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Abstract

The two parameter family of coefficients Kλµ(q, t) introduced by Macdonald are
conjectured to (q, t) count the standard tableaux of shape λ. If this conjecture is cor-
rect, then there exist statistics aµ(T ) and bµ(T ) such that the family of symmetric
functions Hµ[X; q, t] =

∑
λKλµ(q, t)sλ[X] are generating functions for the standard

tableaux of size |µ| in the sense that Hµ[X; q, t] =
∑

T q
aµ(T )tbµ(T )sλ(T )[X] where the

sum is over standard tableau of of size |µ|. We give a formula for a symmetric func-
tion operator Hqt

2 with the property that Hqt
2 H(2a1b)[X; q, t] = H(2a+11b)[X; q, t]. This

operator has a combinatorial action on the Schur function basis. We use this Schur
function action to show by induction that H(2a1b)[X; q, t] is the generating function for
standard tableaux of size 2a + b (and hence that Kλ(2a1b)(q, t) is a polynomial with
non-negative integer coefficients). The inductive proof gives an algorithm for ’building’
the standard tableaux of size n + 2 from the standard tableaux of size n and divides
the standard tableaux into classes that are generalizations of the catabolism type. We
show that reversing this construction gives the statistics aµ(T ) and bµ(T ) when µ is
of the form (2a1b) and that these statistics prove conjectures about the relationship
between adjacent rows of the (q, t)-Kostka matrix that were suggested by Lynne Butler.
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1 Introduction

The Macdonald basis for the symmetric functions generalizes many other bases by special-

izing the values of t and q. The symmetric function basis {Pµ[X; q, t]}µ is defined ([14] p.

321) as being self-orthogonal and having an upper triangularity condition with the mono-

mial symmetric functions and the integral form of the basis is defined by setting Jµ[X; q, t] =

Pµ[X; q, t]hµ(q, t) for some q, t-polynomial coefficients hµ(q, t). The {Jµ[X; q, t]}µ have the

expansion

Jµ[X; q, t] =
∑
λ

Kλµ(q, t)Sλ[X; t]

where Sλ[X; t] is the dual Schur basis. The coefficients Kλµ(q, t) are referred to as the

Macdonald (q, t)-Kostka coefficients. These coefficients are known to be polynomials and

conjectured to have non-negative integer coefficients. It is known that Kλµ(1, 1) = Kλ and

so it is conjectured that these coefficients (q, t) count the standard tableau of shape λ.

We are interested here in the basis

Hµ[X; q, t] =
∑
λ

Kλµ(q, t)sλ[X]

It has the specializations that Hµ[X; 0, t] = Hµ[X; t] (the Hall-Littlewood basis of symmetric

functions), Hµ[X; 0, 0] = sµ[X], Hµ[X; 0, 1] = hµ[X], and the property that Hµ[X; q, t] =

qn(µ′)tn(µ)ωHµ[X; 1/q, 1/t] and Hµ[X; q, t] = ωHµ′ [X; t, q].

For each of the homogeneous, Schur, and Hall-Littlewood symmetric functions there

are vertex operators with the property that for m ≥ µ1 hmhµ[X] = h(m,µ)[X], Smsµ[X] =

s(m,µ)[X], and H t
mHµ[X; t] = H(m,µ)[X; t] where (m,µ) represents the partition (m,µ1, µ2,

. . . , µk). These are each given by the following formulas:
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i) hm = hm[X] (1.1)

ii) Sm =
∑
i≥0

(−1)ihm+i[X]e⊥i (1.2)

iii) H t
m =

∑
j≥0

tjSm+jh
⊥
j (1.3)

The action of each of these operators on the Schur basis is known ([15]). It is hopeful

that a similar vertex operator can be found for the Hm[X; q, t] symmetric functions and the

action on the Schur basis can be expressed easily.

Define Hqt
m to be ”the” operator that has the property that Hqt

mHµ[X; q, t] =

H(m,µ)[X; q, t]. This condition alone is not sufficient to define this operator uniquely, but

it is sufficient to calculate the action on the Schur basis for certain partitions. Since the

{Hµ[X; q, t]}µ is a basis for the symmetric functions, sλ[X] =
∑

µ dλµ(q, t)Hµ[X; q, t], and

for m ≥ |λ|, Hqt
m may be calculated by the expression

Hqt
msλ[X] =

∑
µ

dλµ(q, t)H(m,µ)[X; q, t]

These calculations are enough to inspire the following conjecture

Conjecture 1.1

Hqt
m =

∑
T∈STm

qco(T )HT
m(t)

for some polynomial symmetric functions operators HT
m(t) that are only dependent on t with

the following properties:

i) HT
m(1) = sλ(T )[X]

ii) HωT
m (t) = ωHT

m(1/t)ωRt

iii) H 1 2 m
m = H t

m
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where T is a standard tableau of size m, co(T ) is the cocharge statistic on the tableau, λ(T ) is

the shape of the tableau, H t
m is the Hall-Littlewood vertex operator, ωT is the tableau flipped

about the diagonal and Rt is a linear operator that acts on homogeneous symmetric functions

P [X] of degree n with the action RtP [X] = tnP [X].

These vertex operators do not seem to be transformed versions of the vertex operators

known for the {Pµ[X; q, t]}µ ([12], [7]).

In the case that m = 2, this conjecture completely determines the operator Hqt
2 and

the main result presented in the first section of this paper will be

Theorem 1.2 The operator

Hqt
2 = H t

2 + qωH
1
t

2 ωR
t

has the property that Hqt
2 H(2a1b)[X; q, t] = H(2a+11b)[X; q, t].

This theorem will follow from a formula by John Stembridge [13] that gives an ex-

pression for the Macdonald polynomial indexed by a shape with two columns in terms of

Hall-Littlewood polynomials. Susanna Fischel [2] has already used this result to find statis-

tics on rigged configurations that are known to be isomorphic to standard tableaux. It would

be better to have these statistics directly for standard tableau since the bijection between

standard tableau and rigged configurations is not trivial ([8], [9], [5]).

Our main purpose for finding the vertex operator Hqt
m and its action on the Schur

function basis is to use it to discover statistics aµ(T ) and bµ(T ) on standard tableau so

that Kλµ(q, t) =
∑

T∈STλ q
aµ(T )tbµ(T ). If these statistics exist, then the family of symmetric

functions {Hµ[X; q, t]}µ can be thought of as generating functions for the standard tableaux

in the sense that Hµ[X; q, t] =
∑

T∈ST |µ| q
aµ(T )tbµ(T )sλ(T )[X].
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The vertex operator property has the interpretation that Hqt
m changes the generating

function for the standard tableaux of size n to the generating function for the standard

tableaux of size n + m. Knowing the action of Hqt
m on the Schur function basis gives a

description of how the shape of the tableau changes when a block of size m is added.

In the case of m = 2, the action of H t
2 (and ωH

1
t

2 ωR
t and hence Hqt

2 ) on the Schur

function basis is well understood. The operator Hqt
2 can be interpreted as instructions for

building the standard tableaux of size n + 2 from the standard tableaux of size n. The

second section of this paper will define a tableaux operator and show how it can be used

to build tableaux of larger content from smaller and state explicitly how cancellation of any

negative terms in the expression Hqt
2 H(2a1b)[X; q, t] = H(2a+11b)[X; q, t] occurs. This operator

suggests that the standard tableaux are divided into subclasses of tableaux and that each

subclass is represented by a piece of the expression for H(2a1b)[X; q, t]. The last section will

be exposition of the statistics aµ(T ) and bµ(T ) and on the subclasses of tableaux.

1.1 Notation

A partition λ is a weakly decreasing sequence of non-negative integers with λ1 ≥ λ2 ≥ . . . ≥

λk ≥ 0. The length l(λ) of the partition is the largest i such that λi > 0. The partition λ is

a partition of n if λ1 + λ2 + · · ·+ λl(λ) = n. We associate a partition with its diagram and

often use the two interchangeably. We use the French convention and draw the largest part

on the bottom of the diagram. One partition is contained in another, λ ⊆ µ if λi ≤ µi for

all i (the notation is to suggest that if the diagram for λ were placed over the diagram for µ

that one would be contained in the other).

For every partition λ there is a corresponding conjugate partition denoted by λ′ where

λ′i = the number of cells in the ith column of λ.

A skew partition is denoted by λ/µ, where it is assumed that µ ⊆ λ, and represents
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the cells that are in λ but are not in µ. A skew partition λ/µ is said to be a horizontal

strip if there is at most one cell in each column. Denote the class of horizontal strips of size

k by Hk so that the notation λ/µ ∈ Hk means that λ/µ is a horizontal strip with k cells.

Similarly, the class of vertical strips (skew partitions with only one cell in each row) will be

denoted by Vk.

A useful statistic defined on compositions, µ, is n(µ) =
∑

i µi(i− 1).

If λ is a partition, then let λr denote the partition with the first row removed, that is

λr = (λ2, λ3, . . . , λl(λ)). Let λc denote the partition with the first column removed, so that

λc = (λ1− 1, λ2− 1, . . . , λl(λ)− 1). This allows us to define the border of a partition µ to be

the skew partition µ/µrc.

Define the k-snake of a partition µ to be the k bottom most right hand cells of

the border of µ (the choice of the word ”snake” is supposed to suggest the cells that slink

with its belly on the ground from the bottom of the partition up along the right hand

edge). We use the symbol htk(µ) to denote the height of the k-snake. The symbol µck =

(µ2−1, µ3−1, . . . , µh−1, µ1 +h−k−1, µh+1, . . . , µl(λ)) will be used to represent a partition

with the k-snake removed with the understanding that if removing the k-snake does not

leave a partition that this symbol is undefined.

Define the k-attic of a partition µ to be the top most left hand cells of the border of µ.

The symbol h̄tk(µ) will represent the width of the k-attic (h̄tk(µ) = htk(µ
′)), and µek = µ′c′k

will represent a partition with the k-attic removed with the understanding that if removing

the k-attic does not leave a partition that this symbol is undefined.

Assume the convention that a Schur symmetric function indexed by a partition ρcn

or ρen that does not exist is 0.
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Example 1.3

λ λr λc λe4 λc4 λc5(DNE)

If λ = (5, 4, 2, 2, 1) is the partition, then the λr = (4, 2, 2, 1), λc = (4, 3, 1, 1), λe4 =

(5, 4, 1), λc4 = (3, 2, 2, 2, 1) can all be calculated by drawing the diagram for λ and crossing

off the appropriate cells. Note that in this example that λc5 does not exist.

If the shape of ρ = λck is given and the height of the k-snake is specified then λ can

be recovered (λ is determined from ρ by adding a k-snake of height h). This is because

λ = (ρh + k − h+ 1, ρ1 + 1, ρ2 + 1, . . . , ρh−1 + 1, ρh+1, ρh+2, . . . , ρl(ρ)) (1.4)

and so λ will be a partition as long as k is sufficiently large.

A standard tableau is a diagram of a partition of n filled with the numbers 1 to n

such that the labels increase moving from left to right in the rows and from bottom to top

in the columns. The set of standard tableaux of size n will be denoted by ST n.

We will consider the ring of symmetric functions in an infinite number of variables

as a subring of Q [x1 , x2, . . . ]. A more precise construction of this ring can be found in [14]

section I.2.

We make use of plethystic notation for symmetric functions here. This is a no-

tational device for expressing the substitution of the monomials of one expression, E =

E(t1, t2, t3, . . . ) for the variables of a symmetric function, P . The result will be denoted by

P [E] and represents the expression found by expanding P in terms of the power symmetric

functions and then substituting for pk the expression E(tk1, t
k
2, t

k
3, . . . ).

More precisely, if the power sum expansion of the symmetric function P is given by

P =
∑
λ

cλpλ
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then the P [E] is given by the formula

P [E] =
∑
λ

cλpλ

∣∣∣
pk→E(tk1 ,t

k
2 ,t

k
3 ,... )

.

To express a symmetric function in a single set of variables x1, x2, . . . , xn, let Xn =

x1 + x2 + · · ·+ xn. The expression P [Xn] represents the symmetric function P evaluated at

the variables x1, x2, . . . , xn since

P (x1, x2, . . . , xn) =
∑
λ

cλpλ

∣∣∣
pk→xk1+xk2+···+xkn

= P [Xn]

The Cauchy kernel is a ubiquitous formula in the theory of symmetric functions

(especially when working with plethystic notation).

Definition 1.4 The Cauchy kernel

Ω[X] =
∏
i

1

1− xi

It follows using plethystic notation that Ω[X]Ω[Y ] = Ω[X +Y ] and Ω[−X] =
∏

i(1−

xi).

The Cauchy kernel evaluated at the product of two sets of variables has the formula

([14] p 63)

Ω[XY ] =
∏
i,j

1

1− xiyj
=
∑
λ

sλ[X]sλ[Y ] =
∑
λ

hλ[X]mλ[Y ]

We will use the notation that f⊥ to denote the adjoint to multiplication for a sym-

metric function f with respect to the standard inner product. Therefore
〈
f⊥g, h

〉
= 〈g, fh〉.

Note that h⊥k and e⊥k act on the Schur function basis with the formulas

e⊥k sµ =
∑

µ/λ∈Vk

sλ
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h⊥k sµ =
∑

µ/λ∈Hk

sλ

The Macdonald basis [14] for the symmetric functions are defined by the following

two conditions

a) Pλ = sλ +
∑
µ<λ

sµcµλ(q, t)

b) 〈Pλ, Pµ〉qt = 0 for λ 6= µ

where 〈, 〉qt denotes the scalar product of symmetric functions defined on the power

symmetric functions by 〈pλ, pµ〉qt = δλµzλpλ
[

1−q
1−t

]
(zλ is the size of the stablizer of the

permuations of cycle structure λ and δxy = 1 if x = y and 0 otherwise). We will also refer

to the basis Hµ[X; q, t] =
∏

s∈µ(1− qaµ(s)tlµ(s)+1)Pµ
[
X

1−t ; q, t
]

=
∑

λKλµ(q, t)sλ[X] that is of

interest in this paper as Macdonald symmetric functions (s ∈ µ means run over all cells s in

µ and aµ(s) and lµ(s) are the arm and leg of s in µ respectively).

The Hall-Littlewood symmetric functions Hµ[X; t] can be defined by the following

formula.

Definition 1.5 The Hall-Littlewood symmetric function

Hµ[X; t] =
∏

i≥0,1≤j≤k

1

1− zjxi

∏
1≤i≤j≤k

1− zj/zi
1− tzj/zi

∣∣∣
Zµ

where µ is a partition with k parts and
∣∣∣
Zµ

represents taking the coefficient of the monomial

zµ1

1 zµ2

2 · · · z
µk
k .

These symmetric functions are not the same, but are related to the symmetric func-

tions referred to as Hall-Littlewood polynomials in [14] p. 208. The Hall-Littlewood func-

tions are related to the Schur symmetric functions by letting t→ 0 and to the homogeneous

symmetric functions by letting t→ 1.
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The Hall-Littlewood functions can be expanded in terms of the Schur symmetric

function basis with coefficients Kλµ(t), that is, Hµ[X; t] =
∑

λKλµ(t)sλ[X]. The Kλµ(t) are

well studied and referred to as the Kostka-Foulkes polynomials. The vertex operator, H t
m

in formula (1.3), that has H t
mHµ[X; t] = H(m,µ)[X; t] is due to Jing ([6], [4]). The Schur

function vertex operator of equation (1.2) is due to Bernstein [16] (p. 69).

2 The Vertex Operator

Define the following symmetric function operator by the following equivalent formulas

Definition 2.1 Let P [X] be a homogeneous symmetric function of degree n.

Hqt
2 P [X] = (H t

2 + qωH
1
t

2 ωR
t)P [X] (2.1)

= P

[
X −

1− t

z

]
Ω[zX] + qP

[
tX −

1− t

z

]
Ω[−zX]

∣∣∣
z2

(2.2)

=
∑
i≥0

(tiS2+ih
⊥
i + qtn−iωS2+iωe

⊥
i )P [X] (2.3)

=
∑
i,j≥0

(tj(−1)ih2+i+j [X] + qtn−i(−1)je2+i+j[X])e⊥i h
⊥
j P [X] (2.4)

where the symbol
∣∣∣
z2

means take the coefficient of z2 in the expression and Rt is an operator

that has the property RtP [X] = tnP [X].

For the remainder of this paper the symbol H
2
1

2 will represent the expression ωH
1
t

2 ωR
t

and the symbol H 1 2
2 will represent the operator H t

2 so that Hqt
2 = H 1 2

2 + qH
2
1

2 .

A formula for the (q, t) Kostka coefficients Kλµ(q, t) when µ is a two column partition

was given in [13]. That result will be used to prove that the Hqt
2 operator has the vertex

operator property. The proof first requires the following four lemmas:
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Lemma 2.2

H(1b+2)[X; t] = tb+1H(21b)[X; t] + t(
b+1

2 )ωH(21b)[X; t−1]

Proof There are combinatorial interpretations of each term of this equation and a bijective

proof is easy enough to state. The left hand side of this equation is given by

H(1b+2)[X; t] =
∑

T∈ST b+2

tc(T )sλ(T )[X]

Each term on the right hand side of the equation is given by the sums

tb+1H(21b)[X; t] =
∑

T∈CST (21b)

tc(T )+b+1sλ(T )[X]

t(
b+1

2 )ωH(21b)[X; t−1] =
∑

T∈CST (21b)

t(
b+1

2 )−c(T )sλ(ωT )[X]

where ωT is the tableau that is flipped about the diagonal.

Each standard tableau has either the label of 2 lying to the immediate right of 1 or

above it.

A tableau that has a 2 that lies immediately to the right of the 1 is isomorphic to

a tableau that has content (21b) and charge that is b + 1 higher. The isomorphism simply

decreases the label any cell with a label higher than 2 by 1 and the inverse is to increase the

label of every cell except the 1 in the corner. The charge of the standard tableau is b+1 more

than the charge of the corresponding tableau of content (21b) because in the word definition

of charge, the index of every letter (except the 1) of the word of the tableau decreases by 1

when the labels are decreased.

A tableau that has a label of 2 lying above the 1 can be transposed about the diagonal

and this tableau is isomorphic to a tableau of content (21b) by the same map. The charge

of standard tableau is the cocharge of the transposed tableau so c(T ) = (b+2
2 )− c(ωT ). The

transformation that decreases the label in each cell by 1 (except the first cell) decreases
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the charge of the tableau by b + 1 and so the charge of the tableau of content (21b) is

(b+2
2 )− (b+ 1)− c(T ). 2

Lemma 2.3

H
2
1

2 H(1b)[X; t] = H(1b+2)[X; t]− tb+1H(21b)[X; t]

Proof Note that for the Hall-Littlewood symmetric function indexed by the partition (1b)

we know from [14] p. 364 that H(1b)[X; t] = (t; t)nen
[
X

1−t

]
. From this we derive

H(1b)[X; t] = (t; t)beb

[
X

1− t

]
= (−1)bt(

b+1
2 )(t−1; t−1)beb

[
−

X

(1− 1/t)t

]
= (−1)2bt(

b+1
2 )−b(t−1; t−1)bhb

[
X

(1− 1/t)

]
= t(

b
2)ωH(1b)[X; t−1]

So that using the last lemma and the vertex operator property gives that

ωH
1
t

2 ωt
bH(1b)[X; t] = t(

b
2)+bωH

1
t

2 H(1b)[X; t−1]

= t(
b+1

2 )ωH(21b)[X; t−1]

= H(1b+2)[X; t]− tb+1H(21b)[X; t]

2

Lemma 2.4

H
2
1

2 H 1 2
2 = tH 1 2

2 H
2
1

2

Proof Let H(z) = P
[
X − 1−t

z

]
Ω[zX] so that H2 = H(z)

∣∣∣
z2

= t2H(z/t)
∣∣∣
z2

.
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H
2
1

2 H 1 2
2 P [X] = t2H

2
1

2 P

[
X −

1− t

(z/t)

]
Ω[(z/t)X]

∣∣∣
z2

= t2P

[
tX −

1− t

u
−
t− t2

z

]
Ω

[
(z/t)

(
tX −

1− t

u

)]
Ω [−uX]

∣∣∣
z2u2

= t2P

[
tX −

1− t

u
−
t− t2

z

]
Ω[zX]Ω[−uX]Ω

[ z
u
−

z

ut

] ∣∣∣
z2u2

= t2P

[
t

(
X −

1− t

z

)
−

1− t

u

]
Ω[−uX]Ω[zX]

1− z
ut

1− z
u

∣∣∣
z2u2

= tP

[
t

(
X −

1− t

z

)
−

1− t

u

]
Ω[−uX]Ω[zX]

1 − tu
z

1− u
z

∣∣∣
z2u2

= tP

[
t

(
X −

1− t

z

)
−

1− t

u

]
Ω[−uX]Ω[zX]Ω

[
u

1− t

z

] ∣∣∣
z2u2

= tH 1 2
2 P

[
tX −

1− t

u

]
Ω[−uX]

∣∣∣
u2

= tH 1 2
2 H

2
1

2 P [X]

2

Lemma 2.5

H
2
1

2 H(2a1b)[X; t] = taH(2a1b+2)[X; t]− ta+b+1H(2a+11b)[X; t]

Proof We show by induction on a that this is true. By the Lemma 2.3, the statement

holds for a = 0 and by using the previous lemma we have that

H
2
1

2 H(2a1b)[X; t] = tH 1 2
2 H

2
1

2 H(2a−11b)[X; t]

= tH 1 2
2 (ta−1H(2a−11b+2)[X; t]− ta+bH(2a1b)[X; t])

= taH(2a1b+2)[X; t]− ta+b+1H(2a+1,1b)[X; t]
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2

Note that there is a bijective proof of this identity that follows by rewriting the

equation as

H
2
1

2 H(2a1b)[X; t] + ta+b+1H(2a+11b)[X; t] = taH(2a1b+2)[X; t]

and realizing the combinatorial interpretation of each piece of this equation as the sum over

tableaux. The combinatorial interpretation of the operator H
2
1

2 will be explained later and

so an algebraic proof (except for the first lemma) is provided here instead.

Theorem 2.6

Hqt
2 H(2a1b)[X; q, t] = H(2a+11b)[X; q, t]

Proof For integers n ≥ 0, define

(a; t)n = (1− a)(1− at) · · · (1− atn−1)

In Theorem 1.1 of [13], an expansion of the 2-column Macdonald polynomials in terms of

the Hall-Littlewood polynomials is given as

H(2a1b)[X; q, t] =
a∑
i=0

qa−i(qta+b; t−1)i
(ta; t−1)i
(ti; t−1)i

H(2i1b+2a−2i)[X; t]

By Lemma 2.3, we have that

Hqt
2 H(2i1b+2a−2i)[X; t] = (1− qtb+2a+1−i)H(2i+11b+2a−2i)[X; t]

+ qtiH(2i1b+2a−2i+2)[X; t]

So then using these two expressions we have that
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Hqt
2 H(2a1b)[X; q, t] =

a∑
i=0

qa−i(qta+b; t−1)i
(ta; t−1)i
(ti; t−1)i

Hqt
2 H(2i1b+2a−2i)[X; t]

=
a∑
i=0

qa−i(qta+b; t−1)i
(ta; t−1)i
(ti; t−1)i

((1− qtb+2a+1−i)H(2i+11b+2a−2i)[X; t]

+ qtiH(2i1b+2a−2i+2)[X; t])

Algebraic manipulation and changing the index of the sums reduces this expression

to one for the symmetric function H(2a+11b)[X; q, t].

=
a+1∑
i=0

qa−i+1(qta+b+1; t−1)i
(ta+1; t−1)i
(ti; t−1)i

H(2i1b+2a−2i+2)[X; t] = H(2a+11b)[X; q, t]

2

One result that follows from this theorem is that the Hµ[X; q, t] when µ = (2a1b) has

an unusual breakdown into ’atoms’ as in the following formula.

Corollary 2.7

H(2a1b)[X; q, t] =
∑

s∈

{
1 2 ,21

}aH
s1
2 H

s2
2 · · ·H

sa
2 H(1b)[X; t]q

∑
i co(si)

where co( 1 2 ) = 0 and co
(

2
1

)
= 1.

The interesting thing about this corollary is that the symmetric functions Hs1
2 H

s2
2

· · ·Hsa
2 H(1b)[X; t] are each generating functions for a subset of the standard tableaux and are

all Schur positive. This will be the main result of the next section and in the third section

we will consider these as the atoms of the symmetric functions H(2a1b)[X; q, t].
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Because of the relation from Lemma 2.4, for
∑

i co(si) = k we have that

Hs1
2 H

s2
2 · · ·H

sa
2 H(1b)[X; t] = txH 1 2

2 · · ·H 1 2
2 H

2
1

2 · · ·H
2
1

2 H(1b)[X; t] (2.5)

for some x ≥ 0 where the H 1 2
2 occurs a− k times and H

2
1

2 occurs k times. In fact we may

derive the following identity.

Corollary 2.8

H(2a1b)[X; q, t] =
a∑
i=0

[
a
i

]
t

(H 1 2
2 )a−i(H

2
1

2 )iH(1b)[X; t]qi

where [
n
k

]
t

=
(tn; t−1)k
(tk; t−1)k

Proof Let T (a) =
{

1 2 , 2
1

}a
, the set of tuples of length a with entries that are standard

tableaux of size 2. For s ∈ T (a), let co(s) =
∑

i co(si) and let

inv(s) =
∑

1≤j<i≤a χ (co (si) < co (sj)).

The expression for H(2a1b)[X; q, t] from the previous corollary and relation in Lemma

2.4 gives that

H(2a1b)[X; q, t] =
∑
s∈T (a)

Hs1
2 H

s2
2 · · ·H

sa
2 H(1b)[X; t]qco(s)

=
a∑
l=0

ql
∑
s∈T (a)
co(s)=l

Hs1
2 H

s2
2 · · ·H

sa
2 H(1b)[X; t]

=
a∑
l=0

ql
∑
s∈T (a)
co(s)=l

tinv(s)
(
H 1 2

2

)b+2a−l

H 2
1

2

l

H(1b)[X; t]
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Note that
∑

s∈T (n)
co(s)=k

tinv(s) satisfies the relations

∑
s∈T (n)
co(s)=k

tinv(s) = tk
∑
s∈T (n)
co(s)=k

tinv(s) +
∑
s∈T (n)

co(s)=k−1

tinv(s)

and
∑

s∈T (n)
co(s)=n

tinv(s) =
∑

s∈T (n)
co(s)=0

tinv(s) = 1. The t binomial coefficient also satisfies the same

recursion

[
n
k

]
t

= tk
[
n− 1
k

]
t

+

[
n− 1
k − 1

]
t

and

[
n
n

]
t

=

[
n
0

]
t

= 1 therefore they have

the same values. 2

In the next section we will give a combinatorial interpretation to these polynomials

and show that when expanded in terms of Schur functions that the coefficients are polyno-

mials with non-negative integer coefficients. The ’atoms’ that the Macdonald polynomials

break down into are related to the Butler conjectures of the Kλµ(q, t). This relation will be

made more precise in the last section with the exposition of the tableaux statistics.

The Hqt
2 operator can be expressed in terms of the Hall-Littlewood vertex operator

and the action of H 1 2
2 on the Schur functions is known and given by the formula,

Proposition 2.9 Let λ be a partition of n, for k ≥ 0 then

H t
ksλ[X] =

∑
ρ∈Hn+k

(−1)htn(ρ)−1t|λ/ρ
r |sρcn [X]

Because of this last proposition, the action of the Hqt
2 on the Schur functions follows

and can be stated as

Proposition 2.10 Let λ be a partition of n then

Hqt
2 sλ[X] =

∑
ρ∈Hn+2

(−1)htn(ρ)−1t|λ/ρ
r |sρcn [X] + q

∑
ρ∈Vn+2

(−1)h̄tn(ρ)−1t|ρ
c|sρen [X]
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3 The Tableaux Operators

Define the class of x-strict tableaux with n cells (denoted by XSTn) to be the tableaux in

the alphabet {i, i′}i≥1 with the following restrictions:

• For each i, the tableau contains either no cells labeled by i or i′, one cell labeled by

i and none by i′, two cells labeled by i and none by i′, or two cells labeled by i′ and

none by i. No other combinations are allowed.

• The cell to the right of i can be labeled with an i or higher. The cell above i must be

label larger than i.

• The cell to the right of i′ must have a label strictly higher than i. The cell just above

i′ must have a label of i′ or higher.

Define the content of T ∈ XSTn to be the tuple s ∈
{

1 2 , 2
1 , 1 , ·

}k
such that

si = 1 2 if T contains two i, si = 2
1 if T contains two i′, si = 1 if T contains just one cell

labeled by i and finally si = · if it does not contain i or i′. Denote the content of the tableau

T by the symbol µ(T ). The standard tableaux of size n are the set of tableaux T ∈ XST n

such that µ(T ) = ( 1 n).

Example

T =

6′

4 6′

2′ 3 3
1 1 2′ 5

T ∈ XST 10 and µ(T ) =
(

1 2 , 2
1 , 1 2 , 1 , 1 , 2

1

)
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Let the operation V act on T ∈ XSTn such that µ(T ) = ( 1 , 1 , s). The operator V

changes T to a tableau of either type ( 1 2 , s) or of type
(

2
1 , s
)

depending on if the label 2

lies to the right or above the 1 respectively by changing the cells labeled by 1 and 2 to either

1s or 1′s and decreasing the labels of each of the cells labeled with a 3 or higher by 1. V −1

will be the operator that acts on T ∈ XST n with µ(T )1 = 1 2 or 2
1 that is the reverse of

the operator V .

The game of Jeu-de-Taquin may be played on these tableau with the consideration

that the cells have the ordering that the cell with a label i′ that lies above the other i′ has

a value of i+ 1
2
. This same consideration on the ordering of the cells allows us to define row

and column insertion and deletion using the usual Robinson-Schenstead correspondence.

Define a symmetric group action on the type of the tableau. For T ∈ XST , let

s = µ(T ). The operator (i, i + 1) will have the property that µ((i, i + 1)T ) = (i, i + 1)s =

(s1, . . . , si+1, si, . . . , sk). The operation (i, i+ 1)T has the following definition:

• If si = si+1 then (i, i+ 1)T = T .

• If si 6= si+1 then ignore all the cells in T except those with a label in the set {i, i′, i+

1, i+ 1′} and bring them to straight shape. The possible configurations of these cells

are listed below in pairs. The action of (i, i+ 1) is to replace the configuration by the

corresponding one in the same row and then play Jeu-de-Taquin in reverse to restore

the cells to their original position (see [3] to justify that this is a well defined operation).

Let k = i+ 1 (just so that in the following diagrams, i+ 1 fits in the cell)

i ←→ k

i′

i′
←→ k′

k′



the electronic journal of combinatorics 5 (1998), #R45 20

i i ←→ k k

k
i k

←→ k
i i

i k k ←→ i i k

k′

k′

i

←→
k

i′

i′

k′

i k′
←→ i′

i′ k

k′

k′

i i

←→
k

i′

i′ k

k′

i i k′
←→ i′

i′ k k

Define an operator H−1
2 on x-standard tableaux of content µ(T ) = ( 1 2 , s) or µ(T ) =(

2
1 , s
)

and transforms it into an x-standard tableau of content (s) by the following procedure:

1. If µ(T ) = ( 1 2 , s) then let R1 be the first row of T and T̃ be T with the first

row removed. Row insert the cells of R1 that are not 1 into T̃ from largest to smallest and

decrease each label by 1 in this new tableau. The result will be H−1
2 T .

2. If µ(T ) =
(

2
1 , s
)

then let C1 be the first column of T and let T̃ be T with the first

column removed. Column insert the cells of C1 that are not 1 or 1′ into T̃ from largest to

smallest and decrease by 1 each of the labels of the cells in this new tableau. The result will

be H−1
2 T .

Clearly, if µ(T ) = ( 1 2 , s) or
(

2
1 , s
)

then µ(H−1
2 T ) = (s).

This operator will be used to define the type of a standard tableau. Let µ = (2a1b).

Let T be a standard tableau of size 2a + b. The µ − type will represent the orientation of
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the ”building blocks” of the standard tableau. It will be represented by the symbol typeµ(T )

and be defined as the tuple of standard tableaux of size 1 or 2 with the following properties:

• If a = 0 and µ = (1b) then typeµ(T ) = ( 1 b).

• If a = 1 then µ(V T )1 = 2
1 or 1 2 and type(21b)(T ) = (µ(V T )1, 1 b).

• If a > 1 then µ(V T )1 = 2
1 or 1 2 and

type(2a1b)(T ) = (µ(V T )1, type(2a−11b)(H
−1
2 V T ))

We wish to show that there is a relation between the µ− type of a standard tableau

and a method for unstandardization of the tableau so that the content matches the µ− type.

Lemma 3.1 For a T ∈ XST n (n ≥ 4) and µ(T ) =
(

2
1 , 1 , 1 , s

)
or µ(T ) = ( 1 2 , 1 , 1 , s)

(where s is the remainder of the type-list) the tableaux operators have the following relation-

ship

VH−1
2 T = H−1

2 (1, 2)V (2, 3)(1, 2)T

Proof The V and (1, 2)V (2, 3)(1, 2) operators only change the values of the cells that are

labeled with 1, 1′, 2, or 3. The relative values of the cells of T do not change so it should

be clear that if we verify this is true for the 10 tableaux below that it will be true for all

x-standard tableaux that contain these as sub-tableaux.

1 1 2 3
2 3
1 1

3
1 1 2

1′

1′ 2 3

3
1′

1′ 2

3
2
1 1

2
1 1 3

1′ 3
1′ 2

2
1′

1′ 3

3
2
1′

1′
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If T is any of the first 5 tableaux then VH−1
2 T = H−1

2 (1, 2)V (2, 3)(1, 2)T = 1 1 and if T

is any of the second 5 tableaux then VH−1
2 T = H−1

2 (1, 2)V (2, 3)(1, 2)T = 1′

1′
. 2

Lemma 3.2 For a T ∈ XSTn and for i > 1 the tableaux operators have the following

relationship

(i− 1, i)H−1
2 T = H−1

2 (i, i+ 1)T

Proof As in the previous lemma, it is only necessary to check what these two operators do

to the cells that they change. This means that there is nothing to check if µ(T )i = µ(T )i+1.

A brute force proof this time however has MANY more cases to check. For each of the

possible 18 configurations in (1) an application of H−1
2 will rearrange the positions of cells

labeled by i and i+ 1 if µ(T )1 = 1 2 and there are cells labeled by i or i+ 1 in the first row

of T , or µ(T )1 = 2
1 and there are cells labeled by i,i′,i+ 1, or i+ 1′ in the first column of T .

Take one of the 18 configurations of the cells i,i′,i + 1, or i + 1′ in T from (1), we

we will write the possible configurations of the cells that are labeled by i − 1,i − 1′, i and

i′ after an application of H−1
2 to T . We need only verify that the images of these possible

configurations under (i − 1, i) are the same as the possible configurations of the cells that

are labeled by i− 1,i− 1′, i and i′ after an application of H−1
2 to (i, i+ 1)T .

For notational purposes, let k = i+ 1 and h = i− 1. Cells that were in the first row

of T and change position because µ(T )1 = 1 2 will have an underline under the label, cells

that were in the first column of T and change position because µ(T )1 = 2
1 will have a bar

over the label.

i h , h , h̄

k i , i , ī



the electronic journal of combinatorics 5 (1998), #R45 23

i′

i′
h′

h′
,
h′

h′
,
h′

h̄′
, h̄
′

h̄′

k′

k′
i′

i′
,
i′

i′
,
i′

ī′
, ī
′

ī′

i i h h , h h , h h , h h̄

k k i i , i i , i i , i ī

k
i k

i

h i
,
i

h i
,
h i i

,
h i ī

,
i

h̄ ī

k
i i

i

h h
,
i
h h

,
h h i

,
h h ī

, ī
h h̄

i k k h i i
,
i

h i
,
i

h i
,
h i i

,
k

ī k

i i k h h i
,
k
i i

,
k
i i

,
i i k

,
k
i ī

k′

k′

i

i′

i′

h

, i′

h i′
, i′

h ī′
, ī′

h ī′
,
ī′

ī′

h̄

k

i′

i′

i

h′

h′
, h′

h′ i

, h′

h′ ī

, h′

h̄′ ī

,
ī

h̄′

h̄′

k′

i k′
i′

h i′
,
i′

i′

h

, i′

h i′
, i′

h ī′
,
i′

ī′

h̄

i′

i′ k
h′

h′ i

,

i

h′

h′
, h′

h′ i

, h′

h̄′ i

,
i

h̄′

h̄′
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k′

k′

i i

i′

i′

h h

,
i′

i′

h h

,
i′

i′

h h
, i′

h h ī′
, ī′

h h ī′
,
ī′

ī′

h h̄

k

i′

i′ k

i

h′

h′ i

,

i

h′

h′ i

,

i

h′

h′ i

, h′

h′ i ī

, h′

h̄′ i ī

,
i

h̄′

h̄′ ī

k′

i i k′
i′

h h i′
,
i′

i′

h h

,
i′

i′

h h

, i′

h h i′
, i′

h h ī′
,
i′

ī′

h h̄

i′

i′ k k
h′

h′ i i

,

i

h′

h′ i

,

i

h′

h′ i
, h′

h′ i i
, h′

h̄′ i i

,
i

h̄′

h̄′ i

2

Define the tableau operator M1 = V and Mi for i ≥ 2 by the composition of the

σi = (i, i+ 1) operators and the V operators

Mi = σi−1σi−2 · · ·σ1V σ2σ3 · · ·σiσ1σ2 · · ·σi−1 Notice that Mi is simply defined so that it has

the property

MiH
−1
2 T = H−1

2 Mi+1T

These Mi operators are ”unstandardization” operators in the sense of the following proposi-

tion.

Proposition 3.3 Let µ = (2a1b) and T is a standard tableau of size 2a+ b then

µ(MaMa−1 · · ·M1T ) = type(2a1b)(T )

Proof Note that the type(2a1b)(T )i = µ(V (H−1
2 V )iT )1. We observe that µ(H−1

2 T )j =

µ(T )j+1 and hence type(2a1b)(T )i = µ((H−1
2 )

i
MiMi−1 · · ·M1T )1 = µ(MiMi−1 · · ·M1T )i =

µ(MaMa−1 · · ·M1T )i (and the last equality follows since the Mj for j > i does not change

the ith entry in the content).

2
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Define the operator Na to be the sequence of operators MaMa−1 · · ·M1. When Na

acts on a standard tableau, it maps it to an x-standard tableaux with the relation µ(NaT ) =

type(2a1b)(T ) for T ∈ ST 2a+b. This operator is a bijection between standard tableaux and

x-standard tableaux with content that is a tuple in
{

1 2 , 2
1

}a
× { 1}b.

Example 3.4

8
5 7
4 6
1 2 3

7
4 6
3 5
1 1 2

6
3 5
2 4
1 1 2

5
3′ 4
2 3′

1 1 2

4′

3′ 4′

2 3′

1 1 2

T N1T N2T N3T N4T

8
5 7
4 6
1 2 3

6
3 5
1 2 4

2 4
1 3

2
1

T H−1
2 V T H−1

2 VH−1
2 V T H−1

2 VH−1
2 VH−1

2 V T

Note that the operatorsMi are completely reversible so that they describe a procedure

for mapping the standard tableaux of size 2a+ b bijectively to the x-standard tableaux with

content in the set
{

1 2 , 2
1

}a
× { 1}

b.

Let T ∈ ST 2a+b and let µ be a partition with two columns with µ = (2a1b). We

will let the statistic bµ(T ) on standard tableaux be the number of occurrences of 2
1 in the

typeµ(T ). Let the statistic aµ(T ) be defined recursively with a base case of a = 0 so that

a(1b)(T ) = c(T ). For a > 0 let aµ(T ) = aµr(H
−1
2 V T ) + (λ(T )1 − 2) if typeµ(T )1 = 1 2 and

aµ(T ) = aµr(H
−1
2 V T ) + |λ(T )c| if typeµ(T )1 = 2

1 .
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Proposition 3.5 Let n = 2a+ b. The statistic aµ(T ) where µ = (2a1b) satisfies the formula

aµ(T ) = c(T )−
a∑
i=1

((n+ 1)− 2i)χ(typeµ(T )i = 1 2 )

Proof By induction on a we assume that it is true for partitions with fewer than a parts

equal to 2 (with the base case of a = 0 true by definition), then when typeµ(T )1 = 1 2 we

have that

aµ(T ) = aµr(H
−1
2 V T ) + (λ(T )1 − 2)

= c(H−1
2 V T )−

a−1∑
i=1

((n− 1)− 2i)χ(typeµr(H
−1
2 V T )i = 1 2 ) + (λ(T )1 − 2)

= c(H−1
2 V T )−

a∑
i=2

((n+ 1)− 2i)χ(typeµ(T )i = 1 2 ) + (λ(T )1 − 2)

The charge statistic is well understood and several methods for computing the charge

exist. For typeµ(T )1 = 1 2 we have that c(H−1
2 V T ) = c(V T )− (λ1 − 2) because H−1

2 is the

operation of cyclage of the (λ1 − 2) cells in the first row and then reducing the content. We

also know that c(V T ) = c(T )− (n− 1) by using the word definition of charge. This implies

that c(H−1
2 V T ) = c(T )− (n− 1)− (λ1 − 2) and hence that

aµ(T ) = c(T )− (n− 1)−
a∑
i=2

((n+ 1)− 2i)χ(typeµ(T )i = 1 2 ) + (λ(T )1 − 2)

When typeµ(T )1 = 2
1 then a similar calculation gives that

aµ(T ) = c(H−1
2 V T )−

a∑
i=2

((n+ 1)− 2i)χ(typeµ(T )i = 1 2 ) + |λ(T )c|

The charge of the tableau H−1
2 V T can be calculated by noting that the H−1

2 operator is one

cyclage operation for every cell in |λ(T )c| and then reducing the content so that c(H−1
2 V T ) =

c(T )− |λ(T )c|. In both cases aµ(T ) = c(T )−
∑a

i=1((n+ 1)− 2i)χ(typeµ(T )i = 1 2 ). 2

We are now ready to state the main theorem of this section.
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Theorem 3.6 Let µ = (2a1b). For s ∈
{

1 2 , 2
1

}a
the symmetric functions Hs1

2 H
s2
2

· · ·Hsa
2 H(1b)[X; t] are generating functions for the standard tableaux of µ− type = (s, 1 b) in

the sense that

Hs1
2 H

s2
2 · · ·H

sa
2 H(1b)[X; t] =

∑
T∈ST 2a+b

typeµ(T )=(s, 1
b
)

taµ(T )sλ(T )[X]

This gives the following logical corollary that follows from the theorem and Corollary

2.7

Corollary 3.7 Let µ = (2a1b). The Hµ[X; q, t] are generating functions for the standard

tableaux in the sense that

Hµ[X; q, t] =
∑

T∈ST 2a+b

taµ(T )qbµ(T )sλ(T )[X]

We will show that this this is true by describing two procedures, one, H2, that takes

as input a standard tableau of shape λ ` n and µ− type = s, and returns a tableau for every

term in the expression

H 1 2
2 sλ[X] =

∑
ρ/λ∈Hn+2

(−1)htn(ρ)−1t|λ/ρ
r |sρcn [X] (3.1)

The other procedure, H̄2, will take as input a standard tableau of shape λ, and return a

tableau for every term in the expression

H
2
1

2 sλ[X] =
∑

ρ/λ∈Vn+2

(−1)h̄tn(ρ)−1t|ρ
c|sρen [X] (3.2)

Let n ≥ 0 and T ∈ XST n and then let ρ be any partition of 2n + 2 such that ρ/

λ(T ) ∈ Hn+2. Note that λ(T )/ρr is also a horizontal strip. Create a tableau T̃ such that

λ(T̃ ) = ρr by performing one column evacuation for the each cell in λ(T )/ρr from right to

left. Because the bumping paths of the cells do not cross, the cells will be evacuated in
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weakly increasing order (that is, it may contain two cells of label i). Let R be the row of

cells that are evacuated from T . Increase all of the labels of the cells in R and T̃ by one.

Create a new tableau by row inserting the labels 1, 1, and all of the labels in R in increasing

order into T̃ . Call this new tableau Hρ
2T .

The purpose of the definition of Hρ
2 is to create a tableau for every term in the

expression

H 1 2
2

(
taµ(T )sλ(T )[X]

)
=

∑
ρ/λ(T )∈Hn+2

taµ(T )+|λ(T )/ρr |(−1)htn(ρ)−1sρcn [X]

where we have used the convention that sρcn [X] = 0 if ρcn is not a partition. The tableaux

such that λ(Hρ
2T ) 6= ρcn will correspond to terms that either cancel or have weight zero

when H 1 2
2 acts on the symmetric functions Hs1

2 H
s2
2 · · ·H

sa
2 H(1b)[X; t] (where si = 1 2 or

2
1 ).

Example 3.8 n = 6 and T = 1′ 4
1′ 2 2 3

∈ XST 6. Consider the three following choices

for the partition ρ corresponding to the three types of resulting tableau that will be created.

• ρ = (9, 3, 2)

R = 1′ and T̃ =
2 4
1′ 2 3

.

Hρ
2T =

3 5
2′ 3 4
1 1 2′

H−1
2 H

(9,3,2)
2 T = T and ρc6 = λ(Hρ

2T ).

• ρ = (9, 4, 1)

R = 1′ and T̃ =
4
1′ 2 2 3

.

Hρ
2T =

5
2′ 3 3
1 1 2′ 4
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ρc6 is not a partition.

• ρ = (10, 4)

R = 1′ 4 and T̃ = 1′ 2 2 3 .

Hρ
2T = 2′ 3 3

1 1 2′ 4 5

λ(H
(10,4)
2 T ) 6= ρc6 but ρc6 is a partition.

Notice that Hρ
2T falls into one of the three following categories:

1. λ(Hρ
2T ) = ρcn. We make the following observations in this case:

• λ(Hρ
2T ) = ρcn = (ρ1 − n, ρr)

• htn(ρ) = 1

• µ(Hρ
2T ) = ( 1 2 , µ(T ))

• For T ∈ ST n, type(2a+11b)(V
−1Hρ

2T ) = ( 1 2 , type(2a1b)(T ))

• H−1
2 Hρ

2T = T

• If T ∈ ST n then a(2a+11b)(V
−1Hρ

2T ) = a(2a1b)(T ) + (ρ1 − n − 2) = a(2a1b)(T ) +

|λ(T )/ρr|

2. ρcn does not exist.

3. ρcn exists but λ(Hρ
2T ) 6= ρcn. We still have µ(Hρ

2T ) = ( 1 2 , µ(T )), but we no longer

have the relationship H−1
2 Hρ

2T = T . About λ(Hρ
2T ) we can really only say that ρ/

λ(Hρ
2T ) is a horizontal strip of size n.

Similarly, there is a procedure that adds a column block of size 2. Let n ≥ 0 and

T ∈ XST n and then let ρ be any partition of 2n + 2 such that ρ/λ(T ) ∈ Vn+2. Note that
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λ(T )/ρc is also a vertical strip. Create a tableau T̃ such that λ(T̃ ) = ρc by performing

one row evacuation for the each cell in λ(T )/ρc from top to bottom. Because the bumping

paths of the cells do not cross, the cells will be evacuated in strictly increasing order ( C

may contain two cells of label i′). Let C be the column of cells that are evacuated from T .

Increase all of the labels of the cells in C and T̃ by one. Create a new tableau by column

inserting the labels 1′, 1′, and all of the labels in C in order into T̃ . Call this new tableau

H̄ρ
2T .

Again, we observe the following three categories for H̄ρ
2:

1. λ(H̄ρ
2T ) = ρen. We make the following observations in this case:

• λ(H̄ρ
2T ) = ρen = (ρ1, ρ2, . . . , ρl(ρ)−n)

• h̄tn(ρ) = 1

• µ(H̄ρ
2T ) =

(
2
1 , µ(T )

)
• For T ∈ ST n, type(2a+11b)(V

−1H̄ρ
2T ) =

(
2
1 , type(2a1b)(T )

)
• H−1

2 H̄ρ
2T = T

• If T ∈ ST n then a(2a+11b)(V
−1H̄ρ

2T ) = a(2a1b)(T ) + (2n+ 2− ρ′1) = a(2a1b)(T ) + |ρc|

2. ρen does not exist.

3. ρen exists but λ(H̄ρ
2T ) 6= ρen. We still have µ(H̄ρ

2T ) =
(

2
1 , µ(T )

)
, but we no longer

have the relationship H−1
2 H̄ρ

2T = T . We also have that ρ/λ(H̄ρ
2T ) is a vertical strip of

size n.

The operators H−1
2 and Hρ

2/H̄ρ
2 are not true inverses of each other, but Hρ

2 and H̄ρ
2

are both invertible and there is no problem reversing the steps to find T from Hρ
2T or H̄ρ

2T

as long as ρ is known. The H̄ρ
2 and Hρ

2 operators do have a similar relationship with the

(i, i+ 1) and V operators.



the electronic journal of combinatorics 5 (1998), #R45 31

Lemma 3.9 For a T ∈ XST n (n ≥ 2) and µ(T ) = ( 1 , 1 , s) (where s is the remainder of

the type-list) the tableaux operators have the following relationship

(1, 2)V (2, 3)(1, 2)Hρ
2T = Hρ

2V T

(1, 2)V (2, 3)(1, 2)H̄ρ
2T = H̄ρ

2V T

Lemma 3.10 For a T ∈ XSTn and for 1 < i ≤ n the tableaux operators have the following

relationship

(i, i+ 1)Hρ
2T = Hρ

2(i− 1, i)T

(i, i+ 1)H̄ρ
2T = H̄ρ

2(i− 1, i)T

The proofs of these lemmas are nearly the same as in the corresponding lemmas for

the H−1
2 operator.

The main result that we need from these relationships can be stated as follows:

Corollary 3.11 Let n = 2a + b and T ∈ ST n and let ρ be a partition of 2n + 2 such that

ρ/λ(T ) ∈ Hn+2 then

type(2a+11b)(V
−1Hρ

2T ) = ( 1 2 , type(2a1b)(T ))

Similarly, if ρ/λ(T ) ∈ Vn+2 then

type(2a+11b)(V
−1H̄ρ

2T ) =
(

2
1 , type(2a1b)(T )

)
Proof From the previous two lemmas we may derive that Mi+1H

ρ
2 = Hρ

2Mi and Mi+1H̄
ρ
2 =

H̄ρ
2Mi for i > 1. Therefore since the relation between the type of T ∈ ST n and the content
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of NaT ∈ XST n is known then

type(2a+11b)(V
−1Hρ

2T ) = µ(Na+1V
−1Hρ

2T )

= µ(Ma+1Ma · · ·M1V
−1Hρ

2T )

= µ(Ma+1Ma · · ·M2H
ρ
2T )

= µ(Hρ
2MaMa−1 · · ·M1T )

= ( 1 2 , µ(NaT )) = ( 1 2 , type(2a1b)(T ))

The proof is exactly analogous for the statement for the H̄ρ
2 operator. 2

This also gives the following result about the aµ statistic

Corollary 3.12 Let n = 2a + b and T ∈ ST n and let ρ be a partition of 2n + 2 such that

ρ/λ(T ) ∈ Hn+2 then

a(2a+11b)(V
−1Hρ

2T ) = a(2a1b)(T ) + |λ(T )/ρr|

and if ρ/λ(T ) ∈ Vn+2 then

a(2a+11b)(V
−1H̄ρ

2T ) = a(2a1b)(T ) + |ρc|

Proof Using the previous lemma and Proposition 3.5 we know that

a(2a+11b)(V
−1Hρ

2T ) = c(V −1Hρ
2T )− (n+ 1)

−
a+1∑
i=2

((n+ 3)− 2i)χ(type(2a1b)(T )i−1 = 1 2 )

= c(T ) + |λ(T )/ρr|+ (n+ 1)− (n+ 1)

−
a∑
i=1

((n+ 1)− 2i)χ(type(2a1b)(T )i = 1 2 )

= a(2a1b)(T ) + |λ(T )/ρr|
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using the methods that we have to calculate the charge.

Similarly for the H̄ρ
2 operator, we have that

a(2a+11b)(V
−1H̄ρ

2T ) = c(V −1H̄ρ
2T )−

a+1∑
i=2

((n+ 3)− 2i)χ(type(2a1b)(T )i−1 = 1 2 )

= c(T ) + |ρc| −
a∑
i=1

((n+ 1)− 2i)χ(type(2a1b)(T )i = 1 2 )

= a(2a1b)(T ) + |ρc|

2

The result of this is that we have a formula for the action of H 1 2
2 and H

2
1

2 on

taµ(T )sλ(T )[X] for a standard tableau T in terms of pictures that follows directly from equa-

tions (3.1), (3.2) and the previous corollaries.

Proposition 3.13 Let T ∈ ST n and µ = (2a1b) where n = 2a+ b then

H 1 2
2

(
taµ(T )sλ(T )[X]

)
=

∑
ρ/λ(T )∈Hn+2

(−1)htn(ρ)−1taµ(V −1Hρ
2T )sρcn [X]

and

Proposition 3.14 Let T ∈ ST n and µ = (2a1b) where n = 2a+ b then

H
2
1

2 taµ(T )sλ(T )[X] =
∑

ρ/λ(T )∈Vn+2

(−1)h̄tn(ρ)−1taµ(V −1H̄ρ
2T )sρen [X]

We are now ready to prove Theorem 3.6.

Proof (of Theorem 3.6) Let µ = (2a1b) and n = 2a+ b and s ∈
{

1 2 , 2
1

}
. If a = 0 then it

is a well known result that H(1b)[X; t] =
∑

T∈ST b t
c(T )sλ(T )[X] so the base case is true.

Assume that

Hs1
2 H

s2
2 · · ·H

sa
2 H(1b)[X; t] =

∑
T∈ST 2a+b

typeµ(T )=(s, 1
b
)

taµ(T )sλ(T )[X]
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then by Proposition 3.13 we have that

H 1 2
2 Hs1

2 H
s2
2 · · ·H

sa
2 H(1b)[X; t] = (3.3)∑

T∈ST 2a+b

typeµ(T )=(s, 1
b
)

∑
ρ/λ(T )∈Hn+2

(−1)htn(ρ)−1ta(2,µ)(Hρ
2T )sρcn [X] (3.4)

As was mentioned in the definition of Hρ
2, Hρ

2T falls into three categories. If λ(Hρ
2T ) =

ρcn then we have that htn(ρ)− 1 = 0 and so

(−1)htn(ρ)−1ta(2,µ)(Hρ
2T )sρcn [X] = ta(2,µ)(Hρ

2T )sλ(Hρ
2T )[X]

If ρcn does not exist then sρcn [X] = 0. These terms may be ignored since they do not

change the sum (3.4).

If ρcn does exist but λ(Hρ
2T ) 6= ρcn then the corresponding term (−1)htn(ρ)−1

ta(2,µ)(Hρ
2T )sρcn [X] will cancel, but it is necessary to demonstrate a sign reversing involution

on this set. We require the following lemma

Lemma 3.15 There exists an involution Inλ on partitions ρ such that ρ/λ ∈ Hn, ρcn exists

and λ 6= ρcn with the property that htn(Inλ (ρ)) = htn(ρ)± 1 and ρcn = Inλ (ρ)cn.

Proof (of Lemma) Let h = htn(ρ). Let γ = ρcn. Inλ maps the set of ρ that satisfy the

conditions of the lemma with λh > γh to the set of ρ that satisfy the conditions of the lemma

with λh ≤ γh.

If λh > γh then Inλ (ρ) = γ with an n− snake of height h+ 1 added. If λh ≤ γh then

Inλ (ρ) = γ with an n − snake of height h − 1 added (note that if h = 1 and λ1 ≤ γ1 then

λ = γ).

If λh > γh then λh+1 ≤ ρh+1 = γh+1 so that λh+1 ≤ γh+1. Also if λh ≤ γh then

λh−1 ≥ ρh > ρh − 1 = γh−1 so that λh−1 > γh−1. These two statements together show that

Inλ is an involution. 2
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With this lemma we have a sign reversing involution on the tableaux Hρ
2T such that

λ(Hρ
2T ) 6= ρcn. For if there is a tableau Hρ

2T with the property that λ(Hρ
2T ) 6= ρ and

ρcn exists then if we let ρ̃ = Inλ (ρ), the involution says that S = (Hρ̃
2)−1Hρ

2T also has this

property and (−1)htn(ρ)−1ta(2,µ)(Hρ
2T )sρcn [X] = −(−1)htn(ρ̃)−1ta(2,µ)(Hρ̃

2S)sρ̃cn [X].

Therefore equation (3.4) has only positive terms and the negative ones cancel. The

terms that survive all have the property that

H−1
2 Hρ

2T = T . Every tableau T such that typeµ(T ) = ( 1 2 , s) will correspond to exactly one

of the terms in this sum since H
(n+λ(T )1,λ(T )r)
2 H−1

2 T = T . Therefore equation (3.4) becomes

H 1 2
2 Hs1

2 H
s2
2 · · ·H

sa
2 H(1b)[X; t] =

∑
T∈ST 2a+b+2

type(2,µ)(T )=
(

1 2 ,s,1 b
)
ta(2,µ)(T )sλ(T )[X]

The proof that

H
2
1

2 Hs1
2 H

s2
2 · · ·H

sa
2 H(1b)[X; t] =

∑
T∈ST 2a+b+2

type(2,µ)(T )=

(
2
1 ,s,1

b
)
ta(2,µ)(T )sλ(T )[X]

is exactly analogous. 2

4 More About Statistics on Tableaux

Some very interesting properties about the standard tableaux follow from the definitions in

the previous section. The ’atoms’ of the Macdonald polynomials and the µ − type of the

standard tableaux suggest that the tableaux naturally fall into standard tableaux classes.

For a sequence s ∈
{

1 2 , 2
1

}a
× {1}

b set STCs = {T ∈ ST 2a+b|type(2a1b)(T ) = s}.

It will never be clear how beautiful this breakdown of the standard tableaux into

classes is until the picture of where the ’atoms’ lie in the standard tableaux when they are

ranked by the charge is clear. The figures at the end of this paper are the posets of the
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standard tableaux of size 4, 5 and 6 when they are ranked by the charge. The standard

tableau classes are grouped together in this poset and shaded so that each class is separated.

The horizontal position of each tableau is slightly related to cyclage, but not as much as

it was in the case of the column strict tableaux. Many of the properties of the Macdonald

polynomials can be observed in these diagrams (especially my favorite: ωH(2a1b)[X; q, t] =

qatn(2a1b)H(2a1b)[X; 1/q, 1/t]) and expansions for H(2a1b)[X; q, t] in terms of Schur functions

can be immediately written down.
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Example 4.1 The tableaux class STC

(
1 2 , 21 ,

2
1

)
is given by

6
5
4
3
1 2

5
4
3
1 2 6

5
4
3 6
1 2

4 6
3 5
1 2

6
4
3
1 2 5

4
3 6
1 2 5

6
3 5
1 2 4

4
3
1 2 5 6

3 5
1 2 4 6

The symmetric function that this corresponds to is

H 1 2
2 H

2
1

2 H
2
1

2 1 = s(21111)[X] + ts(3111)[X] + ts(2211)[X] + t2s(222)[X] + t2s(3111)[X]

+t2s(321)[X] + t3s(321)[X] + t3s(411)[X] + t4s(42)[X]
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These classes have the property that STC

(
s,1 2 , 1 b

)
∪ STC

(
s,21 , 1

b
)

= STC(s,1 b+2
)

simply by definition of the type. There is also a relation between the aµ and bµ statistics

over this set of tableaux.

Proposition 4.2 If type(2a+11b)(T )a+1 = 2
1 then a(2a+11b)(T ) = a(2a1b+2)(T ) and b(2a+11b)(T ) =

b(2a+11b)(T ) + 1.

If type(2a+11b)(T )a+1 = 1 2 then a(2a+11b)(T ) = a(2a1b+2)(T ) + (b+ 1) and b(2a+11b)(T ) =

b(2a+11b)(T ).

Example 4.3

T =
4 6
2 5
1 3

type(23)(T ) =
(

2
1 , 1 2 , 2

1

)
a(23)(T ) = 3, a(2212)(T ) = 3, a(214)(T ) = 6, a(16)(T ) = 6

b(23)(T ) = 2, b(2212)(T ) = 1, b(214)(T ) = 1, b(16)(T ) = 0

This relationship is consistent with observations made by Lynne Butler [1] about

adjacent rows of the q, t-Kostka matrix. Comparing Kλ(2a1b+2)(q, t) to Kλ(2a+12b)(q, t), one

notices that every term either changes by a factor of q or a factor of tb+1.

In fact we derive the following Corollary from the proposition.

Corollary 4.4 For s ∈
{

1 2 , 2
1

}a
we have the following relationship

Hs1
2 H

s2
2 · · ·H

sa
2 H

2
1

2 H(1b)[X; t] + tb+1Hs1
2 H

s2
2 · · ·H

sa
2 H

1 2
2 H(1b)[X; t]

= Hs1
2 H

s2
2 · · ·H

sa
2 H(1b+2)[X; t]
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Notice that equation (2.5) suggests that the standard tableaux classes are isomorphic

if the type has the same number of occurrences of 2
1 . The isomorphism between these classes

is given by the composition of the operators that were introduced in the last section. The

Na (invertible) operator changes a standard tableau in the class STCs to an x-standard

tableau such that the content is s. The (i, i + 1) operators change the tableau to define a

symmetric group action on the content. To make this more precise we define the bijection

in the following proposition:

Proposition 4.5 For 1 ≤ i < a and s ∈
{

1 2 , 2
1

}a
×
{

1 b
}

the operator N−1
a (i, i+ 1)Na is

a bijection between STCs and STC(i,i+1)s. Furthermore this operator has the property that if

si = 1 2 and si+1 = 2
1 then a(2a1b)(N

−1
a (i, i+ 1)NaT ) = a(2a1b)(T ) + 1 and b(2a1b)(N

−1
a (i, i+

1)NaT ) = b(2a1b)(T ).

Example 4.6
4 6
2 5
1 3

4 6
3 5
1 2

5 6
2 4
1 3

T N−1
3 (1, 2)N3T N−1

3 (2, 3)N3T

T has type(23)(T ) =
(

2
1 , 1 2 , 2

1

)
, so type(23)(N

−1
3 (1, 2)N3T ) =

(
1 2 , 2

1 ,
2
1

)
and

type(23)(N
−1
3 (2, 3)N3T ) =

(
1 2 , 2

1 ,
2
1

)
.

a(23)(T ) = 3, a(23)(N
−1
3 (1, 2)N3T ) = 2, a(23)(N

−1
3 (2, 3)N3T ) = 4.

Taking the transpose (flipping the shape and entries of the diagram about the x = y

line) of a standard tableau T will be represented by the operator ωT . It has the property

that if the typeµ(T ) = s then the typeµ(ωT ) = (ωs1, ωs2, . . . , ωsk). This follows directly

from the definition of the µ− type since H−1
2 V ωT = ωH−1

2 V T . This gives a simple method

for computing the aµ and bµ statistics of ωT from the aµ and bµ statistics of T .
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Proposition 4.7 a(2a1b)(ωT ) = (a+b
2 ) + (a2)− a(2a1b)(T ) and b(2a1b)(ωT ) = a− b(2a1b)(T ).

This result follows from the fact that c(ωT ) = (n2) − c(T ) and Proposition 3.5 and

the definition of bµ. This is consistent with the symmetric function identity ωHµ[X; q, t] =

qn(µ′)tn(µ)Hµ[X; 1/q, 1/t] since n((2a1b)) = (a+b
2 ) + (a2) and n((2a1b)′) = a.

Before the end of this paper, we would like to point out a less obvious observation

about the standard tableaux classes. After a conversation with Will Brockman on about the

Hall-Littlewood polynomials, he showed me several conjectures about the number of standard

tableaux that fall in a catabolism type when ranked by charge. Since the standard tableaux

classes that we have defined here are generalizations for the catabolism type, it seems likely

that the same conjectures will hold true for these classes. Again we let s ∈
{

1 2 , 2
1

}a
×{1}

b

then define the symbol Ais = #{T |T ∈ STCs, a(2a1b)(T ) = i}.

Conjecture 4.8 The sequence A∗s = (A0
s, A

1
s, A

2
s, . . . ) is a unimodal sequence (that is, it

increase and then decreases).

Example 4.9

µ = (23) s = ( 1 2 , 1 2 , 1 2 ) A∗s = (1, 1, 2, 3, 2, 1, 1)

s =
(

1 2 , 1 2 , 2
1

)
A∗s = (1, 2, 3, 2, 1)

s =
(

1 2 , 2
1 ,

2
1

)
A∗s = (1, 2, 3, 2, 1)

s =
(

2
1 ,

2
1 ,

2
1

)
A∗s = (1, 1, 2, 3, 2, 1, 1)

µ = (2212) s =
(

1 2 , 1 2 , 1 2
)

A∗s = (1, 3, 4, 4, 4, 2, 1, 1)

s =
(

1 2 , 2
1 , 1 2

)
A∗s = (1, 2, 4, 4, 4, 2, 1)

s =
(

2
1 ,

2
1 , 1 2

)
A∗s = (1, 1, 2, 4, 4, 4, 3, 1)
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µ = (2114) s =
(

1 2 , 1 4
)

A∗s = (1, 2, 4, 5, 7, 6, 5, 4, 2, 1, 1)

s =
(

2
1 , 1 4

)
A∗s = (1, 1, 2, 4, 5, 6, 7, 5, 4, 2, 1)

µ = (16) s = ( 1 6) A∗s = (1, 1, 2, 4, 5, 7, 9, 9, 9, 9, 7, 5, 4, 2, 1, 1)

We list here the A∗s sequences for only the classes
(

1 2 l, 2
1
a−l
, 1 b
)

since the other

classes are isomorphic to these. By the observations from Proposition 4.2 we know that for

s ∈
{

1 2 , 2
1

}a
we have that the sequence A∗(

s,1 b+2
) can be calculated from the sequences

A∗(
s,1 2 ,1 b

) and A∗(
s,21 ,1

b
) since Ai(

s,1 b+2
) = Ai−b−1(

s,1 2 ,1
b
) +Ai(

s,21 , 1
b
).
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Figure 1: Charge Poset for n = 4
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Figure 2: Charge Poset for n = 5
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Figure 3: Charge Poset for n = 6


