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Abstract

New lower bounds for 15 classical Ramsey numbers are established. Several of the
colorings are found using a new variation of local search heuristics. Several others are
found using known colorings as building blocks.

AMS Subject Classifications: 05D10, 05D04

Introduction

In this note, several lower bounds for classical Ramsey numbers are improved using two
different methods. First we use a new synthesis of simulated annealing and tabu search
to establish several new bounds. Then some constructions that use smaller constructions
as building blocks are described. In total, we improve 13 entries in Radziszowski’s table
of two-color classical Ramsey numbers [5], and also add two entries to his list of classical
multicolor bounds.

A Simple Search Algorithm

The algorithm is outlined in the context of minimizing an integer function of binary
(boolean) variables. Let f = f(z1,...,2%) be such a function. Three important data
structures are required: a current solution vector, a history list, and a temperature. The
current solution vector is denoted by V = (z1,...,z). In addition, V; will denote to the
vector obtained from V' by changing bit i, i.e., V; = (z1,...,2i—1,1 — T4, Tit1,...,Tk). As
the algorithm proceeds, the current solution vector is repeatedly changed. Each time it is
changed, the old vector is saved in a history list, H, of previous solution vectors. This is an
essential idea from tabu search [1]. The algorithm also has a notion of temperature, as in
simulated annealing. In this case, the temperature, T, is a positive integer which restricts
the range of choices the algorithm has for changing V.

During each iteration, we compute d; = f(V;) — f(V), for 1 < ¢ < k. From the set
{d;}, the T smallest values are collected, and from these, one is chosen randomly. The
corresponding change is then incorporated into the new solution vector.
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The algorithm:
initialize V' randomly
set H = empty list
set T = MAXTEMP
loop :
append V to H
for each ¢ in (1...k)
if V; € H then
set d; = MAXINT
else
set d; = f(Vi) — f(V)
let d; be chosen randomly from among the T smallest d;
set V =1;

When using the method to generate Ramsey colorings, the function f counts monochro-
matic cliques and the solution vector is the list colors assigned to sets of edges. There are
many choices for edge sets, we used the same ones used in [3], where two types of colorings
were examined: colorings where the adjacency matrix is a circulant and colorings where
the adjacency matrix can be built from square circulant blocks. Colorings of the first type
have been used since the beginning of work on the Ramsey number problem. Those of the
second type were first used explicitly by Mathon [4].

A few auxiliary functions are needed to complete the implementation. The only real
difficulty is posed by the clique counting functions: one that counts cliques, and one that
counts cliques that use a given set of edges. The latter function is really the more important,
since it is used to compute the d; (see the outline above). It is important that this function
be fast.

The choice of temperatures seems to be important. We initialized T to a value of
approximately k/10, and then decremented it every two or three iterations until it reached
one. If, after a number of iterations at one, no further improvement was seen, we set it back
to the initial value.

The other nontrivial implementation detail concerns the history list. In our implemen-
tation, this list was effectively infinite, since the number of iterations was never very large
(50000 iterations for the R(6,10) coloring was probably the maximum). In this regard, we
differ from [3].

Constructions

The first set of constructions are circle colorings. Recall that a circle coloring of K,
(the complete graph on n vertices) is a coloring where the vertices are identified with the
integers mod n, such that the color of the edge joining vertices ¢ and j depends only on
i—j. To specify a circle two-coloring it is sufficient to list the differences which are assigned
color 1. A circle coloring is symmetric if the differences i and n — i are assigned the same
color, for all 4, 1 <14 < n.

Below we list thirteen constructions obtained by applying our method to circle colorings.
All the colorings are symmetric, so in each case we give n, followed by the differences up
to n/2 which are assigned the first color. The last two circle colorings use three and four
colors, respectively, so the differences assigned to each of the colors are listed.
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R(5,9) > 115:
i, 2, 3, 14, 15, 16, 20, 22, 23, 24, 26, 28, 35, 36, 37, 39,
42, 45, 47, 49, 52, 55

R(6,7) > 108:
3, 4, 6, 7, 9, 10, 14, 17, 20, 23, 25, 27, 29, 30, 32, 33,
34, 39, 40, 42, 43, 46, 47, 48

R(6,8) > 121:
2, 4, 5, 7, 11, 12, 13, 14, 15, 18, 20, 28, 30, 31, 34, 35,
40, 41, 44, 46, 47, 48, 49, b3, 56, 60

R(6,9) > 152:
4, 6, 10, 11, 12, 15, 16, 19, 21, 22, 24, 26, 31, 34, 36, 40,
42, 43, 47, 49, 50, b2, 53, 54, 60, 64, 66, 67, 69, 70, 72

R(6,10) > 166:
2, 10, 11, 12, 14, 1v, 18, 27, 28, 30, 32, 33, 36, 37, 38, 39,
40, 41, 43, 46, 48, 51, b5, 57, 59, 61, 62, 68, 69, 72, 73, 74,
77, 80, 81

R(3,4,5) > 79:

Color 1: 5, 8, 11, 14, 17, 21, 23, 24, 27, 30, 36

Color 2: 3, 4, 7, 9, 15, 16, 18, 19, 26, 32, 37, 38, 39

Color 3: 1, 2, 6, 10, 12, 13, 20, 22, 25, 28, 29, 31, 33, 34, 35

R(3,3,3,4) > 86:

Color 1: 1, 4, 6, 9, 11, 14, 19, 24, 26, 29, 39, 42
Color 2: 3, 10, 15, 16, 17, 23, 36, 41, 43

Color 3: 2, 7, 12, 13, 22, 27, 30, 33, 38

Color 4: 5, 8, 18, 20, 21, 25, 28, 31, 32, 34, 35, 37, 40

We also used the algorithm to look for colorings in which the adjacency matrix can be
partitioned into equal sized square blocks, each of which is a circulant matrix. In both cases
the adjacency matrix A is given in terms of six blocks. The block structure of A is the same
for both colorings:

B E G
A=| Et C F
Gt Ft* D

It remains to specify the individual blocks B, C', D, E, and F for the two cases. We
use n(ajas...a;) to denote the circulant matrix with (color) 1 entries in positions a1, ag,
.., ag. Each of these blocks has color 2 on the main diagonal (of the block). Since the off
diagonal blocks (E, F, and G) are not necessarily symmetric, all differences are listed.
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R(3,12) > 51:

B=17(7 8 9 10)
C=17(2 6 11 15)
D=17(1 4 13 16)
E=17(2 3 15 16)
F=17(2 7 12)
G = 17(2 13 16)

R(4,8) > 54:
B=18(1 4 5 13 14 17)
C=18(83 6 7 11 12 15)
D =18(3 8 9 10 15)
E=18(0 3 7 9 10 12 17)
F=18(0 5 7 8 16)
G=18(0 3 4 6 9 12 14 16)

Building Block Constructions

In the course of using the method described above, we obtained values for R(5,t) for
9 <t < 15 that improved the entries in the two color table [5]. However, it turns out that
we can do even better with a different method. Below we describe colorings that improve
the lower bounds for R(5,t), 10 < ¢ < 15. All the colorings are made the same way. In
each case we begin with the adjacency matrix B of a (3,¢ — 1)-coloring. Let C be the
matrix obtained from B by replacing all the 2’s by 1’s and 1’s by 2’s, except along the
main diagonal. In both both B and C we place 1’s along their main diagonals. (Note: this
reverses the color assignment on the diagonals of the blocks used in the constructions for
R(4,8) and R(3,12) given above.) Then our (5,t)-colorings will have adjacency matrices
with the following form:

B C B
cCt B B
Bt B! B
Bt Bt (Ct

QW

The complete the constructions, we need to specify the (3,¢ — 1)-colorings that we are
using. These are given in the table below. Note that the sub-colorings for ¢ = 10 and ¢ = 12
were first found by Kalbfleisch [2].

t || Number of vertices | (3,¢ — 1)-coloring used
10 140 35(1,7,11,16)
11 152 38(1,4,11,13,19)
12 180 45(3,10,11,12,16)
13 192 48(5,6,8,15,22,24)
14 9220 55(3,7,11,12,13,27)
15 236 59(3,9,11,15,16,21)

Table. (5,t)-colorings.



REFERENCES 5

References

[1] F. Glover, E. Taillard, and D. De Werra. A User’s Guide to Tabu Search. Annals of
Operations Research. 41 (1993) 3-28.

[2] J. Kalbfleisch. Chromatic Graphs and Ramsey’s Theorem. Ph.D. Thesis. University of
Waterloo, January, 1966.

[3] K. Piwakowski. Applying Tabu Search to Determine New Ramsey Graphs. Electronic
J. Combinatorics. 3 (1996) #R6.

[4] R. Mathon. Lower Bounds for Ramsey Numbers and Association Schemes. Journal of
Combinatorial Theory, Series B. 42 (1987) 122-127.

[5] S. P. Radziszowski. Small Ramsey Numbers. Dynamic Survey DS1, Electronic J. Com-
binatorics. 1 (1994), 28 pp.



