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Abstract

We determine all permutation classes defined by pattern avoidance which
are equinumerous to the class of permutations whose Schubert variety is smooth.
We also provide a lattice path interpretation for the numbers of such permu-
tations.

1 Introduction

Let q = (q1, q2, . . . , qk) ∈ Sk be a permutation, and let k ≤ n. We say that the

permutation p = (p1, p2, · · · , pn) ∈ Sn contains a subsequence (or pattern) of type q

if there is a set of indices 1 ≤ iq1 < iq2 < · · · < iqk ≤ n such that p(i1) < p(i2) <

· · · < p(ik). Otherwise we say that p is q-avoiding.

For example, a permutation is 132-avoiding if it doesn’t contain three (not neces-

sarily consecutive) elements among which the leftmost is the smallest and the middle

one is the largest.

The enumeration of permutations of length n (or, in what follows, n-permutations)

avoiding one given pattern q is a difficult problem and has recently generated a fairly

extensive research. See [2] [3] for an overview of these results.
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A similar problem is to determine the number of n-permutations avoiding two

given patterns at the same time. This is, of course, a much stronger restriction on

the permutations, so we can expect more precise results. The cases of pairs of patterns

(q1, q2), where |q1| = |q2| = 3, or |q1| = 3, and |q2| = 4 are completely solved. The

first instance of this problem which is not arranged yet is when |q1| = |q2| = 4. In this

case numerical evidence shows that the sequences Sn(q1, q2) are mostly different for

different inequivalent pairs (q1, q2). (Two pairs of patterns are said to be equivalent

if one can be transformed into the other by reversing, complementing, inverse-taking,

or a sequence of these simple transformations). There are, however, some exceptions.

One of them is that there are some inequivalent classes counted by the Schröder

numbers [5] [8].

In this paper we prove that five inequivalent classes are equinumerous, namely

Sn(1324, 2143) = Sn(1342, 2431) = Sn(1342, 3241) = Sn(1342, 2314) = Sn(1324, 2413).

There are no more inequivalent pairs (q1, q2) for which the values of Sn(q1, q2) for

n = 1, 2, · · · , 7 are 1,2,6,22,88,366,1552, so our results determine all classes counted

by this sequence.

One of these classes, that of (1324, 2143)-avoiding permutations is equivalent to

the class of smooth permutations. A permutation w is called smooth if the Schubert

cell indexed by w is smooth, and this is equivalent to w being (3412,4231)-avoiding.

A generating function F (x) for smooth permutations has been obtained in [4]. In

[6] a recursive formula is given for a pair equivalent to (1342,2431), from which it is

easy to obtain a generating function, and see that it coincides with F (x). Our results

concerning the three other pairs are, according to our best knowledge, new.

2 The five inequivalent pairs

We are going to examine all five inequivalent permutation classes, and we show that

they all have the same generating functions. We are also presenting a simple lattice

path interpretation for these numbers.

We are going to use the well-known facts that the number of permutations avoiding

any one given pattern of length 3 is cn =
(

2n
n

)
/(n+ 1), the nth Catalan number, and

that there is a natural bijection between these permutations and lattice paths from

(0, 0) to (j, j) using steps (0, 1) and (1, 0) which never go above the main diagonal.

Also, let C(x) =
∑
n≥0 cnx

n = 1−
√

1−4x
2x

. We start our study with the two pairs on
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which work has been done earlier.

1. The pair (1324,2143)

This is the pair which is equivalent to the smooth permutations defined in

the Introduction. Let v(n) be the number of such n-permutations, and let

V (x) =
∑
n≥0 v(n)xn. Then it is known [1] [4] [7] that

V (x) =
1

1− x− x2

1−x

(
2x

1+x−(1−x)C(x)
− 1

) (1)

=
1− 5x+ 3x2 + x2

√
1− 4x

1− 6x+ 8x2 − 4x3
(2)

2. The pair (1342, 2431)

Lemma 1 Let f(n) = Sn(1342, 2431). Then f(n) = v(n) for all nonnegative

integers n.

Proof: Stankova [6] examined the equivalent pair (3214,4123) and obtained

the following recursive formula for the numbers f(n), for n ≥ 3.

f(n) = 2f(n− 1) +
n−2∑
i=1

cif(n− i). (3)

Let F (x) =
∑
n≥0 f(n)xn, with f(0) = 1. Formula (3) gives rise to the generat-

ing function identity

F (x)− 2xF (x) = (C(x)− 1)(F (x)− x− 1) + 1− x

and hence we get

F (x) = 1 +
x

1− 2x
2−C(x)

=
1− 5x+ 3x2 + x2

√
1− 4x

1− 6x+ 8x2 − 4x3
, (4)

which agrees with the generating function (2) of smooth permutations. So

v(n) = f(n) for all n. 3

Remarks:

• The proof of (3) in [6] was based on the observation that there is a natural

bijection between these permutations, (if their maximal entry is not in the

leftmost or rightmost position), and ordered pairs (P,A) so that P is a
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partition of the set {1, 2, · · ·n−1} into disjoint intervals I1 = {1, 2, · · · l1},

I2 = {l1 + 1, l1 + 2, · · · l2}, · · · Ik = {lk−1 + 1, lk−1 + 2, · · · , n− 1} and A is

a selection of one 132-avoiding permutation on every I2k, for k ≥ 1, and

one 231-avoiding permutation on every I2k+1, for k ≥ 1, or vice versa, and

the selection of one (1342,2431)-avoiding permutation on I1. The author

then computed the number of such pairs by repeatedly using the recursive

formula for the Catalan numbers.

There is an alternative way to count these intervals and their permutations,

which yields the equivalent formula

f(n) = f(n− 1) +
n−2∑
i=0

f(n− i− 1)

(
2i

i

)
. (5)

Indeed, each way to partition the set {1, 2, · · · i} into disjoint intervals and

choosing alternatingly 231-avoiding and 132-avoinding permutations on

each of them corresponds to a lattice path from (0, 0) to (i, i) using steps

(0, 1) and (1, 0). The intervals are specified by the points where the path

crosses the main diagonal, that is, it goes above from beyond, or vice versa.

The segments of the lattice path between two such crossings correspond

to the 231-avoiding or 132-avoiding permutations on the intervals.

• In particular, formula (5) shows that f(n) is an even number if n ≥ 1.

This is not surprising, as p is (1342,2431)-avoiding if and only if its reverse

p′ is (1342,2431)-avoiding, and n ≥ 1 implies p 6= p′.

3. The pair (1324,2413)

The following definition is useful for the treatment of the next two pairs.

Definition 1 A permutation is called indecomposable if it cannot be cut into

two parts so that any entry before the cut is larger than any entry after the cut.

Otherwise, we say that the permutation is decomposable.

This definition is useful because the next two pairs of patterns are such that if

p is decomposable into parts, and each part avoids the forbidden pair, then p

itself avoids the forbidden pair. So the number of all permutations of the class

can easily be computed from that of indecomposable ones.

Lemma 2 Let h(n) be the number of (1324,2413)-avoiding n-permutations.

Then h(n) = v(n) for all nonnegative integers n.
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Proof: It is obvious that if n is the leftmost entry, then the number of such

permutations is h(n− 1). Now let p be a (1324,2413)-avoiding n-permutation;

suppose n is not the leftmost entry of p and let a be the smallest entry of p

which precedes n. Then n precedes the entries 1, 2, · · · , a − 1. Furthermore,

these a− 1 entries must occupy the last a− 1 positions. Indeed, suppose there

is an entry z > a − 1 on the right of n which is preceded by the entry b < a

still on the right of n, then anbz is a 2413-pattern, a contradiction.

So the last a − 1 entries of p are the smallest ones, and thus we can have

h(a− 1) different strings on them. Let t(n− a+ 1) be the number of possible

substrings on the first n − a + 1 entries, in other words, t(i) is the number of

(1324,2413)-avoiding n-permutations in which the entry 1 precedes the entry

n. In what follows, we are going to use this second interpretation of t(n) so as

to alleviate notation. Set t(0) = 0. Let T (x) =
∑
i≥1 t(n)xn. It follows from

the above that permutations counted by t(n) are precisely the indecomposable

(1324,2413)-avoiding n-permutations. It is then clear that H(x) = 1/(1−T (x)),

and this includes even the case when n is the leftmost entry. Now we analyze

the structure of permutations enumerated by the t(i) in order to determine

T (x).

Let us call entries before the entry 1 front entries, entries after the entry n back

entries, and entries between 1 and n middle entries. Moreover, we say that an

entry x separates two entries y and z which are written in increasing order if

y < x < z.

The front entries form a 132-avoiding permutation, the middle entries form an

increasing subsequence, and the back entries form a 213-avoiding permutation,

otherwise a copy of a forbidden pattern is formed. Similary, no front entry can

separate two middle entries, or two back entries in increasing order; no middle

entry can separate two front entries in increasing order or two back entries in

increasing order; and no back entry can separate two middle entries or two

front entries in increasing order. If any of these conditions is violated, then a

forbidden pattern is formed.

Therefore, the only way for two entries of the same category to be in increasing

order is when they relate to any entries of the other two category the same way.

Such entries are said to form a block. The block subdivision of a permutation

counted by T (x) is shown in Figure 1.
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1

n

Figure 1: The block subdivision of p

Here the boxes represent the blocks. As we said above, each block between 1

and n consists of an increasing subsequence, while blocks in the front are 132-

avoiding permutations, and blocks in the back are 231-avoiding permutations.

Permutations satisfying all these conditions avoid both 1324 and 2413, so we

have given a full characterization for them.

Now for i ≥ 2 let ri−1 be the number of those permutations counted by t(i)

containing no middle blocks, except for 1 and i. So r1 = 1, r2 = 2, r3 = 6, · · ·.

Let R(x) =
∑
i≥1 rix

i be the generating function for the ri. Then clearly T (x) =
x

1−R(x)
.

Note that ri−1 is just the number of ways to partition the interval {2, 3, · · · , i−

1} into disjoint intervals, and then taking a 213-avoiding or a 132-avoiding

permutation on each of them alternatingly. As explained in proof of formula

(5), this means that ri =
(

2i−2
i−1

)
, so R(x) = x√

1−4x
. Therefore,

T (x) =
x

1−R(x)
=

x
√

1− 4x
√

1− 4x− x
,

which implies

H(x) =
1

1− T (x)
=

(
√

1− 4x− x)(
√

1− 4x(1− x) + x)

(1− 4x)(1− x)2 − x2
=

1− 5x+ 3x2 + x2
√

1− 4x

1− 6x+ 8x2 − 4x3
.

So H(x) = V (x), and the Lemma is proved. 3



the electronic journal of combinatorics 5 (1998), #R31 7

Proposition 1 Let n ≥ 2 and let Ln be the set of lattice paths from (0, 0) to

(n−2, n−2) with steps (0, 1) and (1, 0); and when on the main diagonal, (1, 1).

Then Ln has t(n) elements.

Proof: Bijection by the above decomposition. Front blocks correspond to

segments of paths below the diagonal, back blocks correspond to segments of

paths above the diagonal, and middle elements correspond to steps (1,1) on the

diagonal. 3

4. The pair (1342,2314)

Lemma 3 For all nonnegative integers n, we have Sn(1342, 2314) = Sn(1324, 2413).

Proof: We prove the corresponding statement for indecomposable elements of

the two classes, and that certainly implies the lemma.

Let p be an indecomposable (1342,2314)-avoiding n-permutation, and let a1 >

a2 > · · · > am = 1 be its left-to-right minima. Then the following three

statements must hold for p.

• Any remaining entry on the left of ai is larger than any remaining entry

on the right of ai, for i = 2, 3 · · · ,m.

• Entries between ai and ai+1 are in decreasing order, for i = 1, 2 · · ·m− 1.

• Entries after am = 1 form a 231-avoiding permutation.

Indeed, the first property is needed, for any pair (x, y) of entries not having

this property would yield the 2314-pattern ai−1xaiy. The second property is

needed, because p is indecomposable, so there is an element z > ai on the right

of ai+1. By the first property, z is smaller than any entry between ai and ai+1,

so if there were a pair (v, w) in increasing order between ai and ai+1, then aivwz

would be a 1342-pattern. The third statement is obviously necessary.

Therefore, an indecomposable (1342,2314)-avoiding n-permutation has the fol-

lowing structure: on the left of am = 1, there is a 123-avoiding permutation,

on the right of am = 1, there is a 231-avoiding permutation. Moreover, entries

on the right of 1, or, in what follows, the tail of p must be smaller than any

remaining entry on the left of 1, and p must be indecomposable.

However, the three conditions above are not sufficient for a permutation to be

(1342,2314)-avoiding. One further condition is needed for the elements of the
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tail. Let x be any remaining entry of p, so that ai < x < ai+1. Then we say

that x is of rank i. Then clearly, we cannot have a copy yxz of the pattern

213 in the tail so that the rank of x is smaller than the rank of y and z, for we

would get the 2314-pattern miyxz. This means that entries z1, z2, · · · of rank

j1, j2, · · · > i on the left of x in the tail must be larger than any entry on the

right of x. Moreover, they must be in decreasing order, otherwise the tail would

not be 231-avoiding. In other words, if there is an entry y of rank j > i on the

left of x, then all entries of rank j which are larger than y, and all entries of

ranks higher than j are on the left of x, and they are in decreasing order. Yet

in other words, there can be higher-ranked elements inserted into the string of

elements of rank i, but they must be in decreasing order (and of course, they

cannot be inserted between two elements of an inversion). The diagram of a

typical indecomposable (1342,2314)-avoiding n-permutation is shown on Figure

2.

t

s

t

s

a
a
aa

a
a
aa

a
a
aa

aa

.........................

1

m1

Figure 2

This completes the characterization of indecomposable (1342,2314)-avoiding n-

permutations as it is easy to see that indecomposable permutations satisfying

the above four conditions cannot contain 1342 or 2314.

There are several ways to see that these n-permutations are counted by the

numbers t(n). Maybe the fastest is by showing bijectively that these permu-

tations correspond to the lattice paths of Proposition 1. Indeed, the string of

entries of rank 1 form a 231-avoiding permutation to which we can assign a

lattice path L of steps (0,1) and (1,0) which never crosses the diagonal (say it

stays below). Suppose it touches the diagonal first at the point (i, i). If there is

an entry of rank more than 1 inserted between the ith and i+ 1st entries of the
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substring of rank-1 entries, then let us reflect the remainder of L to the main

diagonal. Then we continue this procedure till we run out of rank-1 entries.

Then, if there are no rank-2 entries, that is, when am−1 = am + 1 = 2, then

make a step (1,1) on the main diagonal, if there are rank-2 entries, then delete

all entries of rank 1, then the ranks of all other elements go down by 1, and

continue this same procedure. It is easy to see that this is indeed a bijection be-

tween indecomposable (1342,2314)-avoiding n-permutations and lattice paths

of Proposition 1, completing the proof.

So there are t(n) indecomposable (1342,2314)-avoiding n-permutations, and

therefore there are h(n) (1342,2314)-avoiding n-permutations. 3

5. The pair (1342,3241)

In this case we cannot rely on indecomposable elements as it is possible for p

to contain the pattern 3241 and still be decomposable into parts none of which

contains it. Our proof will be therefore somewhat longer.

Lemma 4 Let g(n) = Sn(1342, 3241). Then f(n) = g(n) for all nonnegative

integers n.

Proof: Let p be an (1342, 3241)-avoiding n-permutation. If the entry n is in

the leftmost position, then we clearly have g(n−1) good permutations, and the

same is true when n is in the rigthmost position. No suppose n is in neither

of these positions. We still consider two cases, according to the position of the

entry 1, relative to n. In what follows entries of the left of the entry n are called

front entries, those on the right of n are called back entries.

• Suppose 1 is a back entry. Then all front entries must be written in

increasing order, for otherwise there would be a 3241-pattern containing

the entries 1 and n. Moreover, the front entries must form interval. Indeed,

if there were front entries a and b so that a < b and there existed a back

entry c so that a < c < b, then abnc would be a 1342-pattern. This means

that we can determine all front entries if we only know the leftmost one.

Therefore, any (1342, 3241)-avoiding n-permutation in which 1 is a back

entry can be obtained uniquely by taking a (1342, 3241)-avoidingm-permu-

tation in which the entry n is in the second position, and the leftmost entry

is x 6= 1, and then inserting the entries x+1, x+2, · · ·x+n−m in increas-

ing order after the leftmost entry. It is easy to see that all permutations
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obtained this way are indeed (1342, 3241)-avoiding. To find the number of

such permutations, note that the maximal entry can be inserted into the

second position of any (1342, 3241)-avoiding permutation without creating

a bad pattern.

It then follows that we have
n−1∑
i=2

g(i)−
n−1∑
i=2

ci−1

(1342, 3241)-avoiding n-permutations in which 1 is a back entry. The neg-

ative term corresponds to those permutations in which the entry 1 would

have been the leftmost entry– so not a back entry.

• Now suppose the entry 1 is a front entry. Denote B the nonempty set of

front entries which are smaller than all back entries, and denote D the

set of other front entries. Then any entry of D must be on the left of

any entry of B, otherwise a 1342-pattern would be formed with the pair

x, y not having this property, n, and the back entry smaller than the front

entry x. Moreover, all entries of D must be written in increasing order and

they must form an interval for the same reasons as in the previous case.

The substring on the back entries must be 231-avoiding, otherwise there

would be a 1342-pattern together with the entry 1.

Now let |B| = i and let m − i be the number of back entries. Then we

have g(i) different choices for the substring on B = {1, 2, · · · , i} and cm−i

choices for the substring on the back entries. Entries ofD are in increasing

order, so we do not have a choice for their substring. However, we still

need to determine what the elements of D are. We know they form an

interval (so it suffices to determine the smallest one of them) and that they

are larger than at least one of the m− i back entries. This means we have

m − i choices for their set D, as long as D is not empty. If D is empty,

that is, when m = n− 1, then we have no more choices.

So altogether we have

n−2∑
m=2

m−1∑
i=1

(m− i) · g(i) · cm−i +
n−2∑
i=1

g(i) · cn−1−i

(1342, 3241)-avoiding n-permutations in which 1 is a front entry.

Summarizing for all the four cases we get that

g(n) = 2g(n−1)+
n−1∑
i=2

g(i)−
n−1∑
i=2

ci−1 +
n−2∑
m=2

m−1∑
i=1

(m−i) ·g(i) ·cm−i+
n−2∑
i=1

g(i) ·cn−1−i

(6)
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Note that (m− i) · g(i) · cm−i = g(i) ·
(

2(m−i)
(m−i)

)
− g(i) · cm−i. Using this identity

we get the following equation of generating functions from (6).

G(x)(1− 2x) + x− 1 = x
G(x)− x− 1

1− x
− x2C(x)− 1

1− x
+

x2 (M(x)− 1)(G(x)− 1)

1− x
− x2 (C(x)− 1)(G(x)− 1)

1− x
+ x(C(x)− 1)(G(x)− 1),

where G(x) =
∑
n≥0 g(n)xn and M(x) =

∑
n≥0

(
2n
n

)
xn = 1√

1−4x
. A teadious but

routine computation then shows that G(x)=F(x). 3

Lemmas 1-4 yield the following theorem, summarizing the results of this paper.

Theorem 1 For all n ≥ 0 we have

Sn(1324, 2143) = Sn(1342, 2431) = Sn(1324, 2413) = Sn(1342, 2314) = Sn(1342, 3241).

Numerical evidence shows that there is no more pair of patterns of length 4

which is not equivalent to any of the above five pairs and which is avoided by

the same number of n-permutations, even if n ≤ 7. So we have found all classes

equinumerous to the smooth class.
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