
THE AVERAGE ORDER OF A PERMUTATION

Richard Stong

Department of Mathematics
Rice University

Houston, TX 77005
stong@math.rice.edu

Submitted: May 11, 1998; Accepted: June 23, 1998

��������� We show that the average order µn of a permutation in Sn satisfies

logµn = C

�
n

log n
+ O

�√
n log log n

log n

�
,

which refines earlier results of Erdős and Turán, Schmutz, and Goh and Schmutz.

1. Introduction.
For σ ∈ Sn let N(σ) be the order of σ in the group Sn. Erdős and Turán

[2] showed that if one chooses a permutation uniformly at random from Sn then
for n large logN(σ) is asymptotically normal with mean (log2 n)/2 and variance
(log3 n)/3. Define the average order of an element of Sn to be

µn =
1
n!

∑
σ∈Sn

N (σ).

It turns out that log µn is much larger than (log2 n)/2, being dominated by the
contribution of a relatively small number of permutations of very high order. This
was first shown by Erdős and Turán [3], who showed that log µn = O

(√
n/ logn

)
.

This result was sharpened by Schmutz [6], and later by Goh and Schmutz [4] to
show that logµn ∼ C

√
n/ logn, for an explicit constant C. The purpose of this

note is to show that

logµn = C

√
n

logn
+ O

(√
n log logn

logn

)
,

where C = 2.99047 . . . is an explicit constant defined below. Our argument shares
some similarities with that of [4], but is more elementary and permits a more explicit
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bound on the error term. The proof will be divided into three steps. First we will
give upper and lower bounds on µn involving the coefficients of a certain power
series, then we will use a Tauberian theorem to bound these coefficients.

For a partition λ = (λ1, λ2, . . . , λs) let ci(λ) be the number of parts of λ of size
i, let |λ| = λ1 + λ2 + · · · + λs and let m(λ) = l.c.m.(λ1, λ2, . . . , λs). We will say
that λ is a partition of |λ|. By a sub-partition of λ we will mean any subset of
(λ1, λ2, . . . , λs) viewed as a partition of some smaller number. Then

µn =
∑
|λ|=n

m(λ)
1c1(λ)2c2(λ) . . . c1(λ)!c2(λ)! . . .

.

2. The Upper Bound.
Call a partition π = (π1, π2, . . . , πs) minimal if for each sub-partition π′ of π we

have m(π′) < m(π). For each partition λ of n choose a minimal sub-partition π
with m(π) = m(λ) and write λ = π ∪ ω for some partition ω. Let Mn be the set of
all minimal partitions π with |π| ≤ n and for any π ∈ Mn let Ωπ be the set of all
partitions ω that occur with π in decompositions as above. Then

µn =
∑
π∈Mn

∑
ω∈Ωπ

m(π)
1c1(π)2c2(π) . . . 1c1(ω)2c2(ω) . . . c1(π ∪ ω)!c2(π ∪ ω)! . . .

,

≤
∑
π∈Mn

m(π)
π1π2 . . .

∑
ω∈Ωπ

1
1c1(ω)2c2(ω) . . . c1(ω)!c2(ω)! . . .

,

≤
∑
π∈Mn

m(π)
π1π2 . . .

,

where the first inequality follows by rewriting 1c1(π)2c2(π) . . . as π1π2 . . . and using
ci(π ∪ ω) ≥ ci(ω) and the second follows by noting that if the inner sum were over
all partitions ω with |ω| = n − |π| instead of just a subset of them, then it would
be 1.

For each minimal π = (π1, π2, . . . , πs) choose integers (d1, d2, . . . , ds) with the
following properties:

(1) di divides πi,
(2) g.c.d. (di, dj) = 1 for i 6= j,
(3)

∏s
i=1 di = m(π).

(An explicit construction of the di is given in [6].) Note that since π is minimal
the di are all greater than 1. Define integers ki by πi = kidi. Then π1π2 . . . πs =
m(π)k1k2 . . . ks. Let Dn be the set of all unordered sets (d) = (d1, d2, . . . , ds) of
pairwise relatively prime integers greater than 1 with d1+d2+· · ·+ds ≤ n and for any
(d) ∈ Dn let K(d) be the set of all (k1, k2, . . . , ks) with k1d1 +k2d2 + · · ·+ksds ≤ n.
Then the bound above becomes

µn ≤
∑

(d)∈Dn

∑
(k)∈K(d)

1
k1k2 . . .

.
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The sets (d1, d2, . . . , ds) can be broken up into two subsets: the prime elements and
the composite elements. Any composite di must be divisible by some prime p with
p ≤ √n and since the di are relatively prime p divides only one element. Therefore
there are at most π(

√
n) < C

√
n

logn composite elements. Each composite element
contributes at most

∑n
k=1

1
k = logn+ O(1). Therefore all the composite elements

together contribute at most exp
{

O
(√

n log logn
logn

)}
to µn. Let Pn be the set of all

unordered sets (d) = (d1, d2, . . . , ds) of distinct primes with d1 + d2 + · · ·+ ds ≤ n.
Then the bound above becomes

µn ≤
∑

(d)∈Pn

∑
(k)∈K(d)

1
k1k2 . . .

exp
{

O
(√

n log log n
logn

)}
.

The sum above can be rewritten in a convenient form. Let p1, p2, . . . be all the
primes in order and consider infinite sequences (k1, k2, . . . ) with only finitely many
nonzero terms with

∑∞
i=1 kipi ≤ n. Then the sum above is the sum over all such

sequences of the product of the reciprocals of the nonzero ki’s. Explicitly

µn ≤
∑

(k):Σkipi≤n

∏
i:ki 6=0

1
ki

exp
{

O
(√

n log logn
logn

)}
.

If we define a function h(t) and a sequence am by

h(t) =
∏

p prime

(
1− log(1− e−pt)

)
=

∞∑
m=0

ame
−mt,

then the bound above says that

µn ≤
n∑

m=0

am exp
{

O
(√

n log log n
logn

)}
,

Before analyzing the am’s in detail we will first derive a lower bound comparable
to this upper bound.

3. The Lower Bound.
Consider only partitions λ of n of the following nice form λ = π ∪ ω where

π = (π1, π2, . . . , πs) and each πi = kidi where the di are distinct primes greater
than

√
n and |ω| < q where q is the smallest prime larger than

√
n. For such a λ we

have m(λ) ≥ d1d2 . . . ds and for all i either ci(λ) = ci(ω) or ci(λ) = 1 and ci(ω) = 0.
In either case ci(λ)! = ci(ω)!. Therefore taking only the terms corresponding to
these λ’s in our expression for µn above gives

µn ≥
∑
π

1
k1k2 . . .

∑
ω

1
1c1(ω)2c2(ω) . . . c1(ω)!c2(ω)! . . .

=
∑
π

1
k1k2 . . .

,
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where the outer sum runs over all π which occur in some partition as above and
the second equality follows by noting that the inner sum is over all partitions ω
with |ω| = n − |π| and hence is 1. This lower bound can be rewritten as we did
for the upper bound. Let q = q1 < q2 < . . . be all the primes greater than

√
n in

order and consider all infinite sequences (k1, k2, . . . ) with only finitely many terms
nonzero such that n − q <

∑∞
i=1 kiqi ≤ n. Then as above the lower bound is the

sum over all such sequences of the product of the reciprocals of the nonzero ki’s.
Define a functions zn(t) and sequences b(n)

m by

zn(t) =
∏

p>
√
n prime

1− log
(
1− e−pt

)
=

∞∑
m=0

b(n)
m e−mt.

Then the lower bound above becomes

µn ≥
n∑

m=n−q+1

b(n)
m .

We need only relate the b(n)
m to the am defined earlier. Unfortunately the sum above

extends over only a short range of indices; we must first correct this imbalance.
For any m ≤ n− q and any prime qi greater than

√
n and any sequence (k) that

contributes to b(n)
m we obtain a sequence that contributes to b(n)

m+qi
by adding one to

ki. In the worst case this changes ki from 1 to 2 and halves the contribution of this
term. Therefore b(n)

m ≤ 2b(n)
m+qi . Since there is a prime p between (n −m)/2 and

n−m (which we may assume is greater than
√
n since we may always take p = q)

we may halve the distance from m to n by one application of this inequality. After
at most log2 n applications of the above inequality we obtain b

(n)
m ≤ nb(n)

s for some
n− q < s ≤ n. Therefore we have

n∑
m=0

b(n)
m ≤ n2

n∑
m=n−q+1

b(n)
m

therefore with only negligible error we may replace the sum in the lower bound
above by the sum over all m ≤ n.

To compare this sequence to the am’s note that

h(t) = zn(t)
∏

p≤√n prime

(
1− log(1− e−pt)

)
.

If the second factor on the right hand side is expanded as
∑∞

m=0 c
(n)
m e−mt, then

am =
m∑
k=0

b
(n)
k c

(n)
m−k.
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The second factor of h(t) is a product of π(
√
n) < C

√
n

log n terms each of which

contributes at most 1 +
∑m

k=1
1
k = logm + O(1) to c(n)

m . Therefore for all m ≤ n

we see c(n)
m ≤ exp

{
O
(√

n log log n
logn

)}
, so am ≤

∑m
k=0 b

(n)
k exp

{
O
(√

n log log n
logn

)}
.

Summing over m gives

µn ≥
1
n2

n∑
m=0

b(n)
m ≥

n∑
m=0

am exp
{
−O

(√
n log logn

logn

)}
.

Combining this with the upper bound above gives

logµn = log
n∑

m=0

am + O
(√

n log logn
logn

)
.

To complete the proof we need only bound log
∑n
m=0 am.

4. The Tauberian Theorem.
We will apply the following result of Erdős and Turán [3].
Lemma (Erdős and Turán) Let f(t) =

∑∞
m=0 ame

−mt and suppose

log f(t) =
A

t log 1/t
+ O

(
log log 1/t
t(log 1/t)2

)
as t→ 0+.

Then
n∑

m=0

am = exp
{

2
√

2A
n

logn
+ O

(√
n log logn

logn

)}
.

Thus we need only analyze log h(t) as t→ 0+. As in [3] we have

log h(t) =
∑

p prime

log
(
1− log(1− e−pt)

)
=
∫ ∞

0

log
(
1− log(1− e−xt)

)
dπ(x),

=
∫ ∞

0

tπ(x)e−xt

(1− e−xt) (1− log(1− e−xt)) dx,

=
∫ ∞

0

π(s/t)e−s

(1− e−s) (1− log(1− e−s)) ds.

The integrand is bounded by C1t−1 for s small (using the bound π(x) ≤ x). There-
fore the contribution to the integral from the interval [0, t1/2) is bounded by C1t

−1/2.
Hence we may replace the lower endpoint by t1/2 with only a negligible error. For
any x we have

π(x) =
x

log x
+ O

(
x

(log x)2

)
,

(see for example [5, Thm 23, p. 65]) hence

π(s, t) =
1
t

s

log 1/t+ log s
+ O

(
1
t

s

(log 1/t+ log s)2

)
.
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Since s ≥ t1/2 we have log s ≥ −1/2 log(1/t) and thus

π(s, t) =
s

t log 1/t
− s log s

t log 1/t(log 1/t+ log s
+ O

(
s

t(log 1/t)2

)
,

=
s

t log 1/t
+ O

(
s(1 + | log s|)
t(log 1/t)2

)
.

Plugging this into the integral and extending the lower endpoint back to 0 (which
again introduces only negligible error terms) gives

log h(t) =
1

t log 1/t

∫ ∞
0

se−s

(1− e−s) (1− log(e−s))
ds + O

(
1

t(log 1/t)2

)
.

So the Tauberian theorem of Erdős and Turán gives

logµn = 2
√

2A
√

n

logn
+ O

(√
n log logn

logn

)
where

A =
∫ ∞

0

se−s

(1− e−s) (1− log(1− e−s)) ds =
∫ ∞

0

log(s+ 1)
e−s − 1

ds

=
∞∑
n=1

en

n
E1(n) = 1.11786415 . . . .

where E1(n) is the exponential integral (see [1, Eqn. 5.1.1, p. 228]).
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