (−2, 0, 2).

2.3 Walks and permutations

On the right side of eq. (2) above, successively replace the point k by each of the Toeplitz
points in Zd, multiply by the sign of that point, and sum over all such points. Then the
sum will obviously be the same as the right side of (1), and therefore it will be equal to the
power series on the left side of (1).

On the other hand, the coefficient of xn on the left side of (2), after this sequence of
signed replacements and summation, will be 1/n! times the signed sum of the numbers of
lattice walks of n steps from the origin to all Toeplitz points.

If we match coefficients of like powers of x on both sides, we obtain the following result.
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Theorem 1 Fix integers d ≥ 1 and n ≥ 0. The signed sum of the numbers of lattice walks
in Zd from the origin to the Toeplitz points is 0 if n is odd, and is

(
n

n/2

)
times the number of

permutations of n/2 letters that have no ascending subsequence of length > d, if n is even.

As an example we will work out the case n = 6, d = 3. The six Toeplitz points are shown
in (3) above. The signed numbers of lattice walks from the origin to each of them in turn,
are 1860, 480, 480, −1200, −1200, −300. The signed sum is therefore 1860 + 480 + 480 −
1200−1200−300 = 120. This is indeed

(
6
3

)
= 20 times the number of permutations (namely

6) of three letters that have no ascending subsequence of length > 3.

3 A combinatorial approach

In this section we will provide a combinatorial proof of Theorem 1.
We will first show how the walks can be divided into classes of

(
n

n/2

)
walks. Then

we will give an injection from the permutations without long ascending subsequences to
walks that end at the origin (which is the even Toeplitz point corresponding to the identity
permutation), and a parity-reversing involution which acts on all the walks not in the range
of this injection. In the process of doing this we also give an internal description (cf. Lemma
1 below) of those classes of walks that are the images of some permutation without long
ascending subsequences.

3.1 Second proof of Theorem 1

Assume n is even. By the direction array of a walk w of n steps we mean the array of length
n whose ith entry is r (resp. −r) if the ith step of the walk w is parallel (resp. antiparallel)
to the rth coordinate axis.

Since the sum of the coordinates of the Toeplitz point T (σ) is
∑
i − ∑

σ(i) = 0, every
walk to a Toeplitz point will have equally many positive and negative entries in its direction
array. Call two walks equivalent if the subsequences of their n/2 positive direction array
entries are identical, as are their negative subsequences. There will be

(
n

n/2

)
walks in each

equivalence class. Henceforth we will restrict our attention to the representative of each
equivalence class in which all of the positive steps precede the negative. We will denote such
a walk by w = a1, . . . , an/2/b1, . . . , bn/2, where the ai’s (resp. bi’s) are the absolute values of
the positive (resp. negative) entries in the direction array. Also, we will use wj to denote
the jth coordinate of the endpoint of walk w.

Now, given a permutation π of {1, 2, ..., n/2} with no ascending subsequence of length
greater than d, we create an n-step walk φ(π) = a1, . . . , an/2/b1, . . . , bn/2 by letting ai be the
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length of the longest ascending subsequence of π ending with the value π(i), and bi be the
length of the longest ascending subsequence of π ending at the value i. Since the bi are a
rearrangement of the ai, φ(π) ends at the origin.

We now show that φ is injective. Let w = a1, . . . , an/2/b1, . . . , bn/2 be a walk ending at
the origin. For each j such that 1 ≤ j ≤ d, let Aj = {i : ai = j} and Bj = {i : bi = j}. We
observe from the definition of φ that w = φ(π) implies bπ(i) = ai for each i, so π(Aj) = Bj.
Furthermore, the restriction of π to Aj

π→ Bj must be order reversing—for suppose to the
contrary that π(i1) = k1 and π(i2) = k2, with i1, i2 ∈ Aj, k1, k2 ∈ Bj, i1 < i2, and k1 < k2.
Then there is an ascending subsequence of π of length j ending in the value k1. Appending
k2, we have an ascending subsequence of length j + 1 ending in the value k2, contradicting
k2 ∈ Bj. These properties determine π uniquely, since the Aj cover all of {1, 2, ..., n/2}, so φ
is indeed injective. For any walk w ending at the origin, denote the permutation determined
in this manner by θ(w). We have shown that w ∈ Im φ if and only if φ(θ(w)) = w.
Example 1: Let n = 8, d = 2, and w = 1, 2, 2, 1/1, 1, 2, 2. Then A1 = {1, 4}, and
B1 = {1, 2}, so θ(w)(1) = 2 and θ(w)(4) = 1; A2 = {2, 3} and B2 = {3, 4}, so θ(w)(2) = 4,
θ(w)(3) = 3. As a sequence, then, θ(w) = 2,4,3,1—and indeed, φ(θ(w)) = w.

Let w = a1, . . . , an/2/b1, . . . , bn/2 be a walk to any Toeplitz point. For each i for which
ai > 1, let ki and li be the numbers of occurrences of ai and ai −1, respectively, in a1, . . . , ai.
We then have the following result, which characterizes the walks that correspond to permu-
tations.

Lemma 1 w ∈ Im φ if and only if for every i such that ai > 1, li > 0 and the lith-to-last
negative step in direction ai − 1, if it exists, comes before the kith-to-last negative step in
direction ai.

Proof: First, suppose w does not end at the origin, so w 6∈ Im φ. Let j be the smallest
integer for which wj > 0; j > 1 since all our Toeplitz points have non-positive first coordinate.
Let i be the greatest value such that ai = j. There will be fewer than ki occurrences of j
among the bi, and at least li occurrences of j−1 among the bi, since wj−1 ≤ 0—hence i does
not satisfy the condition in the lemma.

Now we consider walks w which do end at the origin. First note that φ(θ(w)) = w is
equivalent to the condition that w and φ(θ(w)) agree in just their positive steps, by the
stipulation in the construction of θ(w) that π(Aj) = Bj. Suppose the two walks agree in all
positive steps before the ith, and let φ(θ(w)) in its ith step go in direction a′

i. We will never
have a′

i > ai; for then let j be the location of the aith term of an ascending subsequence of
θ(w) of length a′

i ending with the value θ(w)(i). Then aj = ai, j < i, but θ(w)(j) < θ(w)(i),
contrary to the definition of θ. We will have a′

i ≥ ai when there is an ascending subsequence
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of θ(w) of length ai ending with the value θ(w)(i); this will happen when θ(w)(i) > θ(w)(j)
for some j < i with aj = ai − 1. But θ(w)(i) is just the location of the kith-to-last negative
step in direction ai, and the smallest possible value of θ(w)(j) is the location of the lith-to-
last negative step in direction ai −1. Hence a′

i = ai exactly when the condition in the lemma
is satisfied, and the lemma is proven. 2

Now we will define a parity-reversing involution ψ on the set of walks to Toeplitz points
excluding those in Im φ. Given a walk w = a1, . . . , an/2/b1, . . . , bn/2 6∈ Im φ, take the
smallest i not satisfying the condition in the lemma. Now let j be the index of the lith-to-
last occurrence of ai − 1 among the negative steps (if li = 0, let j = n/2 + 1). We create
ψ(w) by keeping a1, . . . , ai and bj, . . . , bn/2 fixed, and elsewhere in w changing all occurrences
of ai to ai − 1 and vice-versa. Letting τ be the transposition of ai and ai − 1, we will now
show that if w ends at T (σ), ψ(w) ends at T (σ ◦ τ), and that ψ is an involution, which will
complete our proof.

From the definition of i we know that the number of occurrences of ai in bj, . . . , bn/2 is
less than ki. It must equal ki −1, else the location of (k−1)st occurrence of ai would provide
a smaller value of i violating the condition of the lemma. We now know that there is one net
positive step in the ai direction, and zero net steps in the ai − 1 direction, in the portion of
the walk which remains fixed. This allows us to calculate ψ(w)ai

= wai−1 +1 = ai −σ(ai −1)
and ψ(w)ai−1 = wai

− 1 = (ai − 1) − σ(ai). Of course ψ(w)j = wj for j 6= ai and j 6= ai − 1,
so ψ(w) ends at T (σ ◦ τ), and ψ is parity-reversing as desired.

Because the steps whose values are changed do not affect the distinguishing property of
the ith or earlier steps, applying ψ for a second time switches the the occurrences of ai and
ai − 1 back to their original values, and we find that ψ(ψ(w)) = w as desired.2
Example 2: If a1 > 1, then l1 = 0, and so i = 1 violates the conditions of the lemma. ψ(w)
is then given by replacing a1 with a1 − 1 and vice-versa everywhere but the first step.
Example 3: Let n = 8, d = 3, and w = 1, 2, 1, 3/1, 2, 1, 3, so w ends at the origin, or
T (e). Then i = 2 is the smallest value violating the conditions of the lemma, and we
find ψ(w)=1, 2, 2, 3/2, 1, 1, 3 which ends at (−1, 1, 0) = T (τ) = T (e ◦ τ) where τ is the
transposition of 1 and 2 and e is the identity permutation.

Here are the 14 permutations of {1, 2, 3, 4} that have no ascending subsequence of length
> 2, and their associated encodings as the representatives a1, a2, a3, a4/b1, b2, b3, b4 of equiv-
alence classes of lattice walks of 8 steps in the plane:

1, 4, 3, 2 1, 2, 2, 2/1, 2, 2, 2
2, 1, 4, 3 1, 1, 2, 2/1, 1, 2, 2
2, 4, 1, 3 1, 2, 1, 2/1, 1, 2, 2
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2, 4, 3, 1 1, 2, 2, 1/1, 1, 2, 2
3, 1, 4, 2 1, 1, 2, 2/1, 2, 1, 2
3, 2, 1, 4 1, 1, 1, 2/1, 1, 1, 2
3, 2, 4, 1 1, 1, 2, 1/1, 1, 1, 2
3, 4, 1, 2 1, 2, 1, 2/1, 2, 1, 2
3, 4, 2, 1 1, 2, 1, 1/1, 1, 1, 2
4, 1, 3, 2 1, 1, 2, 2/1, 2, 2, 1
4, 2, 1, 3 1, 1, 1, 2/1, 1, 2, 1
4, 2, 3, 1 1, 1, 2, 1/1, 1, 2, 1
4, 3, 1, 2 1, 1, 1, 2/1, 2, 1, 1
4, 3, 2, 1 1, 1, 1, 1/1, 1, 1, 1

4 A proof via Schensted’s algorithm

We can use some of the properties of Schensted’s algorithm [7] to give another proof of
Theorem 1.

Recall that a standard tableau of shape λ = (λ1, . . . , λk), where λ1 ≥ · · · ≥ λk ≥ 0, is an
arrangement of the integers from 1 to λ1 + · · ·+λk in a Young diagram of shape λ such that
the numbers increase in every row and and column. For example,

1 3 4 7

2 5 6

is a standard tableau of shape (4, 3).
Schensted [7] gave a bijection from permutations of {1, 2, . . . , n} with no ascending sub-

sequence of length greater than d to ordered pairs of standard tableaux of the same shape,
with entries from 1 to n and with first row of length at most d. By transposing the tableaux,
we may replace the condition that the first row has length at most d with the condition that
the first column has length at most d; i.e., that there are at most d rows. We shall prove
formula (1), or equivalently, Theorem 1, by showing that the signed sum of Theorem 1 for
n even is

(
n

n/2

)
times the number of pairs of standard tableaux of the same shape with at

most d rows, and entries from 1 to n/2,
There is a simple bijection from standard tableaux with at most d rows to walks in Zd,

starting at the origin, with unit steps in the positive coordinate directions, that stay in the
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region x1 ≥ x2 ≥ · · · ≥ xd: given such a tableau with entries 1, 2, . . . ,m, let ai be the
row in which i appears. Then (a1, . . . , am) is the direction array of the corresponding walk.
Moreover, if the tableau has shape (λ1, . . . , λd) (where some of the λi may be 0), then the
corresponding walk ends at the point (λ1, . . . , λd). For example, the standard tableau shown
above corresponds to the walk with direction array (1, 2, 1, 1, 2, 2, 1).

From a permutation π of {1, 2, . . . , n/2} with no ascending subsequence of length greater
than d, Schensted’s algorithm gives a pair of standard tableaux of the same shape, with at
most d columns. Transposing these two tableaux and applying the bijection just described
gives a pair of walks with direction arrays (a1, . . . , an/2) and (b1, . . . , bn/2) that correspond
to them. The condition that these tableaux have the same shape implies that the two walks
end at the same point, so the walk consisting of the first walk followed by the reverse of the
second, whose direction array is (a1, . . . , an/2,−bn/2,−bn/2−1, . . . − b1), is a walk of length
n from the origin to itself with unit steps in the coordinate directions, all positive steps
preceding all negative steps, and staying within the region x1 ≥ x2 ≥ · · · ≥ xd. Moreover,
this correspondence is a bijection from permutations of {1, 2, . . . , n/2} with no ascending
subsequence of length greater than d to such walks.

We shall show that the number of such walks is equal to the coefficient of xn/(n/2)!2 in
(1) by using the reflection principle, in a manner similar to [2] and [3], to construct a parity-
reversing involution on all walks of length n, from the origin to the Toeplitz points, with
unit steps in the positive or negative coordinate directions, and all positive steps preceding
all negative steps, that do not stay within the region x1 ≥ x2 ≥ · · · ≥ xd.

The parity-reversing involution is described most easily if we translate the walks to start
at (d− 1, d− 2, . . . , 0) rather than (0, 0, . . . , 0); the walks to be counted are then restricted
to the region x1 > · · · > xd. For each permutation σ of {1, 2, . . . , d}, let U(σ) be the point
(d − σ(1), d − σ(2), . . . , d − σ(d)). Then for the identity permutation e we have U(e) =
(d− 1, d− 2, . . . , 0), and thus U(σ) − U(e) = T (σ).

Let R be the region { (x1, x2, . . . , xd) | x1 > x2 > · · · > xd }. Let W be the set of walks
of length n from U(e) to any U(σ), with all positive steps before all negative steps, and let
N be the set of walks in W that do not lie entirely within R. Note that walks in W − N
must end at U(e), since U(e) is the only possible endpoint in R. To complete the proof we
need only construct a parity-reversing involution on N , where the parity of a walk ending at
U(σ) is defined to be the same as the parity of σ.

Let w be a walk in N from U(e) to U(σ) with direction array (c1, . . . , cn). Then there
is a shortest initial segment w0 of w, with direction array (c1, . . . , cp), that ends outside of
R. The restrictions on the steps of w imply that the endpoint (k1, . . . , kd) of w0 has ki = kj

for exactly one pair (i, j) of coordinate indices with i < j. We define the walk Ψ(w) to be
the walk with direction array (c1, . . . , cp, c′p+1, . . . , c

′
n), where (c′p+1, . . . , c

′
n) is obtained from

(cp+1, . . . , cn) by switching i’s with j’s and switching −i’s with −j’s. Then Ψ is clearly an
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involution. Since w ends at U(σ) = (d−σ(1), d−σ(2), . . . , d−σ(i), . . . , d−σ(j), . . . , d−σ(d)),
Ψ(w) will end at (d − σ(1), d − σ(2), . . . , d − σ(j), . . . , d − σ(i), . . . , d − σ(d)) = U(σ ◦ τ),
where τ is the transposition of i and j. Thus Ψ is parity-reversing.

It follows that in the signed sum of walks in W all terms corresponding to walks in N
cancel, leaving only the walks that correspond to permutations of {1, 2, . . . , n/2} with no
ascending subsequence of length greater than d

4.1 Asymptotic estimates

Since the permutations correspond with a subset of the lattice walks from the origin to the
origin, their number is bounded above by the total number of such walks. Thus, if cn,0 is
the number of n-step walks from the origin to the origin, then we have that(

2n
n

)
un(d) ≤ c2n,0 =

[
x2n

(2n)!

]
I0(2x)d

= (2n)! [xn] I0(2
√
x)d.

To estimate this coefficient of xn, we can make a crude estimate by just using Cauchy’s
inequality, which states that the coefficient is at most I0(2

√
x)d/xn, for every x > 0. From

the known asymptotic behavior of the Bessel function, viz. I0(2
√
x) ∼ Cx−1/4e2

√
x, we obtain

by taking x := (n/d)2, the estimate

un(d) ≤ K(d)n−(d/2−1)d2n.

If we take a little more care with the estimate, and use the fact that I0(2
√
x)d is Hayman

admissible [4], being the dth power of an entire function of order 1/2 whose zeros are all
negative and real, then we get an extra factor of n.5 in the denominator of the above estimate,
which however is still not sharp. The correct first term of the asymptotics has been found
by Regev [6], and it is

un(d) ∼
d2n+d2/2

d−1∏
j=1

j!

(2π)(d−1)/22(d2−1)/2n(d2−1)/2 (n → ∞) .

We can also get a lower bound on the number of permutations, but this is even less sharp.
The walks that correspond to these permutations are, as we have seen, encoded by certain
pairs a/b. An entry bi of the array b is the length of the longest ascending subsequence that
ends at the position i. It follows that as we scan the array b from left to right, whenever
we see a new value for the first time, it can be only 1 unit greater than the previous largest
value scanned. Thus b is a restricted growth function.
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Evidently there is a 1-1 correspondence between restricted growth functions of length m
whose largest entry is k and partitions of a set of m elements into k classes (ith member of
the sequence is the class to which i belongs). It is easy to see, by construction, that every
restricted growth function of length n/2 whose largest entry is at most d occurs as the b
sequence of at least one permutation of n/2 letters with no ascending subsequence of length
> d. It follows that un(d) is bounded from below by

∑d
i=1

{
n
i

}
, where

{
n
i

}
is the Stirling

number of the second kind. The dominant feature of the asymptotics of this sum, for large
n and d fixed, is dn, which is too small by a factor of 2n, so the lower bound is much less
satisfactory than the upper bound.

4.2 Connections

Schensted’s algorithms gives other information about this bijection. In his algorithm, whereby
a permutation π is inserted into a tableau, the kth basic subsequence that corresponds to
this insertion is defined to be the subsequence of those elements of the permutation that are
first inserted as the kth element of the first row (though they may not end up there).

Now, if the permutation π is given as a sequence, then our ai is the index of the basic
subsequence to which π(i) belongs, and our bi is the index of the basic subsequence to which
i belongs. Hence the condition that characterizes the walks that correspond to permutations
can be stated as follows: every element of the kth basic subsequence must be greater than
the most recent element of the (k − 1)st basic subsequence.

Our thanks go to Noam Elkies for some discussions that helped to clarify our ideas about
the relationship of this work to reflection principles in Weyl chambers.
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