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Abstract

Consider lattice paths in Z2 with three step types: the up diagonal (1, 1),

the down diagonal (1,−1), and the double horizontal (2, 0). For n ≥ 1, let Sn
denote the set of such paths running from (0, 0) to (2n, 0) and remaining strictly

above the x-axis except initially and terminally. It is well known that the

cardinalities, rn = |Sn|, are the large Schröder numbers. We use lattice paths

to interpret bijectively the recurrence (n+ 1)rn+1 = 3(2n− 1)rn− (n− 2)rn−1,

for n ≥ 2, with r1 = 1 and r2 = 2.

We then use the bijective scheme to prove a result of Kreweras that the sum

of the areas of the regions lying under the paths of Sn and above the x-axis,

denoted by ASn, satisfies ASn+1 = 6ASn − ASn−1, for n ≥ 2, with AS1 = 1,

and AS2 = 7. Hence ASn = 1, 7, 41, 239, 1393, . . .. The bijective scheme yields

analogous recurrences for elevated Catalan paths.

Mathematical Reviews Subject Classification: 05A15

1 The paths and the recurrences

We will consider lattice paths in Z2 whose permitted step types are the up diagonal

(1, 1) denoted by U , the down diagonal (1,−1) denoted by D, and the double hori-

zontal (2, 0) denoted by H. We will focus on paths that run from (0, 0) to (2n, 0), for

n ≥ 1, and that never touch or pass below the x-axis except initially and terminally.

Let Cn denote the set of such paths when only U-steps and D-steps are allowed, and

let Sn denote the set of such paths when all three types are allowed. It is well known

that the cardinalities cn = |Cn| and rn = |Sn|, for n ≥ 1, are the Catalan numbers

and the large Schröder numbers, respectively. (See Section 4, particularly Notes 2

and 4.) Hence, here one might view the elements of Sn as elevated Schröder paths.

Let ACn denote the sum of the areas of the regions lying under the paths of Cn and

1



the electronic journal of combinatorics 47 (1998) #R47 2

above the x-axis. Likewise, let ASn denote the sum of the areas of the regions lying

under the paths of Sn and above the x-axis.

Figure 1: The 6 elevated Schröder paths of S3 bound 41 triangles of unit area.

n 1 2 3 4 5 . . .

cn 1 1 2 5 14 . . .

rn 1 2 6 22 90 . . .

ACn 1 4 16 64 256 . . .

ASn 1 7 41 239 1393 . . .

The Catalan numbers and the Schröder numbers have been studied extensively;

Section 4 references some studies related to lattice paths. In our notation their explicit

formulas are, for n ≥ 1,

cn =
1

n

(
2n− 2

n− 1

)
and rn =

n∑
k=1

1

k

(
n− 2

k − 1

)(
n− 1

k − 1

)
2k.

It is known that these sequences satisfy the recurrences

(n+ 1)cn+1 = 2(2n− 1)cn (1)

(n+ 1)rn+1 = 3(2n− 1)rn − (n− 2)rn−1 (2)

for n ≥ 2, with initial conditions c1 = 1, c2 = 1, r1 = 1, and r2 = 2.

We will give a bijective proof for (1) and (2) when the sequences cn and rn are

defined in terms of the sets of lattice paths. We will then employ this bijective

construction to obtain a combinatorial interpretation that the sequences for the total

areas satisfy

ACn+1 = 4ACn (3)

ASn+1 = 6ASn −ASn−1 (4)

for n ≥ 2 with initial conditions AC1 = 1, AC2 = 4, AS1 = 1, and AS2 = 7.

Using binary trees, Rémy [10] gave a combinatorial proof of recurrence (1). Re-

cently, Foata and Zeilberger [3] showed bijectively, using well-weighted binary plane

trees, that the small Schröder numbers satisfy (2) with initial conditions r1 = 1 and

r2 = 1. (See Section 4 for “well-weighted” and “small”.) Kreweras [4], using lattice
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paths equivalent to those of Sn showed ASn =
∑

0≤k<n 2k
(

2n−1
2k

)
and derived recur-

rence (4). Following his results, Bonin, Shapiro, and Simion [2] proved (4) using

generating functions and then wrote that “This recurrence cries out for a combinato-

rial interpretation.” Section 3 comes to the rescue.

2 The proof of recurrences (1) and (2)

We will focus on recurrence (2) rearranged as 3(2n−1)rn = (n+1)rn+1 +(n−2)rn−1.

In Sn replicate each path, defined as a sequence of steps, 3(2n− 1) times as follows:

First repeatedly tag each path P by appending the symbol a, b, or c. Next, for each

tagged path P , consecutively index its steps, as positioned in P , with the integers 1

through 2n−1 so that each U-step and each non final D-step receives one integer and

each H-step receives two consecutive integers. Then mark each path P by selecting

an integer from {1, . . . , 2n− 1} and marking the corresponding step on P

– by the superscript x if the step is U or if the step is H with odd index, and

– by the superscript y if the step is D or if the step is H with even index.

We write the set of such replications as {a, b, c} × {1, . . . , 2n− 1} × Sn = {a, b, c} ×

[2n − 1] × Sn, where, in general, [n] denotes {1, . . . , n}. For instance, for S2 =

{UUDD,UHD},

{a, b, c} × [3]× S2 =

{UxUDDa, UUxDDa, UUDyDa, UxHDa, UHyDa, UHxDa,

UxUDDb, UUxDDb, UUDyDb, UxHDb, UHyDb, UHxDb,

UxUDDc, UUxDDc, UUDyDc, UxHDc, UHyDc, UHxDc}.

Next in Sn+1 replicate each path n + 1 times by sequentially marking one of its

U-steps or H-steps by the symbol z. This replicated set is denoted as [n+ 1]× Sn+1.

Similarly, in Sn−1 replicate each path n − 2 times by sequentially marking one of

its H-steps or non final D-steps by the symbol z. This replicated set is denoted as

[n− 2]× Sn−1.

For n ≥ 2, we now define the desired bijection,

f : {a, b, c} × [2n− 1]× Sn → [n+ 1]× Sn+1

⋃
[n− 2]× Sn−1. (5)

Suppose

P = p1 · · · pi · · · pj · · · pk · · · pm. (6)

denotes a typical replicated path in [2n − 1]× Sn for which the following four items

hold.

– The positions i, j, and k satisfy 1 ≤ i ≤ j < k ≤ m.
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– The step pj is the step that is marked by x or y.

– The step pi is the last U-step preceding pj+1 for which lev(pi) = lev(pj). Here

the level of arbitrary step p`, denoted lev(p`), is the ordinate of its final point.

When pj = Ux, i = j.

– The step pk is the first D-step after pj for which lev(pk) = lev(pj)− 1.

Case 1a: If pj = Ux, Hx, or Dy, f(Pa) = p1 · · · pi · · · pjUzDpj+1 · · · pk · · · pm.

(Here, f(Pa) is obtained by inserting the pair UzD immediately after pj. The

tags x, y, and a are erased here; the tags b and c are erased in the following cases. If

P appears in Fig. 2, f(Pa) appears in Fig. 3. In the figures the dots pertain to an

illustration for the proof of the next section.)

Case 1b: If pj = Ux, Hx, or Dy, f(Pb) = p1 · · · pzi · · · pjURDpk · · · pm, where R =

pj+1 · · · pk−1.

(Observation 1: In the path Q = q1q2 · · · qm+2 = f(Pb) a D-step immediately

precedes the D-step qk+2, which is the translation of the step pk. The step qk+2 is the

first step after qzi = pzi for which lev(qk+2) = lev(qi)−1; qj = pj is now the last step

before qk+2 such that lev(qj) = lev(qk+2)− 1. The path R may be empty.)

If P UUUDHxHUDDD UHUHyUHDDD UUUDHyHUDDD

then

f(Pa) UUUDHUzDHUDDD UHUUzHDUHDDD UUUDUzHDUDDD

f(Pb) UUzUDHUHUDDDD UHUzHUHDHDD UUzUDUHUDDUDDD

f(Pc) UUUDHHzHUDDD UHUzUHDHHDD UUUDzHUDDD

Table 1: This table spells out the examples of the Figures 1 to 9 and 11 to 14.

Underlining identifies inserted steps.

Case 1c: If pj = Ux, Hx, or Dy, f(Pc) = p1 · · · pi · · ·pjHzpj+1 · · · pk · · ·pm.

Case 2a: If pj = Hy, f(Pa) = p1 · · · pj−1U
zHDpj+1 · · · pm.

Case 2b: If pj = Hy, f(Pb) = p1 · · · pzi · · · pj−1URDHpk · · · pm, where R is the

subpath pj+1 · · · pk−1.

(Here a U-step and a D-step are inserted and the step pj = H is moved. Obser-

vation 2: In the path Q = f(Pb) exactly one H-step immediately precedes qk+2, the

translation of pk. The step qj−1 = pj−1 is now the last step before qkqk+1qk+2 = DHpk
such that lev(qj−1) = lev(qk+2) + 1. R may be empty.)
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Case 2c: If pj−1pj = UHy, f(Pc) = p1 · · · pzi · · ·pj−1RHHpk · · · pm, where R is the

subpath pj+1 · · · pk−1.

(Observation 3: In the path Q = f(Pc), at least two H-steps immediately precede

the D-step qk+1, the translation of pk.)

Case 3: If pj−1pj = HHy or DHy, f(Pc) = p1 · · · pzj−1pj+1 · · · pm.

(Here f(Pc) ∈ [n− 2]× Sn−1 with the marked H-step being deleted.)

Table 1 and Figures 1 to 9 and 11 to 14 illustrate the map f . By giving special

attention to the three Observations in the preceding, it is straight forward to check

the necessary cases to show that f is a bijection. Assigning cardinalities to the sets

in the bijection given in (5) yields the recurrence (2). To prove recurrence (1), simply

remove all reference to the H-steps and to the tag c in the proof.

3 The proof of recurrences (3) and (4)

Retaining the previous notions, consider the recurrence (4). One can partition the

region under a path and above the x-axis by copies of two isosceles right triangles

whose hypotenuses have length 2 and are parallel to the x-axis. Figure 1 illustrates

how these triangles of unit area uniquely partition the regions under the paths. A

triangle is called an up triangle if its right angle is above its hypotenuse; otherwise,

it is called a down triangle.

An up-triangle-strip (down-triangle-strip, respectively) under a path of Sn is a

maximal array of up (down, respectively) triangles having the centers of their hy-

potenuses on a single line of slope −1 (slope 1, respectively). It is easily seen that

each path in Sn has n up-triangle-strips and n− 1 down-triangle-strips. The marked

triangles in Figure 2 illustrate an up-triangle-strip; those in Figure 6 illustrate a

down-triangle-strip. Each marked path P ∈ [2n − 1]× Sn determines a unique strip

under P as follows: If the step pj is marked by x, then the corresponding strip is

the up-triangle-strip whose line of centers of its triangles intersects the step pj. If pj
is marked by y, then the corresponding strip is the down-triangle-strip whose line of

centers of its triangles intersects the step pj . In either case we designate by 6TP six

copies of the strip corresponding to the step pj .

In the region under any path in Sn+1 a contiguous-strip is a maximal array of up

and down triangles having the centers of their hypotenuses on a single line of slope

−1. Each marked path P ∈ [n+1]×Sn+1 determines a unique strip under P , namely

that contiguous-strip whose line of hypotenuse centers intersects the marked step of

P . We designate this strip by TCP . The marked triangles of Figure 3 indicate a

contiguous-strip.
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isolated-triangle
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z
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Fig.9

z
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Fig.14

z
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z
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Fig.8

z
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z
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z
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z
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pi
pj pk
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Figures 2 through 14.
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In the region under any path in Sn−1 each down triangle can always be paired

with the contiguous up triangle on its right, but not visa-versa. A diamond-strip is a

maximal array of such pairs of triangles whose common sides lie on a line of slope 1.

The marked step of each path P ∈ [n− 2]× Sn−1 determines a unique diamond-strip

under P , namely the diamond-strip whose line of common sides intersects the final

point of the z-marked step of P . We designate this diamond-strip by TDP . The

marked triangles of Figure 14 indicate a diamond-strip.

Under a path P ∈ [n− 2]× Sn−1, any up triangle that is not contiguous along its

left side with a down triangle is viewed as an isolated-triangle. Figure 10 illustrates

an isolated-triangle. Since the left side of each isolated-triangle is a U-step of P

and conversely, each U-step, say ph, uniquely matches an isolated-triangle that we

designate by TIP,h. The disjoint collection of strips and isolated-triangles ⋃
P∈[n−2]×Sn−1

{TDP}

⋃ ⋃
P∈Sn−1

⋃
h∈u(P )

{TIP,h}


partitions the total region under the paths in Sn−1, where u(P ) is the set of the

positions of the U-steps on P .

To construct a function that yields a combinatorial proof of recurrence (4), con-

sider defining

g :
⋃

P∈[2n−1]×Sn

{6TP} → T
⋃
Q

where the elements of T and Q will be ordered triples and ordered quadruples, respec-

tively, of mutually non overlapping strips partitioning the total region lying under the

paths of Sn+1 and Sn−1.

With P being an arbitrary path as in (6), the bijection f induces a function g so

that

Case i: if pj = Ux, Hx, or Dy, define

g(6TP ) = (TCf(Pa), TCf(Pb), TCf(Pc)).

Case ii: if pj−1pj = pipj = UHy, define

g(6TP ) = (TCf(Pa), TCf(Pb), TCf(Pc), T IR,i),

where R = p1 · · · pipi+2 · · · pm.

Case iii: if pj−1pj = HHy or DHy, define

g(6TP ) = (TCf(Pa), TCf(Pb), TDf(Pc)).

The mapping of six copies of the strip of Figure 2 to those of Figures 3 to 5

illustrates Case i. Likewise Figure 6 with Figures 7 to 10 illustrates Case ii, and

Figure 11 with Figures 12 to 14 illustrates Case iii. Notice that each column of the

array of figures shows the 6-fold transfer of area.
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The function f being bijective implies g is bijective. The following three items

can be routinely checked to show that g transfers area as claimed. Here A(T ) denotes

the area of an arbitrary strip T . For

Case i, (A(TCf(Pa)),A(TCf(Pb)),A(TCf(Pc))) = (2A(TP ) + 1, 2A(TP )− 1, 2A(TP ));

Case ii, (A(TCf(Pa)),A(TCf(Pb)),A(TCf(Pc)),A(TIR,j)) = (2A(TP ) + 1, 2A(TP ) −

1, 2A(TP )− 1, 1);

Case iii, (A(TCf(Pa)),A(TCf(Pb)),A(TDf(Pc))) = (2A(TP )+1, 2A(TP )−1, 2A(TP ));

Finally to prove recurrence (3) we remove all reference to H-steps and the tag c

in this proof.

4 Notes

1. The following corollary of the construction of the function f originated as a fortu-

itous observation resulting in the definition for the crucial Case 3:

For n ≥ 2, there are (n−2)rn−1 step pairs of the form DH or HH on the totality

of paths of Sn.

2. One of the more interesting of the many references to the Catalan numbers

is Stanley’s [15] collection of 66 combinatorial interpretations of these numbers. His

book [15] lists other primary references in the vast literature for these numbers.

3. In lieu of the three step types employed in this paper, the step types (0, 1),

(1, 0), and (1, 1) are the usual step types defining Schröder paths. For the latter

three types, clearly the Schröder number rn counts the paths running from (0, 0) to

(n−1, n−1) and never passing below the line y = x. In an early paper on paths with

such step types Moser and Zayachkowski [7], realizing that the number of unrestricted

paths from (0, 0) to (n, n) is a Legendre polynomial evaluated at 3, used a recurrence

for these polynomials to derive essentially recurrence (2).

4. We use “rn” for the large (or double as in [4]) Schröder numbers since sn =

rn/2 for n ≥ 2 with s1 = 1 is reserved for the so-called small Schröder numbers:

1, 1, 3, 11, 45, . . .. Ernst Schröder formulated these numbers in the second problem of

his 1870 paper [14]: In how many ways can one or more pairs of brackets be legally

placed in z1, z2 · · · zn? For instance, when n = 3, there are the three bracketings,

(z1z2z3), ((z1z2)z3), and (z1(z2z3)). The problem of enumerating bracketings is equiv-

alent both to the problem of enumerating dissections of convex polygons and to the

problem of enumerating Schröder trees with a fixed number of leaves. (A Schröder

tree is a plane trees whose internal nodes have at least two children.)

As noted in [16], David Hough discovered that the small Schröder numbers were

apparently known to Hipparchus in the second century B.C. as counting certain logical

propositions. The papers [2, 9, 12, 11, 13, 16, 17] form a selection of the studies

concerning the Schröder numbers. Of particular interest is the result of Rogers and

Shapiro, appearing implicitly in [12, 13], and later the result of Bonin, Shapiro, and
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Simion [2], that give combinatorial maps relating the enumeration of bracketings to

the enumeration of lattice paths of Sn.

5. A well-weighted binary plane tree is a binary tree where each node having

a right internal child is labeled with a 1 or a 2. Foata and Zeilberger [3], after

giving a rather simple bijection between Schröder trees and well-weighted binary

plane trees, showed bijectively that the small Schröder numbers satisfy (n+1)sn+1 =

3(2n− 1)sn − (n− 2)sn−1 with the conditions s1 = 1, and s2 = 1. Their proof is not

isomorphic to our proof of (2); this is not surprising since the bijections mentioned

at the end of Note 3 between bracketings and Sn do not seem to be trivial.

6. In this and the next note define sequence ASn purely as the one satisfying the

formal recurrence (4), not specifically in terms of lattice paths. Barcucci, Brunetti,

Del Lungo, and Del Rietoro [1] recently gave a combinatorial interpretation of formal

recurrence (4) in terms of a regular language. In [5] the sequence ASn is related to

solutions of the diophantine equation, x2 + (x + 1)2 = y2, with x = (ASn − 1)/2.

Newman, Shanks, and Williams [8] found that the numbers ASn correspond to the

orders of certain simple groups.

7. The author [18] has considered the formal recurrences (1) to (4) bijectively in

terms of parallelogram polyominoes. For n ≥ 2, let pα,n(w) =
∑
k pα,n,kw

k, where

p0,n,k denotes the number of parallelogram polyominoes with perimeter 2n and width

k, and where (n− 1)p1,n,k denotes the total area of such polyominoes. The paper [18]

shows that the sequences p0,n(w) and p1,n(w) satisfy the recurrences

(n+ 1− α)pα,n+1(w) = (2n− 1− α)(1 + w)pα,n(w)− (n− 2)(1− w)2pα,n−1(w),

with initial conditions pα,2(w) = w, pα,3(w) = w + w2. The proof for the case α = 0

in [18] is isomorphic to the proof in [3], but not to the proof of Section 2.

More specifically, the total area (n − 1)p1,n(1) is 4n−2; this result was recently

derived by interesting generating-function argument by Woan, Shapiro, and Rogers

[19]. The product (n − 1)p1,n(2), corresponding to the sum of the areas of polyomi-

noes having bi-colored columns, satisfies the recurrence np1,n+1(2) = 6(n−1)p1,n(2)−

(n − 2)p1,n−1(2) with early values (n − 1)p1,n(2) = 1, 6, 35, 204, 1189, . . ., for n =

2, 3, 4, 5, 6 . . .. These polynomial sequences, pα,n(w), generalize other well-known

sequences: e.g., {p0,n(1)}n≥2 are the Catalan numbers, {p0,n(2)}n≥2 are the large

Schröder numbers, {((n − 1)p1,n(2)/2)2}n≥2 are the square-triangular numbers, and

{p2,n(1)} are the central binomial coefficients.

8. Recently, Merlini, Sprugnoli, and Verri [6] used generating function methods

in determining the sum of the areas bounded by constrained lattice paths belonging

to sets that essentially generalize Cn and Sn. The paper [6] also contains additional

relevant references to the literature.
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