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Abstract

The determinant that is present in traditional formulations of multivariate Lagrange
inversion causes difficulties when one attempts to obtain asymptotic information.
We obtain an alternate formulation as a sum of terms, thereby avoiding this diffi-
culty.
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1. Introduction

Many researchers have studied the Lagrange inversion formula, obtaining a variety
of proofs and extensions. Gessel [4] has collected an extensive set of references. For
more recent results see Haiman and Schmitt [6], Goulden and Kulkarni [5], and
Section 3.1 of Bergeron, Labelle, and Leroux [3].

Let boldface letters denote vectors and let a vector to a vector power be the
product of componentwise exponentiation as in xn = xn1

1 · · ·x
nd
d . Let [xn]h(x)

denote the coefficient of xn in h(x). Let ‖ai,j‖ denote the determinant of the
d × d matrix with entries ai,j. A traditional formulation of multivariate Lagrange
inversion is

Theorem 1. Suppose that g(x), f1(x), · · · , fd(x) are formal power series in x such
that fi(0) 6= 0 for 1 ≤ i ≤ d. Then the set of equations wi = tifi(w) for 1 ≤ i ≤ d
uniquely determine the wi as formal power series in t and

[tn] g(w(t)) = [xn]

{
g(x) f(x)n

∥∥∥∥δi,j − xi
fj(x)

∂fj(x)

∂xi

∥∥∥∥} , (1)

where δi,j is the Kronecker delta.

If one attempts to use this formula to estimate [tn] g(w(t)) by steepest descent
or stationary phase, one finds that the determinant vanishes near the point where
the integrand is maximized, and this can lead to difficulties as min(ni) → ∞. We
derive an alternate formulation of (1) which avoids this problem. In [2], we apply
the result to asymptotic problems.

Let D be a directed graph with vertex set V and edge set E. Let the vectors
x and f(x) be indexed by V . Define

∂f

∂D
=
∏
j∈V


( ∏

(i,j)∈E

∂

∂xi

)
fj(x)

 .

We prove

Theorem 2. Suppose that g(x), f1(x), · · · , fd(x) are formal power series in x such
that fi(0) 6= 0 for 1 ≤ i ≤ d. Then the set of equations wi = tifi(w) for 1 ≤ i ≤ d
uniquely determine the wi as formal power series in t and

[tn] g(w(t)) =
1∏
ni

[xn−1]
∑
T

∂(g, fn1
1 , . . . , fndd )

∂T
, (2)

where 1 = (1, . . . , 1), the sum is over all trees T with V = {0, 1, . . . , d} and edges
directed toward 0, and the vector in ∂/∂T is indexed from 0 to d.

When d = 1, this reduces to the classical formula

[tn] g(w(t)) =
[xn−1] g′(t)f(t)n

n
.

Derivatives with respect to trees have also appeared in Bass, Connell, and Wright [1].
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2. Proof of Theorem 2

Expand the determinant ‖δi,j − ai,j‖. For each subset S of {1, . . . , d} and each
permutation π on S, select the entries −ai,π(i) for i ∈ S and δi,i for i 6∈ S. The sign

of the resulting term will be (−1)|S| times the sign of π. Since (i) the sign of π is
−1 to the number of even cycles in π and (ii) |S| has the same parity as the number
of odd cycles in π, it follows that

‖δi,j − ai,j‖ =
∑
S,π

(−1)c(π)
∏
i∈S

ai,π(i), (3)

where c(π) is the number of cycles of π and the sum is over all S and π as described
above. (When S = ∅, the product is 1 and c(π) = 0.)

Applying (3) to (1) with h0 = g, h1 = fn1
1 , . . . , hd = fndd and understanding

that S ⊆ {1, . . . , d}, we obtain

(
∏
ni) [xn] g(w(t))

= [xn]
∑
S,π

(−1)c(π)


∏
i6∈S
i6=0

ni ×
∏
i6∈S

hi(x)×
∏
i∈S

xini fπ(i)(x)ni−1 ∂fπ(i)(x)

∂xi


= [xn−1]

∑
S,π

(−1)c(π)


∏
i6∈S
i6=0

ni
xi
×
∏
i6∈S

hi(x)×
∏
i∈S

∂hπ(i)(x)

∂xi


= [xn−1]

∑
S,π

(−1)c(π)


(∏
i6∈S
i6=0

∂

∂xi

)(∏
i6∈S

hi(x)×
∏
i∈S

∂hπ(i)(x)

∂xi

) , (4)

where, in the last line, the ∂/∂xi operators replaced ni/xi because we are extracting
the coefficient of xni−1

i .
If we expand a particular S, π term in (4) by distributing the partial derivative

operators, we obtain a sum of terms of the form

∏
j∈V


( ∏

(i,j)∈E

∂

∂xi

)
hj(x)

 ,

where V = {0, 1, . . . , d} and E ⊂ V × V . Since each ∂/∂xi appears exactly once
per term, all vertices in the directed graph D = (V,E) have outdegree one, except
for vertex 0 which has outdegree zero. Thus adding the edge (0, 0) to D gives a
functional digraph. The cycles of π are among the cycles of D, and, since the ∂/∂xi
for i 6∈ S can be applied to any factor, the remaining edges are arbitrary. Hence(∏

i6∈S
i6=0

∂

∂xi

)(∏
i6∈S

hi(x)×
∏
i∈S

∂hπ(i)(x)

∂xi

)
=
∑
D

∂h

∂D
,



the electronic journal of combinatorics 5 (1998), #R33 4

where the sum ranges over all directed graphs D on V = {0, 1, . . . , d} such that
(i) adjoining (0, 0) produces a functional digraph and (ii) the cycles of D include π.
Denote condition (ii) by π ⊆ D. We have shown that

(
∏
ni) [xn] g(w(t)) = [xn−1]

∑
S,π

(−1)c(π)
∑
D:π⊆D

∂h

∂D

= [xn−1]
∑
D

∑
π:π⊆D

(−1)c(π) ∂h

∂D
.

Since
∑

π⊆D(−1)c(π) = 0 when D has cyclic points and is 1 otherwise, the sum
reduces to a sum over acyclic directed graphs D such that adjoining (0, 0) gives a
functional digraph. Since these are precisely the trees with edges directed toward
0, the proof is complete.
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