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Abstract: Following Frankl and Füredi [1] we say a family, F , of subsets of
an n-set is weakly union-free if F does not contain four distinct sets A, B, C,
D with A∪B = C ∪D. If in addition A∪B = A∪C implies B = C we say
F is strongly union-free. Let f(n) (g(n)) be the maximum size of strongly
(weakly) union-free families. In this paper we prove the following new bounds
on f and g: 2[0.31349+o(1)]n ≤ f(n) ≤ 2[0.4998+o(1)]n and g(n) ≤ 2[0.5+o(1)]n.
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1 Introduction

Let F be a family of subsets of an n-set. Suppose F does not contain four
distinct sets A, B, C, D such that A ∪ B = C ∪D. Then following Frankl
and Füredi [1] we say F is weakly union-free. If A ∪ B = A ∪ C implies
B = C then we say F is cancellative. If F is both weakly union-free and
cancellative we say F is strongly union-free. Let f(n) (respectively g(n))
be the maximum size of a strongly (respectively weakly) union-free family
of subsets of an n-set. In this paper we prove new bounds on f(n) and
g(n). We show 2[0.31349+o(1)]n ≤ f(n) ≤ 2[0.4998+o(1)]n and g(n) ≤ 2[0.5+o(1)]n.
The best bounds previously known were 2[0.2534+o(1)]n ≤ f(n) ≤ 2[0.5+o(1)]n

and 2[0.3333+o(1)]n ≤ g(n) ≤ 2[0.75+o(1)]n (see Frankl and Füredi [1]). We were
unable to improve the lower bound for g(n).
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We will need the following result of Fredman and Komlós ([3], see also
[2]). Consider an alphabet consisting of k ordinary symbols a1, . . . , ak and one
special symbol ∗ (∗ can be thought of as a “don’t-care” indicator). Following
Fredman and Komlós we will say two vectors (x1, . . . , xn) and (y1, . . . , yn)
with elements chosen from this alphabet are strongly different if there exists
a j (1 ≤ j ≤ n) such that xj 6= yj and xj 6= ∗, yj 6= ∗. Suppose we have m
pairwise strongly different vectors (with elements {xij |1 ≤ i ≤ m, 1 ≤ j ≤
n}). Let hj` be the number of vectors with jth element a`. Let hj∗ be the
number of vectors with jth element ∗. Note m = hj1 + · · · + hjk + hj∗ for

1 ≤ j ≤ n. Let pj` =
hj`
m

. Let pj∗ = hj∗
m

. Let qj` =
hj`

hj1+···+hjk
. Then we need

the following bound on m which is a special case of Theorem 1 in ([3]). We
include a proof.

Theorem 1 m ln(m) ≤
∑n
j=1

(∑k
`=1 hj`

) (∑k
`=1−qj` ln qj`

)
.

Proof: Intuitively this bound arises as follows. Let R be a random
variable which selects one of the m pairwise strongly different vectors (with
equal probability). Since there are m choices for R it has entropy m ln(m).
Suppose we can ask about any position of R. If the symbol in that position
is ordinary we are told its value. If the symbol in that position is ∗ we are
randomly told it is an ordinary symbol with random distribution chosen to
match the distribution of ordinary symbols in that position of R. (If R is
always ∗ in that position the reply can be a1 always.) Replying in this way
conveys no information about R when the symbol is ∗. So the information
about R conveyed is the probability the symbol is ordinary multiplied by the
entropy of the distribution of ordinary symbols in that position of R. This is(

k∑
`=1

pj`

)
k∑
`=1

−

(
pj`∑k
r=1 pjr

)
ln

(
pj`∑k
r=1 pjr

)

Clearly asking about every position of R determines its value (since the
possibilities strongly differ). So the entropy of R must not exceed the sum
of the information about R conveyed by each of the position queries. Thus

lnm ≤
n∑
j=1

(
k∑
`=1

pj`

)
k∑
`=1

−

(
pj`∑k
r=1 pjr

)
ln

(
pj`∑k
r=1 pjr

)
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or

lnm ≤
n∑
j=1

(∑k
`=1 hj`

m

)
k∑
`=1

−qj` ln qj`,

which can be rewritten as

m lnm ≤
n∑
j=1

(
k∑
`=1

hj`

)
k∑
`=1

−qj` ln qj`,

which is the bound we wish to prove.
A more rigorous proof follows. Note we have

∑k
`=1 qj` = 1. So we have∏n

j=1

(∑k
`=1 qj`

)
= 1. Now let σj(xij) = qj` if xij = a` and let σj(xij) =∑k

`=1 qj` = 1 if xij = ∗. Associate the ith vector {xij|j = 1, . . . , n} with the
product

∏n
j=1 σj(xij). Since the m vectors are strongly different the products

associated with the different vectors must consist of non-overlapping groups
of terms of the product

∏n
j=1

(∑k
`=1 qj`

)
. Hence we have

m∑
i=1

n∏
j=1

σj(xij) ≤
n∏
j=1

(
k∑
`=1

qj`

)
= 1.

The rest follows from the arithmetic-geometric mean:

1 ≥
∑m
i=1

∏n
j=1 σj(xij)

=
∑m
i=1 exp

(
ln
∏n
j=1 σj(xij)

)
= m

∑m
i=1

1
m

exp
(∑n

j=1 lnσj(xij)
)

≥ m exp
(

1
m

∑m
i=1

∑n
j=1 lnσj(xij)

)
= m exp

(
1
m

∑n
j=1

∑k
`=1 hj` ln qj`

)
This is readily seen to be equivalent to the inequality in the statement of
theorem 1.

As noted above
(∑k

`=1 pj`
)∑k

`=1−
(

pj`∑k

r=1
pjr

)
ln
(

pj`∑k

r=1
pjr

)
can be thought

of as a kind of generalized entropy of column j when the rows are chosen with
equal probability. We will need the following lemma about this generalized
entropy function.

Lemma 1 Let J(x1, . . . , xn) = (x1 + · · · + xn)H( x1

(x1+···+xn)
, . . . , xn

(x1+···+xn)
)

where H is the ordinary entropy function, 0 < x1, . . . , xn < 1 and 0 < x1 +
· · ·+ xn ≤ 1. Then J, like H, is a convex cap function.



the electronic journal of combinatorics 5 (1998), # R39 4

Proof: Let a = λ(x1+···+xn)
λ(x1+···+xn)+(1−λ)(y1+···+yn)

. Then since H is convex cap

aH

(
x1

(x1 + · · ·+ xn)
, . . . ,

xn

(x1 + · · ·+ xn)

)

+(1− a)H

(
y1

(y1 + · · ·+ yn)
, . . . ,

yn
(y1 + · · ·+ yn)

)
≤

H

(
ax1

(x1 + · · ·+ xn)
+

(1− a)y1

(y1 + · · ·+ yn)
, . . . ,

axn

(x1 + · · ·+ xn)
+

(1− a)yn
(y1 + · · ·+ yn)

)
or multiplying through by λ(x1 + · · ·+ xn) + (1− λ)(y1 + · · ·+ yn) and sim-
plifying:

λJ(x1, . . . , xn)+(1−λ)J(y1, . . . , yn) ≤ J(λx1 +(1−λ)y1, . . . , λxn+(1−λ)yn)

which shows J is convex cap.
Identify subsets of an n-set with 0-1 vectors of length n in the usual way.

Define 	 as follows:

1	 0 = 1, 0	 0 = 0, 0	 1 = −1, 1	 1 = ∗.

Let 	 operate on vectors componentwise. The definition of 	 is motivated
by the following lemma.

Lemma 2 Suppose A	B is not strongly different from C	D. Then A∪D =
C ∪B.

Proof: For each x ∈ {1, . . . , n}, if (A	B)x = ∗, then x ∈ A and x ∈ B,
so that x ∈ A∪D and x ∈ C ∪B. Similarly if (C	D)x = ∗, then x ∈ A∪D
and x ∈ C ∪ B. Otherwise (A 	 B)x = (C 	 D)x ∈ {−1, 0, 1}, so that
x ∈ A⇔ x ∈ C, and x ∈ B ⇔ x ∈ D. In either case, x ∈ A∪D ⇔ x ∈ C∪B.
This holds for all x, and we have A ∪D = C ∪B.

Lemma 2 combined with theorem 1 will allow us to bound the number of
“nearby” (in the Hamming sense) pairs {A,B} in an union-free family. This
in turn will yield bounds on the size of union-free families.
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2 Weakly Union-Free Upper Bound

We consider first weakly union-free families. We need the following lemma.

Lemma 3 Let F be a weakly union-free family of subsets of an n-set. Sup-
pose we have four or more pairs (Ai, Bi) such that Ai ∪Bi = X. Then some
A ∈ F is a member of every pair (Ai, Bi).

Proof: It is easy to see the only way to avoid having a common member
of every pair is if we have three pairs (A,B), (A,C) and (B,C) with A∪B =
A ∪ C = B ∪ C. This is impossible if we have more than three pairs.

We are now ready to prove an upper bound on g(n) which improves the
bound g(n) ≤ 2[0.75+o(1)]n of Frankl and Füredi [1]. We will use lg for log2.

Theorem 2
g(n) ≤ 2[0.5+o(1)]n.

Proof: We now use H to denote the binary entropy function. Let F
be a weakly union-free family of subsets of an n-set. Suppose F contains
2αn subsets and that each subset in F contains pn elements. Let φ(p) be
the convex hull of the function H(2p − p2)(0 ≤ p ≤ 1). (i.e. φ(p) = max
{λH(2p1 − p2

1) + (1 − λ)H(2p2 − p2
2) | λp1 + (1 − λ)p2 = p, 0 ≤ λ ≤ 1,

0 ≤ p1 ≤ p2 ≤ 1}) Note φ(p) ≤ 1. Let β(p) = max[0, 8
11
p − 3

11
φ(p)]. Note

β(p) ≤ p. Consider unions X = A ∪ B of sets A,B ∈ F . Say a union X
is good if there are at most 2n2nβ(p) ways of expressing it as X = Ai ∪ Bi

(Ai, Bi ∈ F ). Otherwise say the union is bad.
Suppose first A ∪ B is bad for at most a fraction 1

n
of the ordered pairs

(A,B) (A,B ∈ F ). Consider the random variable X = A∪B. It has entropy

at least (1 − 1
n
) lg

(
22αn

2n2nβ(p)

)
or (2α − β(p))n + o(n) as n → ∞. Consider

X to be a 0-1 vector (x1, . . . , xn). Let pi be the fraction of the sets of F
which contain element i. Let h(xi) be the entropy of the ith component of
X. Clearly as n→∞, h(xi)→ H(2pi − p2

i ). Therefore we have

[2α− β(p) + o(1)]n ≤
n∑
i=1

H(2pi − p
2
i ) ≤ nφ(p)

(since pn =
∑
pi). Therefore

αn ≤
1

2
[β(p) + φ(p) + o(1)]n.
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Now β(p) + φ(p) = max[φ(p), 8
11

(p + φ(p))]. A calculation shows p + φ(p) <
1.35 and ( 8

11
)(1.35) < 0.982. Therefore β(p) + φ(p) ≤ 1. Hence α ≤ 1

2
[1 +

o(1)].
Suppose next A ∪ B is bad for at least 1

n
of the ordered pairs (A,B)

(A,B ∈ F ). By Lemma 3 every bad union X has associated with it some
set, AX , which is involved in every expression of X. It follows that there is
some fixed set A so that at least 1

2n
of the 2αn (unordered) unions X involving

A are bad (with AX = A). Fix some β(p)n of the pn elements of A. Let A′

be the remaining (p− β(p))n elements of A.
Consider the partition, P , of the elements of F into groups depending on

the value of A ∪ B,B ∈ F . By the choice of A at least 1
2n

2αn elements of
F lie in groups of size at least 2n2nβ(p). Now consider the refined partition
P ′ formed by using the value of A′ ∪ B rather than the value of A ∪ B.
Clearly each group of P will be divided into at most 2nβ(p) parts in P ′ (since
|A − A′| = β(p)n). Hence any group, G, of size at least 2n2nβ(p) in P will
be divided into at most 2nβ(p) subgroups of average size at least 2n. Say a
subgroup is large iff it has size at least n. It is easy to see this means at least
half the sets in the group G will lie in large subgroups in P ′ (since 2nβ(p)

subgroups of size less than n can account for at most n2nβ(p) elements of G).
Thus we have that at least 1

4n
2αn sets of F lie in subgroups G′ of size

at least n in P ′. Divide each such large subgroup G′ into pairs of elements
(uniformly) at random. (If the size of G′ is odd leave one element unpaired.)

Let m be the total number of pairs. Then we have m ≥
(1− 1

n
)

8n
2αn. (The

1
n

term is due to the possibly unpaired elements.) Let {(Bi, Ci)} be the
collection of these pairs.

Consider the collection of vectors Di where Di = Bi 	Ci. Suppose Di ∼
Dj (where ∼ means “not strongly different from”). Then Bi	Ci ∼ Bj	Cj .
Then by Lemma 2, Bi ∪ Cj = Bj ∪ Ci. Since we are assuming F is weakly
union-free, and Bi, Ci, Bj , Cj are all distinct, this cannot occur. Therefore all
the vectors {Di} must strongly differ. Note since A′ ∪Bi = A′ ∪Ci, Bi 	Ci
will be 0 or ∗ on the complement of A′. So in fact the restrictions of the
{Di} to A′ all strongly differ. Fix x ∈ A′. Let random variables n1, n2, n3, n4

be the number of times position x of Di is equal to ∗, 1, −1, 0 respectively
for our random pairing (Bi, Ci). We are interested in bounding the expected
value, S̄x, of the generalized column entropy Sx. Now n1 +n2 +n3 +n4 = m.
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Set pi = ni
n2+n3+n4

, i = 2, 3, 4. Then

Sx = n2+n3+n4

m
×[

− n2

n2+n3+n4
lg n2

n2+n3+n4
− n3

n2+n3+n4
lg n3

n2+n3+n4
− n4

n2+n3+n4
lg n4

n2+n3+n4

]
=

1

m
[(n2 + n3 + n4) lg(n2 + n3 + n4)− n2 lgn2 − n3 lg n3 − n4 lgn4] .

It follows from Lemma 1 that Sx is a convex cap function of n2, n3 and
n4.

Therefore the expected value, S̄x, of Sx is less than or equal to this func-
tion of the expected values of n2, n3 and n4. Let n̄i be the expected value of
ni (i = 1, . . . , 4). So we have

S̄x ≤
1

m
[(n̄2 + n̄3 + n̄4) lg(n̄2 + n̄3 + n̄4)− n̄2 lg n̄2 − n̄3 lg n̄3 − n̄4 lg n̄4] .

The expected values n̄1, n̄2, n̄3 and n̄4 are the sums of the corresponding
expected values of these quantities for pairs in each large subgroup G′ of P ′.
The values in each subgroup depend on how many sets in the group contain x.
Let the fraction of sets in G′ which contain x be p(G′). Let n̄1(G′), . . . , n̄4(G′)
be the expected counts for pairs in G′. Let G′ have m(G′) pairs. Then

n̄1(G′) = p(G′)2m(G′) +O(1)
n̄2(G′) = n̄3(G′) = [p(G′)− p(G′)2]m(G′) +O(1)
n̄4(G′) = [1− 2p(G′) + p(G′)2]m(G′) +O(1)

The O(1) terms arise because we are considering pairs of distinct terms.
Since we are considering large subgroups with m(G′) ≥ n they will become
negligible as n goes to infinity.

Now the values of n̄1, . . . , n̄4 will be determined by the weighted average
values of p(G′) and p(G′)2 (weighted by m(G′) for all large subgroups G′ in
P ′). Let p be the weighted average value of p(G′) and p2 + ε be the weighted
average value of p(G′)2 (ε ≥ 0 because x2 is convex cup). Then

S̄x ≤
1
m

[(1− p2 − ε)m lg(1− p2 − ε)m− 2(p− p2 − ε)m lg(p− p2 − ε)m
− (1− 2p+ p2 + ε)m lg(1− 2p+ p2 + ε)m+O(m/n)]

= (1− p2 − ε) lg(1− p2 − ε)− 2(p− p2 − ε) lg(p− p2 − ε)
− (1− 2p+ p2 + ε) lg(1− 2p+ p2 + ε) +O(1/n).
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The right hand side is maximized when p = 1
3

and ε = 0. Hence

S̄x ≤
4

3
+O(1/n)

This will be true for each x ∈ A′. Therefore by Theorem 1

lg(m) ≤
4

3
(p− β(p))n+O(1)

Now m ≥
(

1− 1
n

8n

)
2αn so as n→∞ we have

α ≤
4

3
(p− β(p)) + o(1).

Now β(p) = max[0, 8
11
p − 3

11
φ(p)] so [p − β(p)] = min[p, 3

11
(p + φ(p)] and

α ≤ min[4
3
p, 4

11
(p + φ(p))] ≤ 4

11
(p + φ(p)).

As above p + φ(p) < 1.35 and 4
11

(p + φ(p)) < 0.491. Therefore α <
0.491 + o(1).

Hence, in either case, we have shown α ≤ 0.5 + o(1) as n→∞.
We assumed that all members of F contained the same number of ele-

ments. However, removing this assumption will increase the size of F by at
most a factor of n+ 1. Thus

g(n) ≤ (n+ 1)2αn ≤ (n+ 1)2[0.5+o(1)]n = 2[0.5+o(1)]n

which completes the proof.

3 Strongly Union-Free Upper Bound

We now consider strongly union-free families. Recall f(n) is the maximum
size of a strongly union-free family of subsets of an n-set. It is easy to see
that f(n) ≤ 2[0.5+o(1)]n (see Frankl and Füredi [1]). We show below how to
improve this slightly to f(n) ≤ 2[0.4998+o(1)]n. We need the following lemma.

Lemma 4 Let F be a strongly union-free family of subsets of an n-set. Sup-
pose all members of F contain exactly pn elements and that there are 2βn

pairs A,B ∈ F such that | A∩B |= tn. Then β ≤ (1− t)H(p−t
1−t ,

p−t
1−t ,

1−2p+t
1−t ).
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Proof: Consider the 2βn vectors A 	 B constructed from the 2βn pairs
with | A∩B |= tn. Clearly each such vector will contain tn ∗’s, (p− t)n 1’s,
(p−t)n −1’s and (1−2p+t)n 0’s. By Lemma 2 these vectors must be strongly
different. So by Theorem 1, βn ≤

∑n
j=1 Ji where Ji is the generalized entropy

of column i (considering the 2βn vectors as a 2βn by n array). However by
Lemma 1 the generalized column entropy function is convex. It follows that∑n
j=1 Ji ≤ nJ(p−t, p−t, 1−2p+t) = (1−t)nH(p−t

1−t ,
p−t
1−t ,

1−2p+t
1−t ). The lemma

follows.
We can now prove our theorem.

Theorem 3
f(n) ≤ 2[0.4998+o(1)]n.

Proof: Let F be a strongly union-free family of subsets of an n-set.
Suppose F contains 2(α+o(1))n subsets. We may neglect terms which can
be buried in the o(1) term. So we may assume each subset in F contains
exactly pn elements. For each i ∈ {1, . . . , n} let pi be the fraction of sets in
F containing i, so that p = 1

n

∑
pi.

As before, let φ(p) be the convex hull of the function H(2p−p2) (0 ≤ p ≤
1). Consider the random variable X = A ∪ B with A,B chosen uniformly
and independently from F . Since F is strongly union-free X will take on
2[2α+o(1)]n distinct values and will have entropy (2α + o(1))n. This entropy
is upper-bounded by the sum of the entropies of the entries of the random
vector X. Thus

(2α+ o(1))n ≤
∑
i

H(2pi − p
2
i ) ≤

∑
i

φ(pi) ≤ nφ(p).

Therefore
α ≤ .5φ(p) + o(1) as n→∞

We will show below how the above bound can be improved by using Lemma 4
for values of p ≤ .3014−. Since .5φ(p) attains its maximum of .5 when p =
1−
√
.5 = .2929− this yields a slight improvement in the overall bound. To

apply Lemma 4 we need to show F must contain many pairs of subsets with
some relatively large intersection tn. This can be done as follows. Choose
the maximal s so that

| F |

(
pn

sn

)
> 2

(
n

sn

)
. (1)
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In the worst case (by which we mean the case for which we will prove the
weakest bound), with p = 0.3014− we would have s = 0.2179+. The left-
hand side of (1) counts the tuples (B, S) where B ∈ F , S ⊆ B and |S| = sn.
The right-hand side of (1) is twice the number of sets S ⊆ {1, . . . , n} with
|S| = sn. A counting argument shows that some tuples must share the

same set S: There are at least 2[α+o(1)]n
(
pn
sn

)
triples (B,C, S) with B,C ∈ F ;

S ⊆ B; S ⊆ C; and |S| = sn, with the two triples (B,C, S) and (C,B, S)
counting as one. So we have found pairs of subsets with large intersection.
However such pairs may have intersection tn greater than sn. Every such
pair will contribute

(
tn
sn

)
triples. Fix a value of t which contributes at least 1

n

of the triples. Let 2βn be the number of pairs of subsets of F with intersection
of size tn. Then we have

2βn
(
tn

sn

)
> 2[α+o(1)]n

(
pn

sn

)
(2)

where some terms have been incorporated in the o(1). Taking logs and letting
n→∞ equations (1) and (2) become

α+ pH

(
s

p

)
= H(s) (3)

β + tH
(
s

t

)
≥ α+ pH

(
s

p

)
(4)

Furthermore by Lemma 4 we have

β ≤ (1− t)H
(
p− t

1− t
,
p− t

1− t
,
1− 2p+ t

1− t

)
(5)

Calculations show that for p ≤ .3014− if we set α = .5φ(p), the first
bound obtained above, it is impossible to find a value of t, s ≤ t ≤ p so
that equations (3), (4) and (5) are satisfied. Let α = ψ(p) be defined as
the maximum value of α (as a function of p) which allows equations (3),
(4) and (5) to be satisfied. Further calculations show ψ(p) is increasing
for p ≤ .3014−. Therefore the maximum of the combined bounds occurs at
p = .3014− at which point α = .4998− = .5φ(p), s = .2117+ and t = .2144−.
This suffices to prove the theorem.



the electronic journal of combinatorics 5 (1998), # R39 11

4 Lower bound on f

We give a construction of a (strongly) union-free family of subsets of an
n−set N = {1, . . . , n}, containing 2[δ+o(1)]n members, where δ > 0.31349.
This improves Frankl and Füredi’s [1] bound with δ = 1

2
lg(27

19
) = .2534+.

Theorem 4
f(n) ≥ 2[0.31349+o(1)]n.

Proof: The idea behind our construction is the following. Frankl and
Füredi [1] use a simple random construction which shows g(n) ≥ 2[0.33333+o(1)]n

which is the best lower bound known for weakly union-free families. How-
ever this construction does not work so well for strongly union-free families
yielding f(n) ≥ 2[0.2534+o(1)]n as noted above. The problem seems to be the
cancellative property. Cancellative families produced by the random con-
struction are much smaller than those which can be explicitly constructed.
This suggests trying a combined construction. By basing the random con-
struction on explicitly constructed cancellative families we find it easier to
ensure the cancellative property thereby bringing the lower bound for f(n)
closer to that for g(n). The details are a little complicated because simpler
versions of the idea do not seem to give the best results.

We start by defining constants

α =
1

63
lg(21× 319) ≈ 0.5477238879

β =
1

63
lg(861× 1519) ≈ 1.333028425

p = 0.28765

q = 1− p = 0.71235

ν = solution of
[
(p− ν)4 = ν2(1− 2p+ ν)(2p− ν)

]
≈ 0.083426

τ = 4H(p)− 2H(ν, p− ν, p− ν, 1− 2p+ ν) +H(2p− ν) ≈ 0.9992855

Find constants
ε ≈ 0.14521
γ ≈ 0.418076
s ≈ 0.1106935
δ ≈ 0.31349
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which solve the four equations

ε = 2H(p)−H(s, s, p− s, 1− p− s)

δ = αγ + ε(1− γ)

δ = βγ − τ(1− γ) + 4ε(1− γ)

δ = (1− γ) [H(p)− (1− 2s)H((p− 2s)/(1− 2s))]

Let k ≈ nγ be a multiple of 63, and set ` = n − k. Let K be a specific
k−element subset of N , and L its complement. For instance K = {1, · · · , k}
and L = {k + 1, · · · , n}.

We will use the fact that a violation A ∪ B = A ∪ C of the cancellative
property is equivalent to A containing the symmetric difference B∆C =
(B − C) ∪ (C −B).

Following Shearer [4], we construct a cancellative family of subsets of K
as follows: Break K into k/63 blocks of 63 elements, and further break each
63-block into 21 triplets. Within each triplet, assign the elements labels 0,1,2.
For each subset in our family, for each block, select one of the triplets and
take all three of its elements; select one element from each other triplet in
the block, in such a way that a parity condition holds: the sum of the 20
labels is divisible by 3. The number of choices for each block is then 21×319,
and the total number of subsets is

M1 =
(
21× 319

)k/63
= 2αk.

This family is cancellative because if A∪B = A∪C with B 6= C, in each
block on which B and C differ, there are at least two triplets where (B∆C)
contains two members each. (If B and C selected different triplets to take
all three members, those two triplets suffice; otherwise the parity condition
is used.) But then (B∆C) ⊂ A is impossible.

Corresponding to each member A of this family, select

M2 = 2ε``−1

different subsets RA,i of L, uniformly from those subsets of size

h = bp`c.
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Remark: The factor `−1 is chosen to help with the “deletion method” [5].
At each stage below, the expected number of deletions is quadratic or quartic
in M2, so that the fraction of elements deleted is linear or cubic in M2. We
want each fraction to be bounded by 1/10, and we makeM2 small accordingly.

For each member A, the expected number of pairs {i, j} such that

|RA,i ∩RA,j| ≥ (p− s)`.

is

O

(
M2

M2

2ε``1/2

)
,

and will be bounded by M2/10 for n sufficiently large. Delete one member
RA,i of each such pair. We retain at least 0.9M2 elements RA,i for each A,
all enjoying the small-intersection property

|RA,i ∩RA,j| < (p− s)`.

This implies a large symmetric difference (|RA,i∆RA,j| > 2s`), unlikely to be
contained in some third element RB,k.

Define the family

S = {A ∪RA,i| all A, i where RA,i retained}

It has M members, denoted A,B,C,D, where 0.9M1M2 ≤M ≤M1M2.
We will delete some more elements. Whenever A ∩ K = C ∩ K and

A 6= C, we have |A∆C| > 2s`, by the small-intersection property. Given any
triple (A,B,C) of distinct elements with A ∩K = C ∩K and (A∆C) ⊂ B,
we delete B. The expected number of such triples is bounded by

∑
m>s`

M1M
2
2

(
`

m,m,h−m,`−h−m

)
(
`
h

)2 M1M2

(
`−2m
h−2m

)
(
`
h

)
where m = |A−C|. The summand is clearly maximized when m is minimized
(near s`); for this value of m we have

M2

(
`

m,m,h−m,`−h−m

)
(
`
h

)2 = O(`−3/2)
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and

M1M2

(
`−2m
h−2m

)
(
`
h

) = O(`−1).

So the total number of deletions for m = s` is O(M1M2`
−5/2), and this

number decreases geometrically as m increases. For n sufficiently large, the
total number of deletions for all m, namely O(M1M2`

−5/2), is bounded by
0.1M1M2, leaving at least 0.8M1M2 elements RA∩K,i.

By now S is cancellative: for any instance of A ∪ B = C ∪ B, the can-
cellative property on K tells us A ∩K = C ∩K, and in that case we have
deleted any instance where (A∆C) ⊂ B. This ensures A ∪B 6= C ∪B.

To make S weakly union-free (and thus strongly union-free), we first
estimate the number of 4-tuples (A,B,C,D) of distinct members violating
the weakly union-free property: A ∪B = C ∪D.

Let A′ = A∩K, B′ = B∩K, C ′ = C ∩K and D′ = D∩K be among the
M1 subsets of K being considered. The number of 4-tuples (A′, B′, C ′, D′)
(with repetition allowed) whose unions agree:

A′ ∪B′ = C ′ ∪D′

is upper-bounded as follows.
Consider a particular block of 63 elements. If there is only one triplet on

which A′ ∪B′ has all three elements, then the special triplet chosen by A′ is
the same one chosen by B′, C ′ and D′. There are 21 choices of location for
this triplet. For each of 19 other triplets, either the union has one element
(in which case B′, C ′ and D′ agreed with the choice made by A′), or the
union has two elements, in which case B′ disagreed with A′, C ′ agreed with
either B′ or A′, and the choice of D′ is forced. The total number of choices
on this triplet is

3× 1× 1× 1 + 3× 2× 2× 1 = 15.

Values on the last triplet are forced. (Because we want an upper bound, we
can ignore the chance that these forced values might cause a disagreement
in the unions; taking this into consideration would improve our bound in the
fifth decimal place.) The number of choices for one block, in this case, is
then at most 21× 1519.
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If A′ ∪ B′ contains all elements of two triplets, then B′ made a different
choice of triplet than did A′, and also C ′ and D′ made the same choices in
some order; the number of such choices is

21× 20× 2× 1 = 840.

The other 19 triplets again allow 1519 choices. The triplet chosen by A′

masks one of the triplets of B′, and we let that triplet take care of the
parity condition for B′. The number of choices for the block, in this case, is
840× 1519. Summing, the number of choices of (A′, B′, C ′, D′) on one block
is bounded by 861× 1519; and on all k/63 blocks, by(

861× 1519
)k/63

= 2βγn.

Given a 4-tuple (A,B,C,D) of distinct members whose unions agree on
K, we evaluate the probability ρ that the unions agree on L. Consider
the contribution to ρ due to instances (A,B,C,D) where |A ∩ B ∩ L| =
|C ∩D ∩ L| = ν ′`. Its logarithm, namely,

−` [4H(p)− 2H(ν′, p− ν′, p− ν′, 1− 2p+ ν′) +H(2p− ν′)]−
1

2
log `+O(1),

is maximized when we select ν′ = ν to be the solution of

(p− ν)4 = ν2(1− 2p+ ν)(2p− ν)

lying between 0 and p. With ν and τ as defined above, this gives

ρ = O(2−τ``−1/2) = O(2−τ(1−γ)nn−1/2).

So the total number of violations (4-tuples of distinct members satisfying
A ∪B = C ∪D) is upper-bounded by

O
(
2βγn2−τ(1−γ)nn−1/224ε(1−γ)nn−4

)
= O

(
Mn−7/2

)
by our choice of parameters.

For n sufficiently large, this number is less than M/10. For each violation,
discard one of the four sets A,B,C,D. Then we retain more than M/2 sets.

Our resulting family has size at least M/2 = 2[δ+o(1)]n and is strongly
union-free. This proves the lower bound.

The authors acknowledge the efforts of the referee to improve the presen-
tation of the results in this paper.
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