THE AVERAGE ORDER OF A PERMUTATION

Richard Stong
Department of Mathematics
Rice University
Houston, TX 77005
stong@math.rice.edu

Submitted: May 11, 1998; Accepted: June 23, 1998

Abstract. We show that the average order μ_{n} of a permutation in S_{n} satisfies

$$
\log \mu_{n}=C \sqrt{\frac{n}{\log n}}+O\left(\frac{\sqrt{n} \log \log n}{\log n}\right)
$$

which refines earlier results of Erdős and Turán, Schmutz, and Goh and Schmutz.

1. Introduction.

For $\sigma \in S_{n}$ let $N(\sigma)$ be the order of σ in the group S_{n}. Erdős and Turán [2] showed that if one chooses a permutation uniformly at random from S_{n} then for n large $\log N(\sigma)$ is asymptotically normal with mean $\left(\log ^{2} n\right) / 2$ and variance $\left(\log ^{3} n\right) / 3$. Define the average order of an element of S_{n} to be

$$
\mu_{n}=\frac{1}{n!} \sum_{\sigma \in S_{n}} N(\sigma)
$$

It turns out that $\log \mu_{n}$ is much larger than $\left(\log ^{2} n\right) / 2$, being dominated by the contribution of a relatively small number of permutations of very high order. This was first shown by Erdős and Turán [3], who showed that $\log \mu_{n}=\mathbf{O}(\sqrt{n / \log n})$. This result was sharpened by Schmutz [6], and later by Goh and Schmutz [4] to show that $\log \mu_{n} \sim C \sqrt{n / \log n}$, for an explicit constant C. The purpose of this note is to show that

$$
\log \mu_{n}=C \sqrt{\frac{n}{\log n}}+\mathbf{O}\left(\frac{\sqrt{n} \log \log n}{\log n}\right)
$$

where $C=2.99047 \ldots$ is an explicit constant defined below. Our argument shares some similarities with that of [4], but is more elementary and permits a more explicit

[^0]bound on the error term. The proof will be divided into three steps. First we will give upper and lower bounds on μ_{n} involving the coefficients of a certain power series, then we will use a Tauberian theorem to bound these coefficients.

For a partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}\right)$ let $c_{i}(\lambda)$ be the number of parts of λ of size i, let $|\lambda|=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{s}$ and let $m(\lambda)=$ l.c.m. $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}\right)$. We will say that λ is a partition of $|\lambda|$. By a sub-partition of λ we will mean any subset of $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}\right)$ viewed as a partition of some smaller number. Then

$$
\mu_{n}=\sum_{|\lambda|=n} \frac{m(\lambda)}{1^{c_{1}(\lambda)} 2^{c_{2}(\lambda)} \ldots c_{1}(\lambda)!c_{2}(\lambda)!\ldots}
$$

2. The Upper Bound.

Call a partition $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{s}\right)$ minimal if for each sub-partition π^{\prime} of π we have $m\left(\pi^{\prime}\right)<m(\pi)$. For each partition λ of n choose a minimal sub-partition π with $m(\pi)=m(\lambda)$ and write $\lambda=\pi \cup \omega$ for some partition ω. Let M_{n} be the set of all minimal partitions π with $|\pi| \leq n$ and for any $\pi \in M_{n}$ let Ω_{π} be the set of all partitions ω that occur with π in decompositions as above. Then

$$
\begin{aligned}
\mu_{n} & =\sum_{\pi \in M_{n}} \sum_{\omega \in \Omega_{\pi}} \frac{m(\pi)}{1^{c_{1}(\pi)} 2^{c_{2}(\pi)} \ldots 1^{c_{1}(\omega)} 2^{c_{2}(\omega)} \ldots c_{1}(\pi \cup \omega)!c_{2}(\pi \cup \omega)!\ldots} \\
& \leq \sum_{\pi \in M_{n}} \frac{m(\pi)}{\pi_{1} \pi_{2} \ldots} \sum_{\omega \in \Omega_{\pi}} \frac{1}{1^{c_{1}(\omega)} 2^{c_{2}(\omega)} \ldots c_{1}(\omega)!c_{2}(\omega)!\ldots} \\
& \leq \sum_{\pi \in M_{n}} \frac{m(\pi)}{\pi_{1} \pi_{2} \ldots}
\end{aligned}
$$

where the first inequality follows by rewriting $1^{c_{1}(\pi)} 2^{c_{2}(\pi)} \ldots$ as $\pi_{1} \pi_{2} \ldots$ and using $c_{i}(\pi \cup \omega) \geq c_{i}(\omega)$ and the second follows by noting that if the inner sum were over all partitions ω with $|\omega|=n-|\pi|$ instead of just a subset of them, then it would be 1 .

For each minimal $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{s}\right)$ choose integers $\left(d_{1}, d_{2}, \ldots, d_{s}\right)$ with the following properties:
(1) d_{i} divides π_{i},
(2) g.c.d. $\left(d_{i}, d_{j}\right)=1$ for $i \neq j$,
(3) $\prod_{i=1}^{s} d_{i}=m(\pi)$.
(An explicit construction of the d_{i} is given in [6].) Note that since π is minimal the d_{i} are all greater than 1 . Define integers k_{i} by $\pi_{i}=k_{i} d_{i}$. Then $\pi_{1} \pi_{2} \ldots \pi_{s}=$ $m(\pi) k_{1} k_{2} \ldots k_{s}$. Let D_{n} be the set of all unordered sets $(d)=\left(d_{1}, d_{2}, \ldots, d_{s}\right)$ of pairwise relatively prime integers greater than 1 with $d_{1}+d_{2}+\cdots+d_{s} \leq n$ and for any $(d) \in D_{n}$ let $K_{(d)}$ be the set of all $\left(k_{1}, k_{2}, \ldots, k_{s}\right)$ with $k_{1} d_{1}+k_{2} d_{2}+\cdots+k_{s} d_{s} \leq n$. Then the bound above becomes

$$
\mu_{n} \leq \sum_{(d) \in D_{n}} \sum_{(k) \in K_{(d)}} \frac{1}{k_{1} k_{2} \cdots}
$$

The sets $\left(d_{1}, d_{2}, \ldots, d_{s}\right)$ can be broken up into two subsets: the prime elements and the composite elements. Any composite d_{i} must be divisible by some prime p with $p \leq \sqrt{n}$ and since the d_{i} are relatively prime p divides only one element. Therefore there are at most $\pi(\sqrt{n})<C \frac{\sqrt{n}}{\log n}$ composite elements. Each composite element contributes at most $\sum_{k=1}^{n} \frac{1}{k}=\log n+\mathbf{O}(1)$. Therefore all the composite elements together contribute at most $\exp \left\{\mathbf{O}\left(\frac{\sqrt{n} \log \log n}{\log n}\right)\right\}$ to μ_{n}. Let P_{n} be the set of all unordered sets $(d)=\left(d_{1}, d_{2}, \ldots, d_{s}\right)$ of distinct primes with $d_{1}+d_{2}+\cdots+d_{s} \leq n$. Then the bound above becomes

$$
\mu_{n} \leq \sum_{(d) \in P_{n}} \sum_{(k) \in K_{(d)}} \frac{1}{k_{1} k_{2} \ldots} \exp \left\{\mathbf{O}\left(\frac{\sqrt{n} \log \log n}{\log n}\right)\right\}
$$

The sum above can be rewritten in a convenient form. Let p_{1}, p_{2}, \ldots be all the primes in order and consider infinite sequences $\left(k_{1}, k_{2}, \ldots\right)$ with only finitely many nonzero terms with $\sum_{i=1}^{\infty} k_{i} p_{i} \leq n$. Then the sum above is the sum over all such sequences of the product of the reciprocals of the nonzero k_{i} 's. Explicitly

$$
\mu_{n} \leq \sum_{(k): \Sigma k_{i} p_{i} \leq n} \prod_{i: k_{i} \neq 0} \frac{1}{k_{i}} \exp \left\{\mathbf{O}\left(\frac{\sqrt{n} \log \log n}{\log n}\right)\right\}
$$

If we define a function $h(t)$ and a sequence a_{m} by

$$
h(t)=\prod_{p \text { prime }}\left(1-\log \left(1-e^{-p t}\right)\right)=\sum_{m=0}^{\infty} a_{m} e^{-m t}
$$

then the bound above says that

$$
\mu_{n} \leq \sum_{m=0}^{n} a_{m} \exp \left\{\mathbf{O}\left(\frac{\sqrt{n} \log \log n}{\log n}\right)\right\}
$$

Before analyzing the a_{m} 's in detail we will first derive a lower bound comparable to this upper bound.

3. The Lower Bound.

Consider only partitions λ of n of the following nice form $\lambda=\pi \cup \omega$ where $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{s}\right)$ and each $\pi_{i}=k_{i} d_{i}$ where the d_{i} are distinct primes greater than \sqrt{n} and $|\omega|<q$ where q is the smallest prime larger than \sqrt{n}. For such a λ we have $m(\lambda) \geq d_{1} d_{2} \ldots d_{s}$ and for all i either $c_{i}(\lambda)=c_{i}(\omega)$ or $c_{i}(\lambda)=1$ and $c_{i}(\omega)=0$. In either case $c_{i}(\lambda)!=c_{i}(\omega)!$. Therefore taking only the terms corresponding to these λ 's in our expression for μ_{n} above gives

$$
\mu_{n} \geq \sum_{\pi} \frac{1}{k_{1} k_{2} \ldots} \sum_{\omega} \frac{1}{1^{c_{1}(\omega)} 2^{c_{2}(\omega)} \ldots c_{1}(\omega)!c_{2}(\omega)!\ldots}=\sum_{\pi} \frac{1}{k_{1} k_{2} \ldots}
$$

where the outer sum runs over all π which occur in some partition as above and the second equality follows by noting that the inner sum is over all partitions ω with $|\omega|=n-|\pi|$ and hence is 1 . This lower bound can be rewritten as we did for the upper bound. Let $q=q_{1}<q_{2}<\ldots$ be all the primes greater than \sqrt{n} in order and consider all infinite sequences $\left(k_{1}, k_{2}, \ldots\right)$ with only finitely many terms nonzero such that $n-q<\sum_{i=1}^{\infty} k_{i} q_{i} \leq n$. Then as above the lower bound is the sum over all such sequences of the product of the reciprocals of the nonzero k_{i} 's. Define a functions $z_{n}(t)$ and sequences $b_{m}^{(n)}$ by

$$
z_{n}(t)=\prod_{p>\sqrt{n} \text { prime }} 1-\log \left(1-e^{-p t}\right)=\sum_{m=0}^{\infty} b_{m}^{(n)} e^{-m t}
$$

Then the lower bound above becomes

$$
\mu_{n} \geq \sum_{m=n-q+1}^{n} b_{m}^{(n)}
$$

We need only relate the $b_{m}^{(n)}$ to the a_{m} defined earlier. Unfortunately the sum above extends over only a short range of indices; we must first correct this imbalance.

For any $m \leq n-q$ and any prime q_{i} greater than \sqrt{n} and any sequence (k) that contributes to $b_{m}^{(n)}$ we obtain a sequence that contributes to $b_{m+q_{i}}^{(n)}$ by adding one to k_{i}. In the worst case this changes k_{i} from 1 to 2 and halves the contribution of this term. Therefore $b_{m}^{(n)} \leq 2 b_{m+q_{i}}^{(n)}$. Since there is a prime p between $(n-m) / 2$ and $n-m$ (which we may assume is greater than \sqrt{n} since we may always take $p=q$) we may halve the distance from m to n by one application of this inequality. After at most $\log _{2} n$ applications of the above inequality we obtain $b_{m}^{(n)} \leq n b_{s}^{(n)}$ for some $n-q<s \leq n$. Therefore we have

$$
\sum_{m=0}^{n} b_{m}^{(n)} \leq n^{2} \sum_{m=n-q+1}^{n} b_{m}^{(n)}
$$

therefore with only negligible error we may replace the sum in the lower bound above by the sum over all $m \leq n$.

To compare this sequence to the a_{m} 's note that

$$
h(t)=z_{n}(t) \prod_{p \leq \sqrt{n} \text { prime }}\left(1-\log \left(1-e^{-p t}\right)\right)
$$

If the second factor on the right hand side is expanded as $\sum_{m=0}^{\infty} c_{m}^{(n)} e^{-m t}$, then

$$
a_{m}=\sum_{k=0}^{m} b_{k}^{(n)} c_{m-k}^{(n)}
$$

The second factor of $h(t)$ is a product of $\pi(\sqrt{n})<C \frac{\sqrt{n}}{\log n}$ terms each of which contributes at most $1+\sum_{k=1}^{m} \frac{1}{k}=\log m+\mathbf{O}(1)$ to $c_{m}^{(n)}$. Therefore for all $m \leq n$ we see $c_{m}^{(n)} \leq \exp \left\{\mathbf{O}\left(\frac{\sqrt{n} \log \log n}{\log n}\right)\right\}$, so $a_{m} \leq \sum_{k=0}^{m} b_{k}^{(n)} \exp \left\{\mathbf{O}\left(\frac{\sqrt{n} \log \log n}{\log n}\right)\right\}$. Summing over m gives

$$
\mu_{n} \geq \frac{1}{n^{2}} \sum_{m=0}^{n} b_{m}^{(n)} \geq \sum_{m=0}^{n} a_{m} \exp \left\{-\mathbf{O}\left(\frac{\sqrt{n} \log \log n}{\log n}\right)\right\}
$$

Combining this with the upper bound above gives

$$
\log \mu_{n}=\log \sum_{m=0}^{n} a_{m}+\mathbf{O}\left(\frac{\sqrt{n} \log \log n}{\log n}\right)
$$

To complete the proof we need only bound $\log \sum_{m=0}^{n} a_{m}$.

4. The Tauberian Theorem.

We will apply the following result of Erdős and Turán [3].
Lemma (Erdős and Turán) Let $f(t)=\sum_{m=0}^{\infty} a_{m} e^{-m t}$ and suppose

$$
\log f(t)=\frac{A}{t \log 1 / t}+\mathbf{O}\left(\frac{\log \log 1 / t}{t(\log 1 / t)^{2}}\right) \quad \text { as } \quad t \rightarrow 0^{+}
$$

Then

$$
\sum_{m=0}^{n} a_{m}=\exp \left\{2 \sqrt{2 A \frac{n}{\log n}}+\mathbf{O}\left(\frac{\sqrt{n} \log \log n}{\log n}\right)\right\}
$$

Thus we need only analyze $\log h(t)$ as $t \rightarrow 0^{+}$. As in [3] we have

$$
\begin{aligned}
\log h(t) & =\sum_{p \text { prime }} \log \left(1-\log \left(1-e^{-p t}\right)\right)=\int_{0}^{\infty} \log \left(1-\log \left(1-e^{-x t}\right)\right) d \pi(x) \\
& =\int_{0}^{\infty} \frac{t \pi(x) e^{-x t}}{\left(1-e^{-x t}\right)\left(1-\log \left(1-e^{-x t}\right)\right)} d x \\
& =\int_{0}^{\infty} \frac{\pi(s / t) e^{-s}}{\left(1-e^{-s}\right)\left(1-\log \left(1-e^{-s}\right)\right)} d s
\end{aligned}
$$

The integrand is bounded by $C_{1} t^{-1}$ for s small (using the bound $\pi(x) \leq x$). Therefore the contribution to the integral from the interval $\left[0, t^{1 / 2}\right.$) is bounded by $C_{1} t^{-1 / 2}$. Hence we may replace the lower endpoint by $t^{1 / 2}$ with only a negligible error. For any x we have

$$
\pi(x)=\frac{x}{\log x}+\mathbf{O}\left(\frac{x}{(\log x)^{2}}\right)
$$

(see for example [5, Thm 23, p. 65]) hence

$$
\pi(s, t)=\frac{1}{t} \frac{s}{\log 1 / t+\log s}+\mathbf{O}\left(\frac{1}{t} \frac{s}{(\log 1 / t+\log s)^{2}}\right)
$$

Since $s \geq t^{1 / 2}$ we have $\log s \geq-1 / 2 \log (1 / t)$ and thus

$$
\begin{aligned}
\pi(s, t) & =\frac{s}{t \log 1 / t}-\frac{s \log s}{t \log 1 / t(\log 1 / t+\log s}+\mathbf{O}\left(\frac{s}{t(\log 1 / t)^{2}}\right) \\
& =\frac{s}{t \log 1 / t}+\mathbf{O}\left(\frac{s(1+|\log s|)}{t(\log 1 / t)^{2}}\right)
\end{aligned}
$$

Plugging this into the integral and extending the lower endpoint back to 0 (which again introduces only negligible error terms) gives

$$
\log h(t)=\frac{1}{t \log 1 / t} \int_{0}^{\infty} \frac{s e^{-s}}{\left(1-e^{-s}\right)\left(1-\log \left(e^{-s}\right)\right)} d s+\mathbf{O}\left(\frac{1}{t(\log 1 / t)^{2}}\right)
$$

So the Tauberian theorem of Erdős and Turán gives

$$
\log \mu_{n}=2 \sqrt{2 A} \sqrt{\frac{n}{\log n}}+\mathbf{O}\left(\frac{\sqrt{n} \log \log n}{\log n}\right)
$$

where

$$
\begin{aligned}
A & =\int_{0}^{\infty} \frac{s e^{-s}}{\left(1-e^{-s}\right)\left(1-\log \left(1-e^{-s}\right)\right)} d s=\int_{0}^{\infty} \frac{\log (s+1)}{e^{-s}-1} d s \\
& =\sum_{n=1}^{\infty} \frac{e^{n}}{n} E_{1}(n)=1.11786415 \ldots
\end{aligned}
$$

where $E_{1}(n)$ is the exponential integral (see [1, Eqn. 5.1.1, p. 228]).
Acknowledgements. The author was partially supported by an Alfred P. Sloan Research Fellowship.

References

1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, Washington DC, 1972.
2. P. Erdős and P. Turán, On some problems of a statistical group theory, III,, Acta Math. Acad. Sci. Hungar. 18 (1967), 309-320.
3. P. Erdős and P. Turán, On some problems of a statistical group theory, IV, Acta Math. Acad. Sci. Hungar. 19 (1968), 413-435.
4. W. Goh and E. Schmutz, The expected order of a random permutation, Bull. Lond. Math. Soc. 23 (1991), 34-42.
5. A. E. Ingham, The Distribution of Prime Numbers, Cambridge University Press, Cambridge, 1990.
6. E. Schmutz, Proof of a conjecture of Erdős and Turán, Jour. No. Th. 31 (1989), 260-271.

[^0]: 1991 Mathematics Subject Classification. Primary 11N37.

