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Abstract

We prove that the minimal length of a word Sn having the property that it contains
exactly Fm+2 distinct subwords of length m for 1 ≤ m ≤ n is Fn + Fn+2. Here Fn is
the nth Fibonacci number defined by F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for n > 2.
We also give an algorithm that generates a minimal word Sn for each n ≥ 1.

1991 Mathematics Subject Classification: Primary 68R15; Secondary 05C35.

0 Introduction

In this paper we solve a particularly interesting case of the following more general problem.
Let f : � −→ � be a non-decreasing function. Given a word w, a subword of w is any
contiguous block of symbols of w. For each word w over some fixed finite alphabet, we define
Pw(n) to be the number of distinct subwords of w of length n. We say that f is feasible if
for each integer N ≥ 1 there exists at least one word w = w(N) such that Pw(n) = f (n) for
1 ≤ n ≤ N . Such words w(N) are said to possess the property Pf(N). At the present, there
is no known simple characterization of the class of feasible functions. If f is feasible, let us
call a shortest word w possessing property Pf (N ) a minimal word of order N with respect to
f . Then several natural questions can be asked.
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1. What is the length of a minimal word of order N?

2. Is there a reasonably efficient algorithm that finds such minimal words?

3. For each order how many minimal words are there?

We show that the function f(n) = Fn+2 is feasible, give an algorithm that finds a minimal
word of order n for each n and show that the length of a minimal word of order n is
Fn +Fn+2 for n > 1. However, the question of a complete enumeration of all minimal words
of order n is still open. Here the Fi are the Fibonacci numbers defined by F1 = F2 = 1 and
Fn = Fn−1 + Fn−2 for n > 2. Previously Good [G46] showed that the length of a shortest
word containing as subwords all 2n binary words of length n is 2n + n− 1. In the same year
de Bruijn [B46] gave a complete enumeration of all such words (see also [B75]).

The converse problem is usually formulated as finding the function f when given a set of
words w. When the words w are the prefixes of some infinite sequence S, the function f is
one measure of the complexity of S, and is usually referred to as the subword complexity of
S. For related results on subword complexity see the survey article of Allouche [A94].

The proof of our results centers on a detailed analysis of a version of the de Bruijn graph
which appeared first implicitly in [F94] and explicitly in [R83]. Good [G46] and de Bruijn
[B46] independently defined a version of these graphs in 1946. See Fredricksen [F82] for more
references for the de Bruijn graph. Observe that f(1) = F3 = 2, which means the number
of distinct subwords of length 1 is 2. Thus we need only consider binary words over {0, 1}
in the rest of this paper.

We divide the presentation of the proof into 4 parts:

1. Existence

2. Structure of the word graph

3. Lower bound on the length

4. Algorithm that generates words which achieve the lower bound

1 Existence

In this section we establish the existence of words with property Pf (n) for each n. The
method we employ leads to the de Bruijn graphs. We will define these graphs in this section
and use them to prove our result in subsequent sections.

Lemma 1.1 Let Sn denote the set of words of length n that omit 11. Then |Sn| = Fn+2 for
all integers n ≥ 1.

Proof: We proceed by induction. The case n = 1 and n = 2 are trivial. For the inductive
step note that Sn can be partitioned into two sets Sn,0 and Sn,1 where Sn,0 contains words
that begin with 0 and Sn,1 contains words that begin with 1. Since no word of Sn contains 11,
it is easy to see that |Sn,1| = |Sn−2| and |Sn,0| = |Sn−1|. Thus we have |Sn| = |Sn−1|+ |Sn−2|.
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The Fibonacci numbers satisfy the same recurrence relation. Since we verified the initial
condition S1 = F3 and S2 = F4, the lemma is proved.

Remark: Let w be a word of Si. Then w0j−i is a member of Sj if j ≥ i. Hence every
word of Si occurs as a subword of some word of Sj if i ≤ j.

Theorem 1.1 There exist finite words with property Pf (n) for each n > 0.

Proof: Let Sn = {w1, w2, ..., wm}. Then the word w10w20...wn possesses property Pf (n)

by Lemma 1.1 and the remark above.

Note that Theorem 1.1 gives an upper bound of nFn+2 +n−1 for the length of a minimal
word of order n. The next theorem shows that the above construction is essentially unique.

Theorem 1.2 For all n > 2, any finite word w possessing property Pf (n) omits either 00 or
11.

Proof: Since n > 2, Pw(2) = 3, and so w omits either 00, 01, 10, or 11. If it omits 01 then
w ∈ 1∗0∗ and hence all subwords of w of length 3 are contained in {111, 110, 100, 000}. This
implies Pw(3) ≤ 4. However Pw(3) = F5 = 5, a contradiction. A similar argument shows w
cannot omit 10. Therefore w omits either 00 or 11.

1.1 Word graph

We define the particular kind of de Bruijn graphs that we use below. An example is shown
in Figure 1.

Definition 1.1 For n > 0, the word graph Gn is a directed graph with labeled edges defined
as follows.

• The vertices of Gn are all words of length n that omit 11.

• The edges of Gn consist of all pairs of vertices (aw,wb) with label b such that aw 6= wb
and a, b ∈ {0, 1}.
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Figure 1: The directed graph G5.

Let L(n) be the minimal length of a word w possessing property Pf (n). A walk in a graph
G is a sequence of vertices {P1, P2, ..., Pm} of G such that (Pi, Pi+1) is an edge in G for
1 ≤ i ≤ m − 1. Note that a walk may repeat both vertices and edges. Let l(n) be the
length (number of edges traversed) of a shortest walk through Gn which visits every vertex
of Gn at least once. Then Theorem 1.1 and Theorem 1.2 together imply that for n > 2,
L(n) = l(n) + n. In subsequent sections we prove that l(n) = Fn + Fn+2 − n.

2 Structure of the word graph

We summarize few properties of Gn in the following lemma. These properties can be seen
more easily by contemplating Figure 1. We say that a graph G is n-partite if the vertices of
G can be partitioned into n sets such that there are no edges between any pair of vertices
in the same partition.

Lemma 2.1 Let Gn = G = (V,E) be a word graph, and n > 2. Then G has the following
properties.

1. V can be partitioned into disjoint subsets V0, V1, . . . , Vn where Vi consists of words that
begin with exactly (n − i) 0’s. In addition, Vn can be partitioned into n − 1 disjoint
subsets V 0

n , . . . , V
n−2
n where each V i

n consists of words of Vi with the first character
changed to 1.

2. We have |V0| = 1, |Vi| = Fi for 1 ≤ i ≤ n, |V 0
n | = 1 and |V i

n| = Fi for 1 ≤ i ≤ n− 2.
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3. G is an (n+ 1)-partite graph with the Vi’s as partitions.

4. For 1 ≤ i ≤ n− 1, each vertex in Vi has in-degree 2 and out-degree 1 or 2; each vertex
in Vn has in-degree 1 and out-degree 1 or 2.

5. Vertices in Vi point only to vertices in Vi+1 for 0 ≤ i ≤ n− 1; vertices in V i
n point only

to vertices in Vi+1 for 0 ≤ i ≤ n− 2 with the exception that V 0
n also points to V0.

These properties of Gn are immediate from the definition. We omit the proof here.

3 Lower Bound

In this section we prove that l(n) ≥ Fn + Fn+2 − n for n > 1. Due to certain boundary
conditions, results in this section are proved for n > 2. The case n = 2 can be proved by
inspecting G2 in Figure 2.
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Figure 2: The directed graph G2.

The following lemma is an easy consequence of parts (1) and (2) of Lemma 2.1.

Lemma 3.1 Fn+2 = 1 +
∑n

i=1 Fi for n ≥ 1.

Now let G = Gn be a word graph. By a complete walk of G we mean a walk through G
that visits each vertex of G at least once. We begin by proving a lower bound on the length
of a special type of complete walk of Gn. Then we will sketch the proof that the lower bound
thus obtained is a lower bound for all complete walks of Gn.

Lemma 3.2 For n > 2, if a complete walk of G = Gn starts in Vn and ends in W =
V 0
n ∪ V 1

n ∪ V0 ∪ V1, then it has length ≥ Fn+2 + Fn − n.

Proof: Define Vi and V i
n as in Lemma 2.1. Fix an arbitrary complete walk P in G with

the appropriate start and end points. Let yi be the total number of visits by P to vertices
of Vi for 0 ≤ i ≤ n. Let xi be the number of visits to vertices of V i

n for 0 ≤ i ≤ n− 2.
Since P starts in Vn and ends in W , it follows that all visits to Vi+1 (2 ≤ i ≤ n − 2)

must be preceded by a visit to either Vi or V i
n, and all visits to Vi and V i

n are followed
by a visit to Vi+1. Hence we see that yi + xi = yi+1 or equivalently yi = yi+1 − xi for
2 ≤ i ≤ n − 2. Furthermore since P starts in Vn, using part 5 of Lemma 2.1 we have
yn = yn−1 + 1 or equivalently yn−1 = yn − 1. Since yn =

∑n−2
i=0 xi by definition, we have

yn−1 = yn − 1 = (
∑n−2

i=0 xi)− 1.
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Now for 2 ≤ j ≤ n− 2, we claim that

yj = (

j−1∑
i=0

xi)− 1 (2 ≤ j ≤ n− 1) (1)

The above system of equations can be established by a “downward induction” as follows.
First note that we already have yn−1 = (

∑n−2
i=0 xi)−1, so inductively assume yj = (

∑j−1
i=0 xi)−

1 for 3 ≤ j ≤ n − 1. Now since yj−1 = yj − xj−1 we have by the induction hypothesis,

yj−1 = yj − xj−1

= (

j−1∑
i=0

xi) − 1− xj−1

= (

j−2∑
i=0

xi) − 1

Thus by induction, (1) is proved.
Now we estimate the value of yj for each j. Since P is a complete walk, by part 2 of

Lemma 2.1 we have x0 ≥ |V 0
n | = 1 and xi ≥ |V i

n| = Fi for 1 ≤ i ≤ n− 2. Therefore using the
system of equations in (1) we obtain the following system of estimates for yj (2 ≤ j ≤ n−1).

yj = (

j−1∑
i=0

xj)− 1

≥ 1 + (

j−1∑
i=1

Fj)− 1 (2)

= Fj+1 − 1 (By Lemma 3.1) (2 ≤ j ≤ n − 1)

Trivially we also have y0 ≥ |V0| = 1, y1 ≥ |V1| = 1 and yn ≥ |Vn| = Fn. Now the length
of P can be bounded from below by these estimates as follows.
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|P | = (

n∑
i=0

yi)− 1

= y0 + y1 + (
n−1∑
j=2

yj) + yn − 1

≥ 1 + 1 + (
n−1∑
j=2

(Fj+1 − 1)) + Fn − 1 (3)

= 2 + (Fn+2 − 3)− (n− 2) + Fn − 1 (By Lemma 3.1)

= Fn + Fn+2 − n

Since P is arbitrary, we see that Fn +Fn+2−n is a lower bound for this type of complete
walk.

Now we sketch the proof that Fn + Fn+2 − n is a lower bound for all complete walks of
Gn. Suppose P is a complete walk of Gn that either does not start in Vn or does not end
in W . We associate the numbers a and b with the start and end points of P respectively
as follows. The number a is the index of the partition where P starts, i.e. P starts in Va.
The number b is slightly more complicated. If P ends in Vi (0 ≤ i ≤ n − 1), then b = i.
Otherwise P ends in V i

n (0 ≤ i ≤ n− 2), and we let b = i. In other words, we do not worry
about where P starts in Vn but we do worry about where P ends in Vn. There are four cases.

1. a = b + 1. Then we have yi + xi = yi+1 for 2 ≤ i ≤ n − 1. Therefore the system of
equations in (1) of Lemma 3.2 is in this case replaced by

yj = yj+1 − xj

=

j−1∑
i=0

xi (2 ≤ j ≤ n− 1) (4)

By same method as in (2) and (3) of Lemma 3.2, we arrive at a lower bound of
Fn + Fn+2 − 2.

2. 2 ≤ a ≤ b. Then we have ya−1 +xa−1 + 1 = ya and yb+xb = yb+1 + 1 and yi +xi = yi+1

for i 6= a− 1 or b, 2 ≤ i ≤ n− 1. In this case (1) is replaced by

yj = yj+1 − xj =

j−1∑
i=0

xi b < j ≤ n− 1.

yb = yb+1 − xb + 1 = (
b−1∑
i=0

xi) + 1

(5)
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yj = yj+1 − xj = (

j−1∑
i=0

xi) + 1 a ≤ j ≤ b− 1

ya−1 = ya − xa−1 − 1 =
a−2∑
i=0

xi

yj = yj+1 − xj =

j−1∑
i=0

xi 2 ≤ j ≤ a− 2

and (2) is replaced by

yj =

j−1∑
i=0

xi ≥ Fj+1 b < j ≤ n− 1.

yb = (
b−1∑
i=0

xi) + 1 ≥ Fb+1 + 1

yj = (

j−1∑
i=0

xi) + 1 ≥ Fj+1 + 1 a ≤ j ≤ b− 1

ya−1 =
a−2∑
i=0

xi ≥ Fa

yj =

j−1∑
i=0

xi ≥ Fj+1 2 ≤ j ≤ a− 2

(6)

Finally in place of (3) we have

|P | = (

n∑
i=0

yi)− 1

= y0 + y1 + (
a−1∑
j=2

yj) + (
b∑

j=a

yj) + (
n−1∑
j=b+1

yj) + yn − 1

≥ 1 + 1 + (
a−1∑
j=2

Fj+1) + (
b∑

j=a

(Fj+1 + 1)) + (
n−1∑
j=b+1

Fj+1) + Fn − 1

= 2 + (

n−1∑
j=2

Fj+1) + (b− a+ 1) + Fn − 1

(By Lemma 3.1) = 2 + (Fn+2 − 3) + (b− a+ 1) + Fn − 1

= Fn + Fn+2 + b− a− 1 (7)

Thus we obtain a lower bound of Fn + Fn+2 + b− a− 1.

3. a > b+1. If b ≥ 2, then this case is similar to case 2 with the equation yb = yb+1−xb+1
switching position with the equation ya−1 = ya − xa−1 − 1 in (5). The lower bound
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derived is again Fn + Fn+2 + b− a− 1. If b = 0 or 1, then we have a ≤ n− 1 and the
equations in (5) become

yj = yj+1 − xj =

j−1∑
i=0

xi a ≤ j ≤ n− 1.

ya−1 = ya − xa−1 − 1 = (
a−2∑
i=0

xi)− 1

yj = yj+1 − xj = (

j−1∑
i=0

xi)− 1 2 ≤ j ≤ a− 2

(8)

and we can derive a lower bound of Fn + Fn+2 − a.

4. a = 0 or a = 1. This is similar to case 2 except that the equations in (5) involving y0

and y1 are invalid. We remove the invalid equations from (5). Then if b ≥ 2, we can
work through (2) and (3) of Lemma 3.2 as we have done for case 2 and obtain a lower
bound of Fn +Fn+2 + b− 3. If b = 0 or 1, then (5) reduces to (4) and we get the same
lower bound of Fn + Fn+2 − 2.

In all cases, if n > 2, we found a larger lower bound. Therefore we may take Fn+Fn+2−n
as a lower bound for all complete walks of Gn, for n > 2. As we mentioned at the beginning
of this section, this bound also holds for n = 2.

We can say rather more.

Corollary 3.2.1 For n > 2, P is a minimal complete walk of Gn of length Fn + Fn+2 − n
if and only if P starts in Vn, ends in W and visits each vertex of Vn ∪ W exactly once.
Furthermore one of the following two conditions holds:

1. P starts in V 0
n and ends in V 1

n .

2. P starts in V 1
n and ends in V1.

Proof: Observe that the lower bounds we obtained for complete walks that either do not
start in Vn or do not end in W are > Fn + Fn+2 − n. Therefore from the proof of Lemma
3.2 we see that P is a complete walk of length Fn + Fn+2 − n if and only if P starts in Vn,
ends in W and visits each vertex of Vn exactly once. So what remain to be shown are the
two conditions on the start and end points of P .

Where could P end? P could not end in V 0
n because otherwise vertices in V0 ∪ V1 are

not visited by P . P could not end in V0 because then the only way to reach V1 is from V 0
n .

But V0 is only reachable from V 0
n . Hence the single vertex in V 0

n is visited more than once,
contradicting our assumption about P .

Next we show that P must start in V = V 0
n ∪ V 1

n . To see this let us define w1, ..., wn−2

inductively as follows: w1 = parent of the single vertex in V 0
n , wj = parent of wj−1 that is

not in Vn for 2 ≤ j ≤ n−2. We claim that if P starts in Vn\V , then all of wj (1 ≤ j ≤ n−2)
are visited more than once. We prove this by induction. First, since w1 has as its children
the two vertices of V and they are only reachable from w by part 5 of Lemma 2.1, w1
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must be visited more than once. Now inductively assume wj is visited more than once for
1 ≤ j < n − 2. Note that wj is one of the two children of wj+1. As wj is visited more than
once by the induction hypothesis, the total number of visits to the two children of wj+1 is
greater than 2. But the other parent w of wj is in Vn and thus is visited only once. So wj+1

must be visited more than once. Thus by induction, our claim is proved. Now suppose P
ends in V1. Observe that wn−2 is the single vertex in V2. Thus wn−2 is reachable only from
V1 and V 1

n . Therefore since P ends in V1, wn−2 is visited more than once implies that the
single vertex of V 1

n is visited more than once, a contradiction. Similarly if P ends in V 1
n

we see that the single vertex of V1 is visited more than once which again contradicts our
assumption about P .

Lastly, we prove the connection between the start and the end points of P . Suppose P
starts in V 0

n . Then since V0 and V1 consist of the two children of V 0
n , we see that P must

end in V 1
n , because ending in V1 would imply either V 0

n is visited more than once or the
only vertices visited by P are those of V 0

n ∪ V0 ∪ V1. In either case we arrive at a condition
incompatible with our assumptions about P . Similarly, if P starts in V 1

n then P must end
in V1.

4 Algorithm

We now give an algorithm that traces a complete walk in G that satisfies the conditions of
Corollary 3.2.1. It will then follow that our lower bound is achievable. Consequently the
shortest word satisfying Pf(n) is of length Fn + Fn+2 for n > 1. As in Section 3, we will
assume n > 2 throughout this section unless otherwise specified. The case n = 2 is seen to
be true by inspection.

We now introduce an order on the vertices of G to facilitate descriptions of the algorithm
and its proof. We think ofG as drawn in n+1 levels with V0 at the top and Vn at the bottom.
Within each level, the vertices are ordered by their value as integers in binary. Large vertices
are placed to the left. We view G as a tree with root V0 and “leaves” Vn except that there
are back edges from the “leaves” to the interior vertices. See Figure 1 for an example.

Now we can describe the algorithm as
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Traverse (T )
Input: Gn.
Output: A complete walk of Gn.
Begin

1. Start at 10...0 (the single vertex of V 0
n ).

2. Go to 0...0 (the single vertex of V0).

3. If current vertex has only one child (or equivalently current vertex ends in
1) then

visit it.

else if the left child of the current vertex has not been visited then

visit the left child (left child is the one that ends in 1).

else

visit the right child (right child is the one that ends in 0).

4. If the current vertex is 10...01 (the single vertex of V 1
n ) then

Stop.

else

Repeat step 3.

End

An example walk traced out by the algorithm on G5 in Figure 1 is as follows: 10000
0→

00000
1→ 00001

0→ 00010
1→ 00101

0→ 01010
1→ 10101

0→ 01010
0→ 10100

1→ 01001
0→

10010
0→ 00100

0→ 01000
1→ 10001 which gives the word 100000101010010001.

We will henceforth refer to the algorithm just stated as algorithm T . The following
lemma gives the basic property of T .

Lemma 4.1 The number of times T visits a vertex v of a word graph G = Gn is at most
the number of children of v.

Proof: Suppose to the contrary, there exists v that is visited more often than the number
of its children and let us call such a vertex selfish. As T runs sequentially we can pick the
first selfish vertex v. Could v ∈ V0 ∪ V1? If v ∈ V0, then since the only edge to v is from the
start vertex and the start vertex cannot be visited more than once because it is the sibling
of the vertex at which T terminates, we have that v is unselfish, a contradiction. Similarly
it is easy to see that v 6∈ V1.

Now suppose v ∈ Vk, 1 < k ≤ n. There are two cases.
Case 1: v ends in 1. In this case v’s parent(s) has (have) two children and v is the left

child of its parent(s). By step 3 of T , v is never visited more than once. As v has at least
one child, v cannot be selfish.

Case 2: v ends in 0. Since v ends in 0 and k > 1, v has two children. If k = n, then by
Lemma 2.1 part 4, v has one parent. So if v is visited more than two times, so is v’s parent.
But the parent becomes selfish first. This contradicts that v is the first selfish vertex. If
k < n, then v has two parents v1 ∈ Vn and v2 6∈ Vn. There are two cases here. By Lemma
2.1, both parents share the same children.
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Case 2a: If v is the only child of both parents, then since v is visited more than
two times, one of the parents has been visited more than once and it becomes
selfish before v. This is a contradiction.

Case 2b: If v’s parents have two children, then by step 3 of T v must be the
right child. Recalling that v has 2 children, we have the total number of times
v and its left sibling were visited is > 3. Since v is the first selfish vertex, the
parent v2 6∈ Vn can be visited at most two times, then v1 ∈ Vn must have been
visited at least two times. However v1 has only one parent. So v1’s parent, say
w, is visited at least twice. So w must have two children. But then v1 must be
the right child of w and w must have been visited at least three times. Namely,
w becomes selfish before v does. This is a contradiction.

Since k is arbitrary, we conclude that such v does not exist. So the lemma is proved.

The previous lemma implies the following property of T .

Corollary 4.1 T visits each vertex of Vn at most once.

Proof: Let us call a vertex v ∈ Vn popular if v is visited by T more than once. We will
show that all vertices of Vn are unpopular. Consider an arbitrary vertex v ∈ Vn. Let w be
a parent of v. Note that v has only one parent by part 4 of Lemma 2.1. So w is unique. If
v is the only child of w, then the unselfishness of w implies the unpopularity of v. If w has
two children then there are two cases.

Case 1: v ends in 1. Then v has only one child. So v is not popular since by Lemma 4.1
v is not selfish.

Case 2: v ends in 0. Then v must be the right child of w. Since w is unselfish, step 3 of
T implies that v is not popular. Thus the lemma is proved.

By Lemma 4.1, the two vertices in V0 ∪ V1 are unselfish. Since each of the two vertices
has only one child, their unselfishness implies that they are visited by T at most once. Thus
T visits each vertex in W ∪ Vn at most once. If we now prove that T indeed traces out
a complete walk, then by Corollary 3.2.1, we conclude that it is a complete walk of length
Fn + Fn+2 − n and the problem is solved. To do so we investigate how visitation of one
vertex affects another vertex. It turns out that certain pairs of vertices are closely related
in their visitation status. Such pair of vertices appears frequently in the sequel. Thus we
define them as follows.

Definition 4.1 Suppose v is not the start vertex (10...0), then we say that w is the rightmost
descendant of v if w satisfies the following three conditions.

1. w 6= v.

2. w ∈ Vn and all edges on the shortest path from v to w have label 0.

3. w is the only vertex in Vn not equal to v on the shortest path from v to w.
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Two examples are shown in Figure 3. As usual we let the distance from a vertex v to a
vertex w to be the length (number of edges) of the shortest path from v to w. Observe that
if v′ is the rightmost descendant of v and the distance from v to v′ is greater than 1, then v′

is also the rightmost descendant of the right child of v.

0

0001

0000

0010

01000101

1000

1001

1010

0 0

0001

0000

0010

01000101

1000

1001

1010

0

Figure 3: Circled vertices are the rightmost descendants of boxed vertices.

The basic relation between v and its rightmost descendant is contained in the following
lemma.

Lemma 4.2 Suppose vertex v ends in 0, and its rightmost descendant v′ is not the start
vertex. Then

1. If v ∈ Vn is not visited by T , then v′ is not visited by T .

2. If v 6∈ Vn is visited by T only once, then v′ is not visited by T .

Proof: By step 1, step 2 and the first application of step 3 of T , it is clear that all vertices
in V0 ∪ V1 are visited by T . Therefore we assume v 6∈ V0 ∪ V1 in the rest of the proof. We
proceed by induction on the distance d from v to v′.

d = 1: In this case we have v 6∈ Vn and v has two children. Since v′ is not the start
vertex and is the right child of v, then by step 3 of T , v′ is not visited because v is visited
only once.

d = k > 1: Since v ends in 0, v 6∈ V0 ∪ V1, v has two children. Since k > 1, the right
child w of v is not in Vn. Let u be the other parent of w. If v is in Vn and is not visited by
T , then Lemma 4.1 implies that w is visited only once because w is u’s right child and u is
unselfish. Suppose v 6∈ Vn and is visited by T only once. Then the other parent u of w is in
Vn and Corollary 4.1 implies that w is visited only once due to the unpopularity of u. Since
the distance from w to v′ is less than d, by the induction hypothesis v′ is not visited. This
proves the lemma.

Next we need
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Lemma 4.3 Suppose the rightmost descendant v′ of v is the start vertex. Then v is visited
by T at most once.

Proof: If v ∈ Vn, then Corollary 4.1 implies this lemma. So suppose v 6∈ Vn. We prove
this case by induction on the distance from v to v′. It is easy to see that the result holds
for vertices of V0 ∪ V1 ∪ V2 since the only vertices in Vn that contain an edge to them are
the start and end vertex. Therefore we inductively assume the lemma is true for distance
d > n− 3. For distance d ≤ n− 3, v must be the right child of its parents because the start
vertex is the rightmost vertex of Vn and d ≤ n − 3. Since v has at most 2 parents, if v is
visited more than once, one of its parents must be visited more than once because v is the
right child of both parents. But this contradicts the induction hypothesis. So v is visited at
most once. This proves the lemma.

Lemma 4.3 can be sharpened to

Lemma 4.4 Suppose the rightmost descendant v′ of v is the start vertex, then v is visited
by T exactly once.

Proof: The cases where v ∈ V0 ∪ V1 are trivially true. We prove the other cases by
induction on the distance d from v to v′.

d = 1: In this case v is the parent of the end vertex. Since there are only finitely many
vertices in Gn, by Lemma 4.1, T terminates. Therefore v is visited exactly once.

d > 1: There are two cases here.
Case 1: v 6∈ Vn. Suppose v has not been visited. Then Corollary 4.1 and step 3 of T

implies that the right child of v is not visited. This contradicts the induction hypothesis. So
by Lemma 4.3, v is visited exactly once.

Case 2: v ∈ Vn. If v is not visited, then by case 1 above, the right child of v is not visited.
This again contradicts the induction hypothesis. So v is visited exactly once. By induction,
the lemma is proved.

Putting previous results together, we can now prove the main theorem.

Theorem 4.1 T traces out a minimal complete walk in Gn of length Fn + Fn+2 − n.

Proof: We first prove that all vertices of Vn are visited. Assume to the contrary that
some vertices of Vn are not visited. Pick the rightmost such vertex v. Note that v 6∈ V 0

n ∪V 1
n

as these are the start and end points of T . For vertices v ∈ Vn \ (V 0
n ∪ V 1

n ) there are two
cases.

Case 1: v ends in 1. Then v’s parent has two children and v is the left child. By step 3
of T , if v is not visited, then v’s right sibling cannot have been visited. This is impossible
as v is supposed to be the rightmost unvisited vertex.

Case 2: v ends in 0. Then let v′ be the rightmost descendant of v. If v′ is not the start
vertex, then by Lemma 4.2 v′ is not visited. Note that v′ is obtained from v by removing a
positive number of symbols from the left end of v and appending the same number of zeros
to the right end of v. Therefore by repeated applications of Lemma 4.2, we get a sequence of
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vertices v′, v′′, ... such that eventually we arrive at an unvisited vertex v(m) whose rightmost
descendant v(m+1) is the start vertex. However Lemma 4.4 now implies that v(m) is visited
by T , a contradiction. This proves that T visits all vertices of Vn.

Now we assume inductively that T visits all vertices of Vk, 2 < k ≤ n. Suppose some
vertices of Vk−1 are not visited. Pick the rightmost such vertex. There are two cases.

Case 1: v ends in 1. The same argument as in case 1 above shows this case is impossible.
Case 2: v ends in 0. Since v 6∈ V0 ∪ V1, v has two children. Then Corollary 4.1 implies

that the right child of v is not visited. This contradicts the inductive hypothesis. So this
case is also impossible.

Thus T visits all vertices of Vk−1. By induction, T visits all vertices of Vi, 2 ≤ i ≤ n. By
step 1 and step 2 of T , it also visits the vertices of V0 and V1. Further by Lemma 4.1, each
vertex in V0 ∪ V1 is visited exactly once. So it traces a complete walk in Gn which satisfies
the condition of Corollary 3.2.1. Therefore we conclude that the path it traced is a minimal
complete walk of length Fn + Fn+2 − n.

A table of words produced by the algorithm for 1 ≤ n ≤ 7 is given below. The cases
n = 1 and n = 2 are produced by hand.

1 10
2 1001
3 1000101
4 10000101001
5 100000101010010001
6 10000001010100101000100100001
7 10000000101010100101000101000010010010001000001

5 Remarks on generalizations

It would be interesting to see if some of the ideas presented here could be used to obtain more
general results on feasible functions. In particular lower bounds on the length of minimal
words for f satisfying a linear recurrence. It seems that the idea of partitioning the vertices
of the word graph into “levels” may be useful in this context.
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