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Abstract

The paper gives a matrix-free presentation of the correspondence between
full-length linear codes and projective multisets. It generalizes the Brouwer-
Van Eupen construction that transforms projective codes into two-weight codes.
Short proofs of known theorems are obtained. A new notion of self-duality in
coding theory is explored.

94B05, 94B27, 51E22.

1 Introduction

We start by describing the main idea in an informal way. Let G be a generator
matrix of a q-ary linear [n, k, d]-code C, and let g1,g2, . . . ,gn ∈ Fkq be the columns
of G. Suppose that none of the gi’s is the zero vector. (We say that the code C is of
full length.) Then each gi determines a point [gi] in the projective space Π := P(Fkq ).
If the gi happen to be pair-wise independent, then X := {[g1], [g2], . . . , [gn]} is a
set of n points in Π. When dependence occurs, we interpret X as a multiset and
count each point with the appropriate multiplicity. Different generator matrices yield
projectively equivalent codes. In fact, we have a bijective correspondence between
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the equivalence classes of full-length q-ary linear codes and the projective equivalence
classes of multisets in finite Desarguesian projective spaces. It is easy to recover
minimum distance d of C from X. A nonzero codeword c := (c1, c2, . . . , cn) ∈ C
corresponds to the hyperplane Hc in Π with equation c1ξ1 + c2ξ2 + · · ·+ cnξn = 0 and
the weight of c equals the size of X ∩ (Π \ Hc). So d = n − min |X ∩ H|, where H
runs through the hyperplanes of Π.

The first one to use this relationship between linear codes and projective multisets
was Slepian [27], who used the term modular representation. See also [25]. Delsarte,
Hill and others studied the relation between projective two-weight codes and projec-
tive (n, k, h1, h2) sets. These are subsets of size n of P(Fkq ) with the property that
every hyperplane is met in h1 points or h2 points. Two-weight codes are surveyed in
Calderbank and Cantor’s paper [6].

Subsets of a finite projective space that have a small intersection with all sub-
spaces of a given dimension have been extensively studied by finite geometers. In [17],
Hirschfeld and Storme survey the known results with respect to so-called (n; r, s;N, q)-
sets. These are spanning subsets K ⊂ P(FN+1

q ) of size n and such that all s-
dimensional projective subspaces of P(FN+1

q ) intersect K in at most s points. So
(n; k − 2, n − d; k − 1, q)-sets correspond to q-ary linear [n, k, d]-codes for which the
columns of any generator matrix are pair-wise independent. Other good references
are the survey papers by Hill [16] and Landgev [22].

Yet another terminology has been introduced by Hamada and Tamari in [13].
They defined a minihyper (maxhyper) {f,m; t, q} to be a multiset w in P(Ft+1

q ) of
size f and such that all hyperplanes intersect w in at most (at least) m points. Hence
there is a bijective correspondence between the {n, n − d; k − 1, q} maxhypers that
span P(Fkq ) and the (equivalence classes) of q-ary linear [n, k, d]-codes. A recent survey
of results on minihypers and their relation to codes meeting the Griesmer bound can
be found in [14].

Goppa’s work [12] initiated a constant flow of contributions to coding theory by
algebraic geometers. Of course, the natural setting here is the correspondence between
linear codes and projective multisets. A good example is the book [32]. where the
term ”projective system” is used. As a matter of fact, in Problem 1.1.9 of [32] the
reader is invited to ”Rewrite existing books on coding theory in terms of projective
systems”. The present paper can be regarded as a first step towards this goal.

Quite recently, Brouwer and Van Eupen published a gem of a paper, [5], in which
they used a correspondence between projective codes and two-weight codes to con-
struct optimal codes and to prove the uniqueness of certain codes. Their construction,
a generalization of an old result on projective two-weight codes (cf. [15], Th. 8.7, or
[6], Th. 5.2), transforms subsets of a finite projective space Π into multisets of the
dual space Π∗. Although mainly dual transforms of ”degree” one are considered, the
final section of their paper gives a more general construction in which the degree of
the dual transform is arbitrary. Our paper describes the dual transform in its full
generality.

Outline of the paper
Section 2 contains a concise introduction to algebraic coding theory and fixes

notation. In particular, we introduce the reduced distribution matrix of a code, a
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convenient notion in our treatment of the dual transform. In Section 3, we list some
basic properties of projective multisets. The notion of lifting is introduced. We need
this notion in Proposition 2 to repair a minor flaw in [5]. The section also contains a
matrix-free presentation of the correspondence between full-length linear codes and
projective multisets. Section 4 is devoted to the dual transform of multisets. We
give simple expresssions of the basic parameters of the dual transform in terms of the
reduced distribution matrix of the dual of the original code. Section 5 treats dual
transforms of degree one. To demonstrate the effectiveness of this concept, we give
short proofs of a theorem of Ward, a theorem of Bonisoli and the uniqueness of the
generalized MacDonald codes. Finally, Section 6 explores a new kind of duality in
coding theory. A code C is said to be σ-self-dual if its dual transform Cσ is equivalent
to C. We give a list of examples and derive strong conditions in the case of transforms
of degree one.

2 Codes

2.1 Basic definitions

Let Fq be the finite field of q elements and let S be a finite set of size n.

Definition 1 The standard vector space FSq over Fq is the Fq -vector space of the
mappings

x : S → Fq .

(If S := {1, 2, . . . , n}, we usually write Fnq for FSq .)
The value of x ∈ FSq in s ∈ S is denoted by xs.

The natural basis {es | s ∈ S} of FSq is defined by

(es)t :=

{
1 if s = t,
0 if s 6= t.

So the dimension of FSq is equal to n.

Definition 2 Let S, S ′ be two sets of size n, and let {es | s ∈ S}, {e′s′ | s
′ ∈ S ′} be

the natural bases of FSq , FS
′

q respectively. A linear isomorphism µ : FSq → FS
′

q is said
to be monoidal if nonzero elements as ∈ Fq and a bijection σ : S → S ′ exist such that
µ(es) = ase

′
σ(s) for all s ∈ S.

Definition 3 A q-ary (linear) code C of length n and dimension k is a k-dimensional
linear subspace of the n-dimensional standard vector space FSq . Two codes C ⊆ FSq ,

C′ ⊆ FS
′

q are said to be equivalent if a monoidal isomorphism µ : FSq → FS
′

q exists such
that µ(C) = C′.
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2.2 Weight and distance

The Hamming weight |x| of a vector x ∈ FSq is the size of its support:

|x| := |{s | s ∈ S ∧ xs 6= 0}|.

The Hamming weight is a norm on the vector space FSq . The induced metric, with
distance function

d(x,y) := |x− y|, x,y ∈ FSq ,

is called the Hamming metric. Note that the monoidal isomorphisms are precisely
the linear isomorphisms that leave the Hamming weight invariant. Hence equivalent
codes are isometric.

Definition 4 The weight distribution of a code C ⊆ FSq is the sequence

A0(C), A1(C), . . . , An(C)

defined by

Ai(C) := |{c | c ∈ C ∧ |c| = i}|, i = 0, 1, . . . , n.

The weight set of C is the set

WC := {i | i ∈ {1, 2, . . . , n} ∧Ai(C) 6= 0}

and the minimum weight of C is the integer

dC := minWC .

Let

Di(C,x) := |{c | c ∈ C ∧ d(x, c) = i}|

be the number of codewords at distance i from x ∈ FSq .

Definition 5 (Cf. [8]) The distribution matrix of C is the qn × (n + 1) matrix D
parametrized by FSq × {0, 1, . . . , n} having Di(C,x) as its (x, i) entry.

The linearity of C immediately implies that Di(C,x) = Di(C,x + c) for all c ∈ C.
In other words, the rows of D are constant on the cosets of C. Moreover, Di(C, ax) =
Di(C,x) for all a ∈ Fq \ {0}. Hence the following definition makes sense.

Definition 6 The reduced distribution matrix of C is the qn−k−1
q−1

× (n+ 1) matrix D̄

parametrized by P(FSq /C)× {0, 1, . . . , n} and having Di(C,x)−Di(C,o) as its ([x̄], i)
entry. (Here x̄ denotes the vector in FSq /C corresponding to the coset x + C and [x̄]
denotes the projective point determined by x̄ in the projective space P(FSq /C) over

FSq /C.) The (i+ 1)-st column of D̄ will be denoted by D̄i.
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2.3 Dual codes

The standard inner product on FSq is defined by

〈x,y〉 :=
∑
s∈S

xsys, x,y ∈ FSq .

Definition 7 The dual of a code C ⊆ FSq is the code

C⊥ := {x | x ∈ FSq ∧ 〈x, c〉 = 0 for all c ∈ C}.

The external distance tC of C is the size of the weight set of C⊥ and the dual distance
of C is the minimum distance of C⊥. A code C is said to be of full length if dC⊥ ≥ 2
and projective if dC⊥ ≥ 3.

The external distance of a code C gives information about its distribution matrix.
In fact, Delsarte proved the

Theorem 1 ([8]) The rank of the distribution matrix D of C is equal to tC + 1. In
fact, the first tC + 1 columns of D are independent and the i-th column of D can be
expressed in these columns by a linear relation that only depends on k, n, q, i and the
weight set WC⊥ of C⊥.

In 1963, MacWilliams found a remarkable relation between the weight spectra of
C and C⊥.

Theorem 2 ([23]) For i = 0, 1, . . . , n, we have the identities

n∑
j=0

(
n− j

i

)
Aj(C) = qk−i

n∑
j=0

(
n− j

n− i

)
Aj(C

⊥).

If we solve this system of equations for the Aj(C), we find

Ai(C) = qk−n
n∑
j=0

Ki(j)Aj(C
⊥), (1)

with

Ki(j) :=
i∑

m=0

(−1)m(q − 1)i−m
(
j

m

)(
n− j

i−m

)
.

The Ki(j) are polynomials of degree i in j, the so-called Krawtchouk polynomials, cf.
[21]. A comprehensive description can be found in [24], pp. 129 ff., 150 ff.. We shall
need the fact that the Ki(j) satisfy the orthogonality relations

n∑
j=0

Kl(j)Kj(i) = qnδl,i, l, i = 0, 1, . . . , n. (2)
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3 Projective multisets

3.1 Basic definitions

Let Π := P(V) be the projective space over a finite-dimensional Fq -vector space V,
and let N denote the set of the nonnegative integers.

Definition 8 A projective multiset in Π is a mapping γ : Π→ N of Π into N . The
multiplicity of a point p ∈ Π in γ is the integer γ(p). The multiplicity set of γ is the
set

Mγ := Im γ.

If Mγ ⊆ {0, 1}, we identify γ with its support and call it a set.

Definition 9 The spanning space of γ is the projective span

Σγ := 〈supp(γ)〉

of the support

supp(γ) := {p | p ∈ Π ∧ γ(p) 6= 0}.

of γ in Π. The dimension of γ is the integer

kγ := dim Σγ + 1.

Definition 10 Two projective multisets γ, γ′ are said to be equivalent if a projective
isomorphism ϕ : Σγ → Σγ′ exists such that γ = γ′ ◦ ϕ.

For example, any projective multiset γ : Π → N is equivalent to the restriction
γ|Σγ of γ to its spanning space.

We can extend the mapping γ to the power set of Π as follows.

Definition 11 If W ⊆ Π is any subset, then

γ(W ) :=
∑
p∈W

γ(p).

In particular, the integer

nγ := γ(Π)

is called the length of the multiset γ.
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3.2 Projective multisets and full-length codes

In Definition 7, we defined a full-length code to be a code with dual distance ≥ 2.
This can be rephrased as follows: a code C ⊆ FSq is of full length if and only if the
natural basis {es | s ∈ S} does not intersect the dual code C⊥.

Definition 12 Let C ⊆ FSq be a full-length code, and let es denote the image of the
standard basis vector es under the quotient mapping FSq → FSq /C

⊥. Then the multiset

γC : P(FSq /C
⊥)→ N , p 7→ |{s | p = [es]}|

is called the projective multiset induced by C.

Remark 1 The multiset induced by C can be identified with the (second) column D̄1

of the reduced distribution matrix D̄ of C⊥.

The length and dimension of a full-length code C are equal to the length and
dimension of the induced multiset γC. A full-length code C is projective if and only if
the induced multiset γC is a set.

Proposition 1 Any projective multiset is equivalent to a projective multiset induced
by a code. Two induced multisets γC, γC′ are equivalent if and only if the codes C, C′

are equivalent.

Proof. Let γ : Π := P(V) → N be a projective multiset of dimension k and length
n. Choose a list (v1,v2, . . . ,vn) of vectors vi ∈ V such that

{[v1], [v2], . . . , [vn]} = supp(γ)

and such that each point p ∈ Π occurs in the list ([v1], [v2], . . . , [vn]) with multiplicity
γ(p). Consider the linear mapping ϕ : Fnq → V fixed by ϕ(ei) = vi, i = 1, 2, . . . , n.
If we put C := ker(ϕ)⊥, then γ = γC. Secondly, if two full-length codes C, C′ are
equivalent under a monoidal isomorphism µ : FSq → FS

′

q , then µ(C⊥) = C′⊥. So

the induced projective isomorphism µ̃ : P(FSq /C
⊥) → P(FS

′

q /C
′⊥) is well-defined. It

obviously defines an equivalence between the projective multisets γC and γC′.
Conversely, let C ⊆ FSq , C

′ ⊆ FS
′

q be two full-length codes such that γC and γC′ are

equivalent. Let ϕ : FSq /C
⊥ → FS

′

q /C
′⊥ be a linear isomorphism such that the induced

projective isomorphism ϕ̃ : P(FSq /C
⊥) → P(FS

′

q /C
′⊥) is an equivalence between γC

and γC′. Then a bijection σ : S → S ′ exists such that ϕ̃([es]) = [e′σ(s)], s ∈ S. So

nonzero elements as ∈ Fq exist such that ϕ(es) = ase′σ(s), s ∈ S. Now the monoidal

isomorphism µ : FSq → FS
′

q fixed by µ(es) := ase
′
σ(s), s ∈ S, determines an equivalence

between C and C′.

Notation If γ is a projective multiset, then Cγ denotes any code such that the
multiset induced by Cγ is equivalent to γ. The preceding proposition shows that
the code Cγ exists and that it is determined by γ up to equivalence.
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3.3 Quotient multisets

An interesting way to obtain new projective multisets from old ones is by considering
quotient spaces. Let U be an (m+ 1)-dimensional linear subspace of the vector space
V,and let L := P(U) be the corresponding m-dimensional projective subspace of the
projective space Π := P(V). Then the points of the projective space

Π/L := P(V/U)

can be identified with the (m + 1)-dimensional projective subspaces M of Π such
that M ⊃ L. More generally, the i-dimensional subspaces of Π/L correspond to the
(i+m+ 1)-dimensional subspaces of Π that contain L. In particular, the dual space
(Π/L)∗ will be identified with the subspace of Π∗ consisting of all hyperplanes in Π
that contain L.

Definition 13 The quotient multiset of γ by L is the mapping γL : Π/L→ N defined
by

(γL)(M) := γ(M \ L), M ∈ Π/L.

Note that the dimension of γL is equal to kγ − dim(L ∩ Σγ)− 1.

Remark 2 Let γ := γC be the projective multiset induced by the code C ⊆ FSq . An
m-dimensional subspace L ⊆ P(FSq /C

⊥) is of the form P(U), where U is a subspace of
the vector space FSq /C

⊥. If W is the inverse image of U under the quotient mapping
FSq → FSq /C

⊥, then D :=W⊥ is a subcode of codimension m+1 in C and γL = γD. So
the quotient multisets of γ correspond to the subcodes of C of the same codimension.

3.4 Weights

Now we turn to the dual space Π∗ of the projective space Π. (The points of Π∗ are
the hyperplanes H ⊂ Π.)

Definition 14 The weight function of γ is the mapping

µ : Π∗ → N, H 7−→ γ(Π \H).

The weight set of γ is the set

Wγ := Imµ \ {0}.

The minimum weight of γ is the integer

dγ := minWγ .

The frequency of a weight w ∈ Wγ is the integer

fw(γ) := qdim Σγ−dim Π|µ−1(w)|.
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Note that µ−1(0) = (Π/Σγ)
∗. Hence µ takes the value 0 if and only if dim γ <

dim Π + 1.

Remark 3 The weight distribution of Cγ and the frequencies fw(γ) of γ are related
as follows:

Ai(Cγ) =

 1 for i = 0,
0 for i /∈Wγ ∪ {0},
(q − 1)fw(γ) for i ∈Wγ .

Hence the weight set of Cγ is equal to Wγ. In particular, the minimum weight of Cγ
is the minimum weight of γ.

Example 1 Let the projective multiset γ be (the characteristic function of) the com-
plement of a (u−1)-dimensional subspace L of a (k−1)-dimensional projective space
Π. Denote by

[
k
j

]
the q-ary Gaussian binomial coefficient. If u = 0, then Cγ is called

a simplex code, with parameters

[

[
k

1

]
, k, qk−1].

It has only one weight: qk−1. If k > u > 0,then Cγ is called a Macdonald code, with
parameters

[

[
k

1

]
−

[
u

1

]
, k, qk−1 − qu−1].

This code is a two-weight code, with weights qk−1 − qu−1 and qk−1. Both the simplex
codes and the MacDonald codes attain the Griesmer bound. Hence they are length-
optimal.

3.5 Simple constructions

In this section, we describe two methods of constructing a new projective multiset γ′

from a projective multiset γ. In both cases the parameters of γ′ only depend on those
of γ and on the construction parameters.

3.5.1 Linear transforms

Let γ be a projective multiset on the projective space Π, and let a ∈ Q ∗ , b ∈ Q be
such that

γ′ : Π→ Q , γ′(p) := aγ(p) + b,

is a projective multiset, i.e. such that Im γ′ ⊂ N . Putting l := dim Π + 1, we find
that

nγ′ = an+ b

[
l

1

]
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and

µγ′(H) = aµγ(H) + bql−1.

If b 6= 0, the dimensions k, k′ of γ and γ′ may differ. In fact, if k′ 6= k then either
k = l or k′ = l.

If k′ ≤ k, then

Wγ′ = {aw + bql−1 | w ∈Wγ} \ {0}

and

fw′(γ
′) = qk

′−kfw(γ), w′ = aw + bql−1.

Three special cases are particularly important:

• γ′(p) := aγ(p), with a ∈ N . Then the code Cγ′ is said to be the a-fold replication
of Cγ .

• γ′(p) := m − γ(p), with m := maxMγ . In this case Cγ′ is called an anticode of
Cγ . The Macdonald codes, for instance, are the anticodes of the simplex codes.

• γ′(p) := γ(p) + b, b ∈ N . Then Cγ′ is said to be obtained from Cγ by adding b
simplex codes of dimension l.

Example 2 If we add t−1 simplex codes of dimension k to the [
[
k
1

]
−
[
u
1

]
, k, qk−1−qu−1]

MacDonald code, we obtain a generalized MacDonald code, with parameters

[t

[
k

1

]
−

[
u

1

]
, k, tqk−1 − qu−1].

3.5.2 Lifting

Let N be an (s− 1)-dimensional subspace of Π and let γ : Π/N → N be a
k-dimensional projective multiset of length n. Choose a nonnegative integer c and
define a projective multiset γ′ on Π as follows:

γ′(p) :=

{
c if p ∈ N,
γ(Np) if p /∈ N.

We say that γ′ is obtained from γ by an (s, c)-lifting of γ to Π. If s > 0, the lifting is
said to be proper. So a properly lifted projective multiset γ′ : Π→ N is characterized
by the property that a nonempty projective subspace N ⊂ Π exists such that γ′ is
constant on N and on all sets M \N , M ∈ Π/N.

The dimension of γ′ is k + s and its length is qsn + c
[
s
1

]
. The weight function of

γ′ is given by

µγ′(H) =

{
(q − 1)qs−1n+ qs−1c if H + N,
qsµγ(H) if H ⊇ N.
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Hence the minimum weight of γ′ is equal to

dγ′ = min{qsdγ, (q − 1)qs−1n+ qs−1c}.

Note that the quotient multiset (γ′)N is equivalent to qsγ.

Remark 4 If γ, δ : Π/N → N are equivalent, the (s, c)-lifted multisets γ′, δ′ : Π→ N
are equivalent.

4 Dual transforms of multisets

4.1 Definition and basis properties

Now consider any function

σ : W → N

on the weight set W := Wγ of a projective multiset γ : Π → N . Let us extend this
function to a polynomial function

σ(i) :=
∑
y∈W

σ(y)

∏
w∈W\y

(i− w)∏
w∈W\y

(y − w)

on Q by Lagrange interpolation. Note that the degree g := gσ of the polynomial σ
does not exceed |W | − 1 = t− 1, where t is the external distance of the dual of Cγ .

For each σ, we shall construct from γ a new multiset on the dual of the spanning
space Σ := Σγ .

Definition 15 The dual transform of the projective multiset γ with respect to σ is
the multiset

γσ : Σ∗ → N , H 7−→ σ(µ(H)).

Obviously, the multiplicity set of Γ := γσ is the σ-image of the weight set of γ :

MΓ = {σ(w) | w ∈Wγ}. (3)

The length of Γ is equal to

nΓ =
∑
w∈W

σ(w)fw(γ)

and its weight function is given by

µΓ(p) = nΓ −
∑
H3p

Γ(H) =
∑
w∈W

σ(w){fw(γ)− fw(γp)}, p ∈ Σ. (4)
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From (4), we see that the weight function µΓ is known if we can calculate the
frequencies of all 1-codimensional quotient multisets γp of γ.

Now we turn to the dimension of Γ. The dual of the spanning space ΣΓ of Γ is
equal to N := µ−1

Γ (0) ⊆ Σγ . Hence N is a projective subspace of Σγ and ΣΓ = (Σ/N)∗.
This implies that the dimension kΓ of Γ is equal to

kγ − dimN − 1.

In particular,

kΓ < kγ ⇐⇒ µ−1
Γ (0) 6= ∅. (5)

4.2 Dual transforms of codes

Let C ⊆ FSq be a k-dimensional full-length code, and let σ be a function that takes
integer values on the weight set of C.

Definition 16 The dual transform of C ⊆ FSq with respect to σ is the code Cσ := CΓ,
where Γ := γσ, the dual transform of γ := γC with respect to σ.

There is a bijective correspondence between the 1-codimensional subcodes D ⊂ C
and the points p = [D⊥/C⊥] ∈ P(FSq /C

⊥). Since fw(γ) = 1
q−1

Aw(C) and fw(γp) =
1
q−1

Aw(D), we can use the MacWilliams identities (1) to express µΓ in terms of σ and

the reduced distribution matrix D̄ of C⊥. From equation (1), we get

µΓ(p) =
∑
w∈W

σ(w){fw(γ)− fw(γp)}

=
1

q − 1

∑
w∈W

σ(w){Aw(C)− Aw(D)}

=
1

q − 1

n∑
j=0

σ(j){Aj(C)−Aj(D)}

=
qk−n−1

q − 1

n∑
j=0

σ(j)
n∑
i=0

Kj(i){qAi(C
⊥)− Ai(D

⊥)}

= −qk−n−1

n∑
i=0

n∑
j=0

σ(j)Kj(i)D̄p,i.

To simplify this further, let us express the polynomial σ in the Krawtchouk polyno-
mials. There are – uniquely determined – rational numbers a0, a1, . . . , ag such that

σ(j) =

g∑
l=0

alKl(j).

The orthogonality relations (2) imply that

n∑
j=0

σ(j)Kj(i) =

g∑
l=0

al

n∑
j=0

Kl(j)Kj(i) = qnai.
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Hence

µΓ(p) = −qk−1

g∑
i=0

aiD̄p,i. (6)

We infer that the weight function µΓ of Γ is a linear combination of the first g+ 1 ≤ t
columns of the reduced distribution matrix D̄ of C⊥.

We can express the length nCσ = nΓ of Cσ in terms of the weight distribution of
C⊥ :

nCσ =
∑
w∈Wγ

σ(w)fw(γ) =

=
1

q − 1

n∑
j=0

σ(j)Aj(C)−
σ(0)

q − 1
=

=
qk−n

q − 1

n∑
i=0

n∑
j=0

σ(j)Kj(i)Ai(C
⊥)−

σ(0)

q − 1
=

=
qk

q − 1

g∑
i=0

n∑
j=0

aiAi(C
⊥)−

1

q − 1

g∑
i=0

ai(q − 1)i
(
n

i

)
=

=

g∑
i=0

ai{
qk

q − 1
Ai(C

⊥)− (q − 1)i−1

(
n

i

)
}. (7)

An even simpler formula, in terms of the reduced distribution matrix D̄ of C⊥, is

nCσ = −
g∑
i=0

ai
∑
p∈Πγ

D̄p,i. (8)

Example 3 Let C be the unique binary [48, 8, 22]-code. (Cf. [9] for a construction
and [18] for a computerized uniqueness proof.) The weight set of C is {22,24,30,32}.
If we choose for σ the function with σ(22) = σ(30) = 1 and σ(24) = σ(32) = 0,
then the dual transform Cσ turns out to be a [192, 8, 96]-code which in fact is optimal.
Another, record breaking, example is the [245, 9, 120] code described in [19]. D. Jaffe
found this example (and several others that happen to improve the table [4]) by means
of an extensive computer search. The basic problem here is to develop a theory that
predicts which input codes C and which transform functions σ produce record-breaking
output codes Cσ.

4.3 The dual distance

If the dual distance of C is at least 2e+ 1, i.e. if

A1(C⊥) = A2(C⊥) = · · · = A2e+1(C⊥) = 0,
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the columns D̄1, D̄2, . . . , D̄e of the reduced distribution matrix D̄ of C⊥ are {0, 1}-
functions on Π whose supports are the projective images of the Hamming spheres of
radius i, i = 1, . . . , e, in FSq . So

| supp(D̄i)| = (q − 1)i−1

(
n

i

)
, i = 1, . . . , e.

Let us suppose that the degree g of the polynomial σ does not exceed e. Then we
can calculate the parameters of the dual transform Cσ of C explicitly. Let Γ be the
dual transform of γ := γC with respect to σ. Using (7) or (8), we find that the length
of Γ (and Cσ) is equal to

nCσ = a0

[
k

1

]
−

g∑
i=1

ai(q − 1)i−1

(
n

i

)
.

The weight function µΓ is given by

µΓ(p) =

 qk−1(a0 − ai) if p ∈ supp(D̄i),

qk−1a0 if p /∈
⋃g
i=1 supp(D̄i).

The sets supp(D̄i), i = 1, 2, . . . , g, fill the space P(FSq /C
⊥) if and only if n = k = g.

Let us exclude that trivial case. Then the weight set of Cσ is equal to

{qk−1(a0 − ai) | i = 1 . . . e} ∪ {qk−1a0}

As to the dimension of Cσ, we observe that kΓ = k unless a0 = 0 or a0 = ai for
some i between 1 and g.

Finally we calculate the frequencies of Γ. Suppose that kCσ = k. Then

fw(Γ) =



[
k
1

]
−

∑
{j|j>0,aj 6=0}

(q − 1)j−1
(
n
j

)
if w = qk−1a0,

∑
{j|j>0,aj=ai}

(q − 1)j−1
(
n
j

)
if w = qk−1(a0 − ai) 6= qk−1a0.

5 Dual transforms of degree one

Let C ⊆ FSq be a k-dimensional full-length code of length n, and let γ := γC be the
corresponding projective multiset on Π := P(FSq /C

⊥). In this section, we study dual
transforms Cσ under the assumption that the transform function σ is has degree one:
σ(j) := aj + b. Two choices for σ are particularly useful: If ∆ := gcdW, d := minW
and D := maxW, then the functions σ+ and σ− defined by

σ+(j) :=
j − d

∆
, σ−(i) :=

−j +D

∆
(9)

indeed take nonnegative integer values on WC.
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5.1 Length, weights, dimension, frequencies

Expressing the polynomial σ in the Krawtchouk polynomials K0(j) := 1 and K1(j) :=
(q − 1)n− qj, we get

σ(j) = a0K0(j) + a1K1(j) =

= (b+
(q − 1)an

q
)K0(j) + (−

a

q
)K1(j).

Let D := Cσ be the dual transform of C with respect to σ. Since the code C is of full
length, i.e. A1(C⊥) = 0, Formula (7) for the length of D reduces to

nD = a0(
qk

q − 1
−

1

q − 1
) + a1n = (10)

= nqk−1a+

[
k

1

]
b.

Now we consider the weight function of Γ := γσ. Formula (6) gives us

µΓ(p) = −qk−1{(b+
(q − 1)an

q
)D̄p,0 + (−

a

q
)D̄p,1} =

= qk−2{qb+ (q − 1)an+ aγ(p)} = (11)

= αγ(p) + β,

with

α := qk−2a

and

β := qk−1b+ qk−2(q − 1)an =
(q − 1)nD + b

q
.

Remark 5 Note that the weight set WD of D is equal to

{αm+ β | m ∈Mγ} \ {0}.

If, in particular, C is projective, then D is a (≤ 2)-weight code. This case is the main
subject matter of Brouwer and Van Eupen’s paper [5].

Next we discuss the possibility of a dimension drop. Put

N := {p ∈ Π | αγ(p) + β = 0}.

This is a projective subspace of Π on which γ has the constant value −β
α

= −q b
a
−

(q − 1)n. From (5) we see that the dimension kD of D is equal to k unless

−q
b

a
− (q − 1)n ∈Mγ .
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If p ∈ Π \ N, then w := µΓ(p) ∈ WD. Moreover γ takes the constant value w−β
α

on
Np \ N. Hence if kD < k, then γ has to be a properly lifted projective multiset, cf.
subsubsection 3.5.2.

Formula (11) immediately gives the minimum distance of D. If kD = k, then

dD =

{
(an+ b)qk−1 + a(minMγ − n)qk−2 if a > 0,
(an+ b)qk−1 + a(maxMγ − n)qk−2 if a < 0.

If kD < k, then minMγ and maxMγ have to be replaced by min(Mγ \{minMγ}) and
max(Mγ \ {maxMγ}) respectively.

Finally, we see from (11) that the frequency of a weight w := αm+β of Γ is equal
to

fw(Γ) = qk−kD |γ−1(m)|.

Example 4 An alternative construction of the [162, 8, 80]-codes (cf. [2]). There
exist binary [21, 8, 8]-codes C1 and C2 with the same weight set {8, 12, 16}, but with
A2(C⊥1 ) = 0 and A2(C⊥2 ) = 1 (cf. [18]). Hence we can calculate the values of |γ−1(m)|:

|γ−1(0)| |γ−1(1)| |γ−1(2)|
C1 234 21 0
C2 235 19 1

Consequently, as one of the referees of [2] pointed out, the codes Cσ+

i , i = 1, 2, have
parameters [162, 8, 80] and weight distributions

A80 A96 A112

Cσ+

1 234 21 0
Cσ+

2 235 19 1
.

5.2 The inverse of the dual transform

If γ, δ are equivalent k-dimensional projective multisets, then their dual transforms Γ,
∆ with respect to any function σ obviously are equivalent as well. For dual transforms
of degree one the converse is also true. This follows from the following proposition
and Remark 4. We use the notation of the preceding subsection.

Proposition 2 Let Γ be the dual transform of γ with respect to a function σ of degree
one. Then a function τ of degree one exists such that γ is an (s, c)-lifting of the dual
transform γ′ of Γ with respect to τ. The parameters s and c depend only Γ, kγ and σ.

Proof. From (11), we see that the function τ : j 7→ a′j + b′ defined by

a′ :=
1

qk−2a
, b′ := −q

b

a
− (q − 1)n = −

(q − 1)nΓ + b

aqk−1
,

takes nonnegative integer values on WΓ. The spanning space ΣΓ of Γ is equal to
(Σ/N)∗ and γ′ : Σ/N → N takes the value γ(p) on Np, p /∈ N. So γ is an (s, c)-lifting
of γ′, with s := k − kΓ and c := b′.

Remark 6 This result is an extension of Section 4: ”Going Back and Forth” in
[5], where only projective sets are considered and the absence of a dimension drop is
tacitly assumed.
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5.3 Short proofs of known results

As an amusing sideline, we give short proofs of a theorem of Ward, a theorem of
Bonisoli and the uniqueness of the generalized MacDonald codes.

Proposition 3 ([33], Th. 1) Let C be a q-ary full-length code, and let ∆ be the
greatest common divisor of the codeword weights. If y is the maximal factor of ∆ that
is relatively prime to q, then C is a y-fold replicated code.

Proof. We use the notation of Subsection 5.1 and consider the σ+-dual transform D
of C. From the fact that

nΓ =
nqk−1

∆
−
qk − 1

q − 1

d

∆
∈ N

and ∆ | d, we see that y | n. Since

µΓ(p) = −
qk−1d

∆
+
qk−2(q − 1)n

∆
+
qk−2γ(p)

∆
∈ N for all p ∈ Π,

we infer that y | γ(p) for all p ∈ Π.

Example 5 In [7], Cherdieu et al. described a code Γ0 with length q2n, dimension
n2 logr q and weight distribution

wρ = q2n − r−1q2n − r−1(−1)ρq2n−ρ(r − 1), ρ = 0, 1, ..., n

where n and r are integers > 1 , r | q. Since all weights wρ, ρ = 1, ..., n are divisible by
q+ 1, the code Γ0 is a (q+ 1)-fold replicated code extended by an appropriate number
of zero columns.

Proposition 4 ([1]) Let C be a q-ary k-dimensional full-length code with exactly one
non-zero weight d. Then C is a d

qk−1 times replicated simplex code.

Proof. By counting the non-zero entries in the list of all codewords, we see that

n =
(qk − 1)d

qk−1(q − 1)
.

Consider the σ+-dual transform Γ of γC. Note that ∆ = d. Hence

nΓ =
nqk−1

d
−
qk − 1

q − 1

d

d
= 0,

which implies that

µΓ(p) = −
qk−1d

d
+
qk−2(q − 1)n

d
+
qk−2γ(p)

d
=

= −
1

q
+
qk−2γ(p)

d
= 0 for all p ∈ Π.

So γ is the constant function d
qk−1 .
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Proposition 5 (Tamari [28]) The generalized MacDonald codes are unique.

Proof. Let C be a q-ary code with parameters

[t

[
k

1

]
−

[
u

1

]
, k, tqk−1 − qu−1],

and let γ := γC be the corresponding multiset in Π := P(Fnq /C
⊥). Consider the dual

transform Γ of γ with respect to σ : j 7→ j − tqk−1 + qu−1. Substitution of the
parameters in (11) yields

µΓ(p) = qk−2(−t+ 1 + γ(p)).

Since µΓ is nonnegative, the minimum multiplicity of γ must be at least t − 1. In
fact this minimum is equal to t− 1, and |γ−1(t− 1)| ≥

[
u
1

]
, because t|Π| − nγ =

[
u
1

]
.

Consequently, the dimension v − 1 of the projective subspace µ−1
Γ (0) = γ−1(t− 1) of

Π is not smaller than u− 1. From Proposition 2, we see that γ is a (v, t − 1)-lifting
of a multiset γ′. By Subsection 3.5.2, the length of γ′ is equal to

q−v(nγ − (t− 1)

[
v

1

]
) = t

[
k − v

1

]
+
qu−v − 1

q − 1
.

This is an integer if and only if v ≤ u. Hence u = v. So γ(p) ≥ t outside a (u− 1)-
dimensional subspace L := γ−1(t − 1) ⊂ Π. But the existence of any point p with
γ(p) > t would imply that

nγ > t

[
k

1

]
−

[
u

1

]
.

Hence

γ(p) =

{
t− 1 if p ∈ L,
t if p ∈ Π \ L.

6 σ–self-dual codes

Let C ⊆ FSq be a k-dimensional full-length code, and let σ be a function that takes
integer values on the weight set of C.

Definition 17 The code C is said to be self-dual with respect to σ if it is equivalent
to its dual transform Cσ.

Example 6 Let C be the [48, 8, 22]-code C discussed in Example 3. If we take σ to be
the function with σ(30) := 1 and σ(w) := 0 for w ∈ WC \ {30}, then Cσ turns out to
have the same parameters as C. Hence the uniqueness of C implies that it is self-dual
with respect to σ.
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Example 7 It is known [10] that there are exactly two nonequivalent binary [18, 6, 8]-
codes C1, C2. Their weight distributions are

A8 A12 A16 A2(C⊥i )
C1 46 16 1 1
C2 45 18 0 0

Both codes are easily seen to be self-dual with respect to σ+.

Example 8 The unique binary [51, 8, 24]-code has weight distribution A24 = 204 and
A32 = 51 (cf. [18]). This code is self-dual with respect to σ+.

Example 9 Let G be an incidence matrix of the finite projective plane P := P(F3
p),

p prime, and let C be the q-ary code with generator matrix G. It is well known [26]
that C is a [p2 +p+1, 1

2
(p2 +p+2), p+1]-code for which the words of minimum weight

are the nonzero multiples of the rows of G. Let σ be the function with σ(p + 1) := 1
and σ(w) := 0 for w ∈ WC \ {p+ 1}. The existence of correlations in P implies that
the transpose Gt is a permutation of G. Hence C is self-dual with respect to σ.

If the transform function σ has degree one, it is easy to derive strong conditions
on the parameters of self-dual codes with respect to σ :

Proposition 6 Let C be q-ary [n, k, d]-code which is self-dual with respect to the
function σ : j 7→ aj + b. If C is not a replicated simplex code, then

a = ±q1− k
2 , b = −

q − 1

1 + qk−1a
n. (12)

Proof. Let (w1, w2, . . . , wr) be the ordered weight set of C (and Cσ), and let
(m1,m2, . . . ,mr) be the ordered multiplicity set of γC (and γCσ). Since C is self-
dual with respect to σ,the sizes of these sets are equal: r = s. Moreover (3) and (11)
imply that either

wi = qk−2ami + q−1((q − 1)n+ b),

mi = awi + b

or

wi = qk−2amr−i + q−1((q − 1)n+ b),

mi = awr−i + b,

for i = 1, 2, . . . , r. Eliminating mi, we find that

wi = qk−2a2wi + qk−2ab+ q−1((q − 1)n+ b).

If r > 1, then

qk−2a2 = 1 and qk−2ab+ q−1((q − 1)n+ b) = 0,

which immediately gives (12). If r = 1, then C is an m1-fold replicated simplex code.
This code is self-dual with respect to the constant function σ = m1.
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Example 10 A. Brouwer [3] constructed a family of q-ary two-weight projective codes
with parameters

n = (qe−1 − 1)(qde−e + q
de
2
−e)/(q − 1), k = de,

where d and e are arbitrary integers, d even and e > 1. The weights are

w1 = (qe−1 − 1)qde−e−1, w2 = w1 + q
de
2
−1.

These codes satisfy the conditions (12) with respect to σ−. It is not known if they are
self-dual with respect to σ−.

Remark 7 Choose q = 2, d = 2 in the above construction. Then the resulting code
C1(e) has parameters

n = 22e−1 − 2e−1, k = 2e

and

w1 = 22e−2 − 2e−1, w2 = 22e−2.

The code C(e) := 〈C1(e),1〉 , spanned by C1(e) and the all-one vector 1, is a projective
self-complementary [n, k + 1, w1]-code with weight set {w1, w2, n}. It meets the Grey-
Rankin bound. Since it is projective, the code

D(e) := RM(1, 2e)\C(e)

(the column set of the first order Reed-Muller code with the columns of C(e) deleted)
has parameters

[22e−1 + 2e−1, 2e+ 1],

and the weight set

{22e−2, 22e−2 + 2e−1, 22e−1 + 2e−1}.

It also meets the Grey-Rankin bound. For an alternative construction of codes with
the above parameters see [20]. The partition

RM(1, 2e) = (C(e) | D(e))

shows that the number of nonequivalent projective self-complementary codes with pa-
rameters

[22e−1 − 2e−1, 2e+ 1, 22e−2 − 2e−1]

coincides with the number of nonequivalent projective self-complementary codes with
parameters

[22e−1 + 2e−1, 2e+ 1, 22e−2].

In particular, since there are exactly 4 non-equivalent projective self-comple-mentary
[28, 7, 12]-codes (cf.[11], [29]), it follows that there are exactly 4 nonequivalent projec-
tive self-complementary [36, 6, 16]-codes (cf.[29]).
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Remark 8 Tonchev showed in [30] and [31] that there are exactly 5 nonequivalent
[27, 6, 12] two-weight codes, with weight A12 = 36 and A16 = 27. All these codes satisfy
the conditions (12) with respect to σ+. As a matter of fact, Boukliev and Kapralov
managed to show that they are self-dual with respect to σ+. In general, however, it is
not clear whether the conditions (12) imply self-duality in the case of transforms σ of
degree 1.
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