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Abstract

We determine the Ramsey numbers r(K3, G) for all 261080 connected graphs
of order 9 and further Ramsey numbers of this type for some graphs of order
up to 12. Almost all of them were determined by computer programs which
are based on a program for generating maximal triangle-free graphs.

1 Introduction

For two graphs G and H, the Ramsey number r(G,H) is the smallest integer r, such
that every 2-colouring of Kr, using the colours red and blue, say, contains G as a red
subgraph or H as a blue subgraph. Equivalently, r is the smallest integer such that
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every graph F of order p ≥ r contains G as a subgraph, or its complement F contains
H as a subgraph. The classical Ramsey numbers — those where both G and H are
complete graphs — are notoriously difficult to compute or even to estimate for large
order graphs. Also there are only a few precise results known for infinite sequences of
graphs. Usually only those cases are known where extremal graph theory and Ramsey
theory meet.
Here we will deal with Ramsey numbers r(K3, H) for connected graphs H of small
order. A few years ago, these numbers were completely determined only for graphs
H up to order 6, the last (and major) step being done by Faudree, Rousseau, and
Schelp [8]. Only recently, the numbers for all connected graphs of order 7 were com-
puted by Jin Xia [10] in his thesis by using a computer. Unfortunately, his results are
unreliable since some of the numbers turned out to be incorrect. The correct num-
bers for all connected graphs of order 7 and 8 were computed by Brinkmann [3], also
using a computer. Independently, Schelten and Schiermeyer computed the Ramsey
numbers for graphs of order 7 by hand [15,16]. We will give the Ramsey numbers for
all connected graphs of order 9. The Ramsey numbers up to r = 27 are determined
by computer programs. The remaining numbers are computed by Ramsey theoretical
means or were previously known. The computation of the Ramsey numbers for all
graphs of order 10 seems currently out of reach, since the upper and lower bounds
for the Ramsey numbers r(K3, K10) and r(K3, K10− e), respectively, both differ by 3
(see [14]).
A second problem which we investigated is the concept of goodness introduced by
Burr in [4]. A connected graph H is called G-good, if the Ramsey number r(G,H) is
as small as possible for a connected graph H, or, in other words,

r(G,H) = (χ(G)− 1)(|H| − 1) + s(G), (1)

where χ(G) denotes the chromatic number and s(G) the chromatic surplus of G, i.e.
the minimum cardinality of a color class taken over all proper χ(G) colorings of G.
In the case G = Kp the most sparse connected graphs, namely trees, are known to be
Kp-good [7]. In [5] the question was raised for the functions f(Kp, n) and g(Kp, n),
where f(Kp, n) is the largest integer such that every connected graph of order n with
at most f(Kp, n) edges is Kp-good and g(Kp, n) is the largest integer such that there
is a Kp-good connected graph of order n with g(Kp, n) edges. We computed f(K3, n)
and g(K3, n) for n ≤ 12.
Because of the large number of small Ramsey numbers computed here, trends for the
asymptotic growth of Ramsey numbers can be detected empirically. Some of them
are opposed to the previously expected behaviour. Motivated by our data, in [1] the
first author succeeded in disproving several goodness conjectures for more general
classes of Ramsey numbers by purely theoretical (probabilistic) means. It should
be mentioned that the observed behaviour can hardly be detected from the data on
r(K3, H) for graphs H of order at most 7, i.e. the range which can be solved without
computer aid. We hope that our data will serve to give further insight into the growth
of Ramsey numbers.
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2 Computing r(K3, H) for graphs of order 9

We computed the Ramsey numbers r(K3, H) for connected graphs H of order 9 (pre-
sented in the listings at the end of this paper) mostly by using computer programs.
The only exceptions are the cases r(K3, K9) = 36 and r(K3, K9 − e) = 31 (which
are well-known – see the regularly updated dynamic survey of Radziszowski [14]),
r(K3, K9 − K1,s) = 28 for 2 ≤ s ≤ 7 and r(K3, K9 − K3) = 28 which are deter-
mined with the help of standard theoretical Ramsey arguments. The Ramsey number
r(K3, Kn − K1,s) equals r(K3, Kn−1) if s is sufficiently large with respect to n and
r(K3, Kn−1), as we will show now.
Call a graph F a Ramsey graph for a pair of graphs (G,H), if F does not contain
G as a subgraph and its complement F does not contain H as a subgraph. In order
to show that r(G,H) = r, two tasks have to be performed: (i) find a Ramsey graph
of order r − 1 for (G,H), and (ii) show that no Ramsey graph of order r exists for
(G,H). For (i) we can alternatively find a subgraph H ′ ⊆ H with r(G,H ′) = r.

Theorem 1 If r = r(K3, Kn−1) and n ≥ s + 1 > (n − 2)(n − 1)/(r − n) then
r(K3, Kn −K1,s) = r.

Proof. Since Kn−1 ⊆ Kn −K1,s we have r(K3, Kn −K1,s) ≥ r. Now take a triangle-
free graph F of order r. We have to show that Kn−K1,s is contained in the comple-
ment F . If the maximum degree ∆(F ) ≥ n then F contains Kn since F is triangle-free
and therefore Kn − K1,s. So assume ∆(F ) ≤ n − 1. By the definition of the Ram-
sey number, F must have an independent set S of n − 1 vertices. If ∆(F ) = n − 1
choose S to be the neighbourhood of an (n − 1)-valent vertex v, otherwise choose v
arbitrarily in V (F ) \ S. In any case, each vertex in S has at most n − 2 neighbours
in V (F ) \ (S ∪ {v}), so one vertex w of the r− n vertices in V (F ) \ (S ∪ {v}) has at
most b(n− 2)(n− 1)/(r− n)c ≤ s neighbours in S. Hence Kn −K1,s is contained in
the subgraph of F induced by S ∪ {w}.

2

Recently, Kim proved that r(K3, Kn) = Θ(n2/ logn) [11], so Theorem 1 yields
r(K3, Kn − K1,s) = r(K3, Kn−1) if s = Ω(log n). In the case that we are mainly
interested in (n = 9), Theorem 1 gives equality for s ≥ 2.

Corollary 1 r(K3, K9 −K1,s) = 28 for 2 ≤ s ≤ 8.
2

Since the complement of a triangle-free graph contains Kn − K3 if and only if it
contains Kn −K1,2, Corollary 1 implies the following result.

Corollary 2 r(K3, K9 −K3) = 28.
2

The algorithm

The central tool for the computation of the remaining 261071 Ramsey numbers
r(K3, H) for connected graphs H of order 9 and the further Ramsey numbers which
we computed, is the computer program mtf described in [2]. This program is designed
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to generate all non-isomorphic maximal triangle-free graphs, but it is prepared to in-
clude certain restrictions into the generation process. One of these restrictions is to
generate only Ramsey graphs for (K3, H).
The program mtf generates maximal triangle-free graphs F on n vertices from maxi-
mal triangle-free graphs F ′ on n−1 vertices in such a way that F ′ ⊆ F always holds.
So if a graph H is contained in the complement of a maximal triangle-free graph F0,
it will be contained in the complement of all its descendants as well and therefore
they cannot be a Ramsey graph for (K3, H). The Ramsey number r(K3, H) is one
more than the maximum order of a Ramsey graph for (K3, H). Note that a maximal
triangle-free supergraph of a Ramsey graph for (K3, H) of the same order is a Ramsey
graph for (K3, H) as well. More details can be found in [3] and [2].
The amount of time needed to compute a single Ramsey number r(K3, H) turns
out to depend mainly on the magnitude of r(K3, H). Even though this Ramsey
number is relatively small for most of the graphs considered here, the huge number of
graphs under investigation makes it impossible to compute all the Ramsey numbers
separately. The most time-consuming part is the subgraph testing routine, so, in
order to improve the performance, we tried to reduce the number of subgraph tests.
One method to do so is to test a group of graphs H0, H1, . . . , Ht simultaneously.
These graphs are ordered with respect to subgraph relations, so whenever a graph Hi

is found to be contained in the complement of a maximal triangle-free graph F , all
the graphs that are subgraphs of Hi need not be tested, and – the other way round –
whenever a graph Hj is found to be not contained in the complement of a maximal
triangle-free graph F , all the graphs that are supergraphs of Hj need not be tested
any more. Some tests showed that usually it is most efficient to start testing the
minimal elements of the subgraph chains and then proceed to the larger ones.
This method was used e.g. for the graphs K9 − iK2 for 2 ≤ i ≤ 4.
For very large groups this method is not optimal. The graphs have to be kept in
the main memory of the computer for quick access, which requires machines with a
lot of memory. Furthermore a lot of useless work is done if the subgraph chains are
traversed in a direction where no information is gained.
So for larger lists we optimized the methods already used in [3], developing a strategy
which has the following property: to generate the Ramsey numbers for all connected
graphs of order n with Ramsey number at most r0, only the Ramsey numbers of
the maximal elements of the subgraph lattice with Ramsey number r ≤ r0 are actu-
ally computed and the time needed for the whole computation is dominated by the
time needed to compute these Ramsey numbers. As n grows, the number of maxi-
mal elements becomes negligible compared to the number of graphs altogether. Our
approach is as follows:
Assume that we already know the graphs of order n with Ramsey number smaller
than r. Testing graphs for Ramsey number r we give a (possibly empty) list of
MINGRAPHs, that are graphs of order at most n which are known to have Ramsey
number larger than r. Furthermore we have a list of MAXGRAPHs, that are the
maximal elements (w.r.t. inclusion) of the subgraph lattice with Ramsey number r,
which is empty in the beginning, and, finally, a list of RAMSEYGRAPHs, containing
triangle-free graphs of order r which are (or might be) Ramsey graphs for (K3, H)
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for some graph H of order n. This list can be empty in the beginning, but may also
contain graphs which we consider to be candidates for being Ramsey graphs.
Then the basic structure of the algorithm can be explained as follows:

for k =
(
n
2

)
downto n− 1 do

for every connected graph H with k edges in the list do
if H is not contained in any MAXGRAPH then

if H is not supergraph of one of the MINGRAPHs then
if H is contained in the complement of every RAMSEYGRAPH then

if mtf applied to H finds a Ramsey graph of order r then
add this Ramsey graph to the list of RAMSEYGRAPHs; r(K3, H) > r

else add H to the list of MAXGRAPHs; r(K3, H) ≤ r
else r(K3, H) > r

else r(K3, H) > r
else r(K3, H) ≤ r.

MAXGRAPHs and RAMSEYGRAPHs are always ordered according to the number
of times they could be used to determine the Ramsey number of a graph, so that the
graphs are first tested against the most promising MAXGRAPHSs and RAMSEY-
GRAPHs.
Graphs with the same number of edges can be tested in parallel. We ran this pro-
gram on a large cluster of workstations in Berlin and Bielefeld using the program
autoson [13] to distribute the jobs. Only some small amount of communication be-
tween the processes was necessary in order to distribute new RAMSEYGRAPHs and
MAXGRAPHs. This was done by using a common file system. The main problem
was that each level k had to be worked out completely before the computations for
smaller sized graphs could start. Some tests starting runs on smaller size graphs
before the larger size computations were completed lead to an enormous amount of
computational overlap, so we did not follow this strategy any further. The graphs of
order n to be tested were generated by the program makeg [12].
In our computations the average time needed to compute a MAXGRAPH is signif-
icantly longer than the average time needed to compute a RAMSEYGRAPH, while
the time needed to test a graph against all existing MIN-, MAX-, and RAMSEY-
GRAPHs is negligible. Since typically more MAXGRAPHs are generated than RAM-
SEYGRAPHs, the time needed for the whole computation is dominated by the time
needed to determine the MAXGRAPHs. So significant improvements in the running
time, which are necessary for extending the results, requires improvements in the
computation process of a single Ramsey number r(K3, H).
To compute r(K3, H) for the graphs of order 9 and 10, we used the method described
above, some preliminary methods on the way from those described in [3], and some
runs testing small groups.
Our data suggest the following conjecture:

Conjecture 1 For every integer r > 10 there is a connected graph H with
r(K3, H) = r.
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There are no such graphs for r = 1, 2, 4, 8, 10 but we believe that for every other order
such a graph exists.

3 The functions f(K3, n) and g(K3, n)

As already mentioned in the introduction, the function f(Kp, n) is the largest integer,
such that every connected graph H of order n and size at most f(Kp, n) satisfies
r(Kp, H) = (p− 1)(n− 1) + 1, and the function g(Kp, n) is the largest integer, such
that there exists a graph H of order n with g(Kp, n) edges satisfying r(Kp, H) =
(p− 1)(n− 1) + 1. Since trees attain the indicated bound, f(Kp, n) and g(Kp, n) are
well defined.
Not much is known about g(Kp, n). Burr et.al. [5] proved that

Ω(np/(p−1)) ≤ g(Kp, n) ≤ O(n(p+2)/p(log n)
1−( 2

(p2−p)
)
)

and improved the lower bound by a factor of
√

log n for p = 3. There is a substantial
gap between the upper and the lower bound, and even a reasonable conjecture for the
structure of the graphs determining g(Kp, n) seems to be missing. Based on the graphs
giving the lower bound for p = 3, a possible structure for the graphs determining
g(K3, n) was proposed by Faudree, Rousseau and Schelp [9, Question 2.32]. This
structure consists of the disjoint union of complete graphs and an additional vertex
joined to all other vertices. The values and graphs for n ≤ 12 which we computed
are still too small to judge, but we would rather expect graphs of larger connectivity
to determine g(K3, n).
The situation is different for f(Kp, n). For p ≥ 4 it was shown by Burr et.al. [5],
that f(Kp, n) = n + o(n), while for p = 3 they proved that f(K3, n) > 17n/15
for n ≥ 4. The general belief—expressed in a number of conjectures—was that the
growth of f(K3, n) is superlinear in n. Motivated by the present results, Brandt [1]
proved that for every constant c, almost all (with probability tending to 1) regular
graphs H of sufficiently large degree d have Ramsey number r(G,H) > c|H| for
every non-bipartite graph G. This implies that f(K3, n) is linear in n, and in fact it
can be shown that f(K3, n) < 12n for large n. This complements a result of Burr
et. al. [6], saying that for every bipartite graph G and constant ∆, every graph H of
sufficiently large order n with bounded maximum degree ∆(H) ≤ ∆ is G-good, i.e.
r(G,H) = n− 1 + s(G).
It is very likely that the bound f(K3, n) < 12n is fairly weak. For small values of
n for which we computed the exact numbers we have f(K3, n) < 5n/2, but it seems
likely that the exact values for larger n are somewhat larger. Though it seems difficult
to guess a precise bound for f(K3, n)/n as n → ∞, it may be simpler to guess the
right Ramsey graphs, i.e. the triangle-free graphs F of order 2n − 1 for which there
is a connected graph H of order n and size f(K3, n) + 1 which is not contained in
the complement of F . Possibly the typical Ramsey graphs are obtained from the
lexicographic products C5[Kk] (obtained from a 5-cycle by replacing every vertex by
a set of k independent vertices and joining any two sets if the corresponding vertices
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were adjacent in the 5-cycle) by deleting some vertices to adjust the order. This is
the case for many small n and for large n these graphs suffice to show that f(K3, n)
has linear growth in n. So we pose the following problem:

Problem 1 Is it true that for every sufficiently large integer n there is a graph ob-
tained from C5[Kk], k = d(2n − 1)/5e, by deleting 5d(2n − 1)/5e − 2n + 1 vertices,
which is a Ramsey graph for (K3, H), where H is a connected graph of order n and
size f(K3, n) + 1?

The strong impact of these graphs would also explain the strange behaviour of
f(K3, n). Note that f(K3, 11) = f(K3, 12) = 23, which was a surprising fact for
us. In fact, we do not even know whether f(K3, n) is a monotonously increasing
function in n. If the answer to Problem 1 was affirmative, this would probably turn
the determination of f(K3, n) into a separator type problem, essentially asking for
the smallest size of a graph of order n without a (1

3
–2

3
)-separator of cardinality at

most 2n/5. A (1
3
–2

3
)-separator is a vertex set X ⊆ V (G) such that V (G)−X can be

partitioned into two disjoint sets A,B with |A| ≤ |B| ≤ 2|A| with no edge joining a
vertex of A to a vertex of B.
Extending the above question even further, for f(Kp, n), p ≥ 4, the upper bound on
f(Kp, n) suggests that the classical Ramsey graphs (i.e those for (Kp, Kr)) might be
among the relevant Ramsey graphs, which have a complex structure in contrast to
the (possibly) simply structured Ramsey graphs for p = 3. Now, if G is non-bipartite
with clique number p = 2, what are the relevant Ramsey graphs determining f(G, n)?
The smallest example to look at is G = C5.

Computing explicit values for f(K3, n) and g(K3, n)

We computed all values of f(K3, n) and g(K3, n) for n ≤ 12. The results are presented
in Table 1.
For n ≤ 10 we determined all K3-good graphs, i.e. those with Ramsey number 2n−1
by the above methods, so the values of f(K3, n) and g(K3, n) could be directly read
off the lists. This showed some unexpected properties of the K3-good graphs: The
maximal elements of the subgraph chains are all much larger than the smallest graphs
with larger Ramsey number. So we defined h(K3, n) to be the smallest number h so
that there is a graphG with n vertices and Ramsey number 2n−1 that is not contained
in a larger graph with this property. Obviously f(K3, n) ≤ h(K3, n) ≤ g(K3, n), but
in all the observed cases h(K3, n) is much closer to g(K3, n) than to f(K3, n).

Problem 2 What is the relation between f(K3, n), h(K3, n) and g(K3, n)? Is it true
in general that h(K3, n)/f(K3, n) ≥ g(K3, n)/h(K3, n) ?

Because of the enormous amount of graphs and the quickly increasing time for com-
puting a single Ramsey number, for n ≥ 11 we could not determine all graphs with
Ramsey number 2n − 1. For n = 10 there were already 334 maximal elements of
the subgraph chains, 23 of them with g(K3, 10) edges. For n = 11 we computed
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151 maximal elements with g(K3, 11) edges before we stopped the computations and
looked for a faster way.
Another astonishing property of the class of K3-good graphs made it possible to deter-
mine even f(K3, 12): It turned out that in general only very few graphs with g(K3, n)
edges are needed to decide that all graphs with f(K3, n) edges have Ramsey number
2n − 1. To be precise: All graphs on 10 vertices with f(K3, 10) edges are contained
in the first two graphs on 10 vertices with g(K3, 10) edges which we computed. For
n = 11 the first 19 graphs were needed, but taking just graph number 1 and graph
number 19 again gave a list of only two graphs that contained every graph on 11
vertices with f(K3, 11) edges.
In general, when testing a graph, mtf was much faster in finding Ramsey graphs than
determining that no Ramsey graph of the given order exists for the testgraph. So our
strategy was as follows: We guessed an upper bound bg for g(K3, n) and tested all
graphs with bg edges for being K3-good. The result was either a number of Ramsey
graphs or a set of graphs which are K3-good or both. In case of K3-good graphs
we increased bg and tested again, in case of no K3-good graphs we decreased bg and
tested the smaller graphs. As soon as some K3-good graph with e edges is found and
all graphs with e+1 edges are shown not to be K3-good, we know g(K3, n) = e. Then
the set of maximal K3-good graphs known so far is taken and tested against a guess
bf for a lower bound of f(K3, n). In case that all graphs with n vertices and bf edges
are contained in some of the maximal K3-good graphs, we increase bf , otherwise we
either have to generate more of the K3-good graphs of large size or to test the graphs
separately whose Ramsey number could not be determined in this way. For n = 12
two K3-good graphs with g(K3, 12) edges and two with g(K3, 12) − 1 edges were
sufficient to contain all graphs on 12 vertices with 23 edges. For 24 edges one graph
was determined separately not to be K3-good, showing f(K3, 12) = 23. In all, about
109 Ramsey numbers were determined to compute f(K3, 11), f(K3, 12), g(K3, 11) and
g(K3, 12) – most of them by showing that the graphs are subgraphs of another graph
formerly shown to be K3-good.

Problem 3 Is there always a small set S of K3-good graphs of order n, such that
every graph on n vertices with f(K3, n) edges is contained in an element of S ?

We do not think that the cardinality of S can be bounded by a constant but it might
be bounded by a moderately growing function in n.

4 Notes and Acknowledgements

We do not think that the probability for an error in a computer assisted proof is
higher than one in a long proof by hand. But we think that – whenever possible
– a computer assisted proof should be checked by an independent program. So al-
though we were very careful in implementing the algorithms and checked our results
against all available data, we think that an independent approach on the calculation
of triangle Ramsey numbers would be an important thing to do.
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Since the program was run on large clusters of different types of workstations we
could not track the amount of CPU used in all cases. So we have no exact values
for the total amount of CPU used. For example the accumulated CPU time for
the computation of all Ramsey graphs and all maximal graphs needed to determine
the graphs on 10 vertices with Ramsey number 19 was a bit less than 9 days on a
mixed cluster of sun, sgi and alpha workstations and 133MHz linux PCs. The most
expensive of the maximal graphs on 10 vertices with Ramsey number 23 alone took
almost 22 days (distributed over the same cluster). One of the maximal graphs on 12
vertices with 49 edges and Ramsey number 23 needed 1.6 CPU years in all, the other
one needed about 185 days of CPU. So the total amount of CPU used is in the range
of several CPU-years. The program mtf or computer readable lists of the graphs in
this article can be obtained from the authors.

We would like to thank our departments for the extensive use of their computers and
especially the group of Prof. Wachsmuth at the Technische Fakultät in Bielefeld for
the opportunity to run a lot of jobs on their machines. Without this support the
extensive computations would not have been possible.
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|H| = 3 |H| = 4 |H| = 5 |H| = 6 |H| = 7 |H| = 8 |H| = 9 |H| = 10

r = 5 1

r = 6 1

r = 7 5

r = 8

r = 9 1 18

r = 10

r = 11 2 98

r = 12 6

r = 13 2 772

r = 14 1 4 40

r = 15 9024

r = 16 13 1440

r = 17 1 19 498 242773

r = 18 1 7 119 16024

r = 19 311 10 101 711

r = 20 504

r = 21 1 28 1809 1 602 240

r = 22 22 3 155

r = 23 1 6 98 6 960

r = 24

r = 25 1 26 ?

r = 26 5 ?

r = 27 3 ?

r = 28 1 7 ?

r = 31 1 ?

r = 36 1 ?

Table 1: Numbers of connected graphs H with triangle Ramsey number r(K3,H) = r.

f(K3, n) g(K3, n) h(K3, n)
n=3 2 2 2
n=4 5 5 5
n=5 7 8 8
n=6 8 12 12
n=7 11 16 15
n=8 11 20 18
n=9 16 27 24
n=10 18 33 30
n=11 23 41
n=12 23 49

Table 2: Values for f(K3, n), g(K3, n) and h(K3, n).
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The triangle Ramsey number for connected graphs of order 9

r(K3, H) = 36 if and only if H = K9.

r(K3, H) = 31 if and only if H = K9 − e.

r(K3, H) = 28 if and only if Hc is one of the graphs

r(K3, H) = 27 if and only if Hc is one of the graphs

r(K3, H) = 26 if and only if Hc is one of the graphs

r(K3, H) = 25 if and only if Hc is contained in one of the graphs

and contains the graph

r(K3, H) = 23 if and only if Hc is contained in one of the graphs

and contains one of the graphs
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r(K3, H) = 22 if and only if Hc is contained in one of the graphs

and contains one of the graphs

r(K3, H) = 21 if and only if Hc is contained in one of the graphs
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and contains one of the graphs

r(K3, H) = 19 if and only if Hc is contained in one of the graphs

and contains one of the graphs
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r(K3, H) = 18 if and only if Hc is contained in one of the graphs
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and contains one of the graphs
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r(K3, H) = 17 if and only if Hc contains one of the graphs
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Extremal graphs for f(K3, n) and g(K3, n)

The complements of the graphs H on 10 vertices with r(K3, H) = 19 and
|E(H)| = g(K3, 10).

The graphs H on 10 vertices with r(K3, H) > 19 and
|E(H)| = 19 = f(K3, 10) + 1.

Two complements of graphs H on 10 vertices with r(K3, H) = 19 and
|E(H)| = 33 = g(K3, 10) containing all graphs on 10 vertices with up to f(K3, 10) =
18 edges.
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The unique graph H on 11 vertices with r(K3, H) > 21 and
|E(H)| = 24 = f(K3, 11) + 1.

Two complements of graphs H on 11 vertices with r(K3, H) = 21 and
|E(H)| = 41 = g(K3, 11) containing all graphs on 11 vertices with up to f(K3, 11) =
23 edges.

An example graph H on 12 vertices with r(K3, H) > 23 and
|E(H)| = 24 = f(K3, 12) + 1.

Two complements of graphs H on 12 vertices with r(K3, H) = 23 and |E(H)| = 49 =
g(K3, 12) and two complements of graphs H with r(K3, H) = 23 and |E(H)| = 48 =
g(K3, 12)− 1 containing all graphs on 12 vertices with up to f(K3, 12) = 23 edges.
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