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Abstract

Voltage graphs are a powerful tool for constructing large graphs (called
lifts) with prescribed properties as covering spaces of small base graphs. This
makes them suitable for application to the degree/diameter problem, which is
to determine the largest order of a graph with given degree and diameter.

Many currently known largest graphs of degree ≤ 15 and diameter ≤ 10 have
been found by computer search among Cayley graphs of semidirect products
of cyclic groups. We show that all of them can in fact be described as lifts of
smaller Cayley graphs of cyclic groups, with voltages in (other) cyclic groups.

∗This research started when J. Plesńık and J. Širáň were visiting the Department of Computer
Science and Software Engineering of the University of Newcastle NSW Australia in 1995, supported
by small ARC grant.
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This opens up a new possible direction in the search for large vertex-transitive
graphs of given degree and diameter.

AMS Subject Classification: 05C25.

1 Introduction

The problem of finding, for given d and k, the largest order nd,k of a graph of maximum
degree d and diameter ≤ k is well known as the degree/diameter problem. An obvious
upper bound on nd,k is the Moore bound Md,k, named after E. F. Moore who first
proposed the problem (see [20]): nd,k ≤ Md,k = 1 + d+ d(d− 1) + . . . + d(d− 1)k−1.
The equality nd,k = Md,k holds only if (a) k = 1 and d ≥ 1, or (b) k = 2 and d = 2, 3, 7
(and, possibly, d = 57), or (c) k ≥ 3 and d = 2; see [20, 8, 1]. For all remaining values
of d and k the best known general upper bound [2, 12] is nd,k ≤Md,k − 2, which was
recently improved see [21] for trivalent graphs and k ≥ 4 to n3,k ≤M3,k − 4.

In the absence of better upper bounds a number of clever methods for construct-
ing large graphs of given degree and diameter have been proposed. We just mention
here various compounding operations [15], twisted product of graphs [3], polarity quo-
tients [9], and linear congruential graphs [23]; others are listed in [19] and references
therein. For computer search results we refer to [11, 19]. An updated list of currently
largest known graphs of degree d and diameter k for d ≤ 15 and k ≤ 10 is maintained
in [10]. For our purposes it is important to point out that, for d ≤ k, about a half of
the values in the list have been obtained by searching over Cayley graphs of semidi-
rect products of (mostly cyclic) groups. Actually, this fact has led to the introduction
of the vertex-transitive version of the degree/diameter problem, which is finding the
largest order νd,k of a vertex-transitive graph of degree d and diameter k.

Quite recently the current authors have argued [6] that the covering graph con-
struction has a very good potential for producing examples of large graphs of given
degree and diameter. Roughly speaking, this method enables to “blow up” a given
base graph to a larger graph (called lift) which is a regular covering space of the base
graph. The lift is best described in terms of the base graph and a mapping, called
voltage assignment, which endows (directed) edges of the base graph with elements of
a finite group. A self-contained introduction to the topic is provided in Section 2. As
shown in [6], many of the currently known largest examples of graphs of given degree
and diameter can indeed be obtained by the covering graph construction. Further, a
recent result of [22] which shows that νd,2 ≥

8
9
(d+ 1

2
)2 for all d = (3q−1)/2 such that

q = 4`+ 1 is a prime power was also obtained using voltage assignments.
The objective of this paper is to show that, in fact, all the Cayley graphs of

semidirect products of groups which appear in the tables of largest known graphs of
given degree and diameter [11, 19, 10] can be described as covering spaces of smaller
base graphs, with voltage assignments taken in groups with a simpler structure; see
Sections 4 and 5. (This of course does not exclude the possibility of finding – by
computer search or other methods – even larger Cayley graphs based on groups which
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are not semidirect products.) We also include some observations on vertex-transitivity
of a lift (Section 3).

2 Voltage assignments and lifts

Voltage assignments on graphs were formally introduced in 1974 [16] as a dualisation
of the current graphs theory, which was the basic tool in the proof of the famous
Heawood Map Color Theorem [26]. It turns out that (ordinary) voltage assignments
on graphs are, in a sense, equivalent to semiregular groups of graph automorphisms
(see Theorem 2.2.2 of [17]); since the latter were used in [13] for a concise description
of certain graphs, this paper can also be seen as an ancestor for voltage graphs.
The theory of voltage graphs and their lifts can be viewed as a discretization of the
well known theory of covering spaces in algebraic topology applied to 1-dimensional
cell complexes, i.e., graphs. (There are other viewpoints as well, known as theory
of quotient graphs or divisors [7], equitable partitions [28], or colorations [24].) The
covering graph technique itself appears frequently as a tool in algebraic combinatorics;
we may mention e.g., the computation of spectra of covering graphs [7, 14], the theory
of distance-regular graphs [14], a construction of infinitely many cubic 5-arc-transitive
graphs [4], or constructions of cages [5].

An excellent treatment of the theory of voltage graphs and their applications in
constructing surface embeddings (including a voltage-based view of the Map Color
Theorem) can be found in [17]; for a more algebraic viewpoint see also Chapter
19 of [4]. In order to make this paper self-contained and accessible for readers not
acquainted with the theory, we sum up the basics in what follows.

Let G be an undirected graph, which may have loops and/or parallel edges. We
also allow G to have semi-edges, that is, dangling edges with just one end incident
to a vertex of G. (The occurence of the above three types of degeneracies may not
be natural at a first glance but it is well accepted – and sometimes unavoidable –
in algebraic graph theory.) Although the graph G itself is undirected, it will be of
advantage to assign (for auxiliary purposes) directions to its edges. An edge with
an assigned direction will be called an arc. Clearly, each edge of G which is not a
semiedge gives rise to a pair of mutually reverse arcs. The reverse of an arc e will be
denoted e−1; it is understood that (e−1)−1 = e. A semiedge will have, by definition,
only one direction, outward of the incident vertex (which is considered to be both
initial as well as terminal vertex of the semiedge). For convenience, if e is an arc
arising from a semiedge we still may formally use the symbol e−1 but we set e = e−1

in such a case. The collection of all possible arcs of G will be denoted by D(G).
Let Γ be a group and let G be a graph. A mapping α : D(G)→ Γ will be called

a voltage assignment on G if, for each arc e ∈ D(G), α(e−1) = (α(e))−1. It follows
that (α(e))2 = id if e is an arc corresponding to a semiedge.

In order to specify a voltage assignment in a pictorial representation of a graph, we
usually fix in advance an orientation of the (undirected) graph G and assign voltages
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to the arcs obtained; the reverse arcs are assumed to carry the corresponding inverse
voltages.

Let α : D(G) → Γ be a voltage assignment on a graph G in a group Γ. We now
introduce the concept of a lift Gα of the graph G. The vertex set and the arc set of
the lift are V (Gα) = V (G) × Γ and D(Gα) = D(G) × Γ; we shall use subscripts for
the Γ-coordinates of ordered pairs. The incidence in the lift is defined as follows. For
any arc e from u to v in G and any g ∈ Γ there is exactly one arc eg in the lift Gα;
this arc emanates from the vertex ug and terminates at the vertex vgα(e).

Observe that, in agreement with the definition, the arc (e−1)gα(e) of the lift Gα

emanates from vgα(e) and terminates at ug, because α(e−1) = (α(e))−1. The pair of
arcs eg and (e−1)gα(e) constitutes an undirected edge of the lift Gα; for the reverse
arcs in the lift we therefore have (eg)

−1 = (e−1)gα(e).
Let π : Gα → G be the natural projection which erases the subscripts, that is,

π(ug) = u and π(eg) = e for each u ∈ V (G), e ∈ D(G) and g ∈ Γ. Clearly, π is a
graph homomorphism; the sets π−1(u) and π−1(e) are called fibres above the vertex
u or above the arc e, respectively. Thus, if e is an arc from u to v and if u 6= v, then
the arcs in π−1(e) constitute a matching between the fibres π−1(u) and π−1(v). If e
is a loop-arc at u then the arcs in π−1(e) induce |Γ|/k vertex-disjoint directed cycles
on the set π−1(u) where k is the order of α(e) in Γ. Finally, if e is a semiedge-arc at
u then π−1(e) induces either a set of |Γ| semiedges (if α(e) = id) or a matching on
π−1(u) (if α(e) has order two in Γ).

Many properties of the lift can be identified by examining walks in the base graphs;
examples will be given in Lemma 1 and in Theorem 1. We recall that a walk of length
m in a graph G is a sequence W = e1e2 . . . em where ei are arcs of G, such that
the terminal vertex of ei−1 is the same as the initial vertex of ei, 2 ≤ i ≤ m. We
say that W is a u − v walk if u is the initial vertex of e1 and v is the terminal
vertex of em. If u = v then the walk W is said to be closed, or closed at u. If α
is a voltage assignment on G, then the net voltage of W is defined as the product
α(W ) = α(e1)α(e2) . . . α(em).

For a much more detailed exposition of the theory of voltage assignments and lifts
we refer to [17]. We conclude this Section by illustrating the concepts introduced
above in the following useful observation (cf. [6]).

Lemma 1 Let α be a voltage assignment on a graph G in a group Γ. Then, diam(Gα)
≤ k if and only if for each ordered pair of vertices u, v (possibly, u = v) of G and for
each g ∈ Γ there exists a u− v walk of length ≤ k of net voltage g.

Proof. For any two distinct vertices ug and vh in V (Gα), there exists a walk W̃

of length at most k from ug to vh if and only if the projection W = π(W̃ ) is a walk
in the base graph G of length at most k from u to v with α(W ) = g−1h. (The case
when both u = v and g = h follows by considering closed walks of zero length.)
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3 Lifts of graph automorphisms

In what follows we outline a method for finding voltage assignments which make the
lift vertex-transitive (provided that the base graph is).

First, observe that for any two vertices ug and uh in the same fibre π−1(u) there
exists an automorphism of the lift which sends ug to uh. Indeed, if r = hg−1, the
mapping B̃r : Gα → Gα, given by B̃r(vs) = vrs for each vs ∈ V (Gα), is an auto-
morphism of the lift Gα such that B̃r(ug) = uh. Therefore, Aut(Gα), the group of
all automorphisms of Gα, acts transitively on each fibre, and hence we always have
|Aut(Gα)| ≥ |Γ|. In fact, the insertion r 7→ B̃r yields a regular action of the voltage
group Γ on the lift. In algebraic topology, lifts as introduced in Section 2 are called
regular covering spaces; the adjective regular comes from the regular action described
above.

Further automorphisms of the lift may sometimes be obtained from automor-
phisms of the base graph. We say that an automorphism A of G lifts to an au-
tomorphism Ã of Gα if πÃ = Aπ, that is, if π(Ã(vh)) = A(π(vh)) for each vertex
vh ∈ Gα. Note that A(π(vh)) = A(v), and hence the lifted automorphism Ã maps
vertices from the fibre π−1(v) onto vertices in the fibre π−1(A(v)); in other words, Ã
is fibre-preserving. Also, observe that if an automorphism A ∈ Aut(G) lifts to some
Ã ∈ Aut(Gα), then A has at least |Γ| distinct lifts. This is due to the fact that for
each r ∈ Γ, the composition B̃rÃ is a lift of A as well, because πB̃rÃ = πÃ. (Observe
that the automorphisms B̃r themselves are lifts of the identity automorphism of G.)

The following theorem was proved in [18] in a map-theoretical setting; for a graph-
theoretical proof see [25].

Theorem 1 Let G be a connected graph, let α be a voltage assignment on G in a
finite group Γ, and let A be an automorphism of G. Then, A lifts to an automorphism
of Gα if and only if for any closed walk W at a fixed vertex of G we have α(W ) =
id⇔ α(A(W )) = id.

At a first glance, this result may seem not easily applicable, because it involves
checking all closed walks. However, there is an easy way to reduce the checking to
a number of walks proportional to the number of edges of G; see [25] for details.
Moreover, the structure of the base graph G may sometimes be simple enough to
check the above condition directly. An example of such a situation can be found
in [22] where vertex-transitivity of the lifts follows from Theorem 1 (although in [22]
a different method was used).

Here we state and prove two useful corollaries of Theorem 1 which we shall need
later and where the amount of checking is reduced to a minimum.

Corollary 1 Let G be a connected graph and let A be a group of automorphisms of G.
Let Γ be a voltage group and let φ : A → Aut(Γ) be an arbitrary group homomorphism
which sends each graph automorphism A ∈ A to an automorphism φA of the group
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Γ. Let α be a voltage assignment on G in the group Γ such that α(A(e)) = φA(α(e))
for each arc e ∈ D(G). Then each automorphism A ∈ A lifts to an automorphism of
Gα.

Proof. LetW = e1e2 . . . ek be a walk inG. Consider its imageA(W ) = A(e1)A(e2)
. . . A(ek) under a graph automorphism A ∈ A. Due to the fact that φA is an auto-
morphism of the group Γ, we have α(A(W )) =

∏k
i=1 α(A(ei)) =

∏k
i=1 φA(α(ei)) =

φA(
∏k
i=1 α(ei)) = φA(α(W )). It follows that α(W ) = id if and only if α(A(W )) = id;

note that in this case we obtained the equivalence for all walks, not only for the closed
ones. The rest follows from Theorem 1.

Corollary 2 Let A be an automorphism of order k of a graph G. Let α be a voltage
assignment on G in the additive group Zn. Assume that there is an element b in Zn
of multiplicative order k, which has a multiplicative inverse in the ring (Zn,+, .) and
such that α(A(e)) = bα(e) for each arc e ∈ D(G). Then A lifts to an automorphism
of Gα.

Proof. Let CA be the cyclic group of order k generated by the automorphism A.
Then we have an obvious homomorphism φ : CA → Aut(Zn,+), given by φA(r) = br
for each r ∈ (Zn,+). The claim now follows from Corollary 1.

4 Lifts of Cayley graphs and semidirect products

Let Λ be a group and let X = (x1, x2, . . . , xd) be a generating sequence of Λ for
which there exists an involution τ on the set {1, 2, . . . , d} such that xτ(i) = x−1

i for
1 ≤ i ≤ d. The Cayley graph H = Cay(Λ, X) has vertex set V (H) = Λ and arc
set D(H) = {(b, i); b ∈ Λ, 1 ≤ i ≤ d}. For each vertex b and each i, 1 ≤ i ≤ d,
the arc (b, i) emanates from b and terminates at the vertex bxi. Since, by the same
token, the arc (bxi, τ(i)) emanates from bxi and terminates at b, the two arcs are
considered mutually reverse; in symbols, (b, i)−1 = (bxi, τ(i)). In other words, the
pair {(b, i), (bxi, τ(i))} constitutes an undirected edge. The resulting Cayley graph
is therefore undirected; it is clearly connected and regular of degree d.. For each
a ∈ Λ, the left multiplication Aa : b 7→ ab is an automorphism of the Cayley graph
H = Cay(Λ, X), which explicitly shows that Cayley graphs are vertex-transitive. The
collection AΛ = {Aa; a ∈ Λ} is a group isomorphic to Λ.

It is important to clarify how repeated generators and/or the unit element of the
group in the generating sequence X correspond to parallel edges, loops, and semiedges
in our Cayley graphs. Whenever xi = xj for some i 6= j, from each vertex b we have
a pair of parallel arcs (b, i) and (b, j). If xi = id and i 6= τ(i), we have a loop (b, i) at
each vertex b; combined with the preceding condition we may have parallel loops as
well. Finally, if xi = id and i = τ(i) then (b, i) represents a semiedge at b.
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Let α : D(H)→ Γ be a voltage assignment on a Cayley graph H = Cay(Λ, X).
We say that α satisfies the compatibility condition if there exists a group homomor-
phism φ : Λ → Aut(Γ) which sends an element a ∈ Λ to an automorphism φa of Γ,
such that

α(a, i) = φa(α(id, i)) (1)

for each arc (a, i) of H. Clearly, if a voltage assignment α satisfies the compatibility
condition, then α is completely determined by the distribution of voltages on the arcs
emanating from the vertex id ∈ Λ. The advantage of having such voltage assignment
is obvious from the next consequence of Corollary 1.

Before stating the result we need to introduce one more concept. A voltage as-
signment α on a connected graph G will be called proper if the lift Gα is connected.
(For an easy necessary and sufficient condition for a voltage assignment to be proper
we refer to [17].)

Theorem 2 Let H = Cay(Λ, X) be a Cayley graph and let α be a proper voltage
assignment on H in a group Γ which satisfies the compatibility condition. Then, the
lift Hα is a Cayley graph.

Proof. As before, let AΛ ' Λ be the subgroup of Aut(H) induced by left multi-
plication by elements of Λ. Let φ be the homomorphism associated with the compat-
ibility condition; it is easy to show that (1) actually implies α(ab, i) = φa(α(b, i)) for
any a, b ∈ Λ and xi in X. Invoking this identity in concert with Corollary 1, we see
that each automorphism in the group AΛ lifts to an automorphism of Hα. Let ÃΛ

denote the collection of all such lifts; it is an easy exercise to show that ÃΛ is a group.
Since each automorphism of AΛ lifts to |Γ| distinct automorphisms of ÃΛ and no two
of them are equal, we have |ÃΛ| = |V (Hα)|. A straightforward inspection shows that
the lifted group ÃΛ acts transitively (and, due to the above counting, regularly) on
the vertex set of the lift. By a classical theorem of Sabidussi [27], the lift Hα is a
Cayley graph (for the group ÃΛ).

Knowing that a lift is a Cayley graph, it is natural to ask about the structure of
the underlying group of the lift. A general theory on covering Cayley graphs with
Cayley graphs is outlined in [25]. Here we just consider the special case referred to
in Theorem 2. For that reason we recall the concept of semidirect product Λ×φ Γ of
the groups Λ and Γ (which depends on the above homomorphism φ : Λ → Aut(Γ))
where the multiplication of elements (a, g), (b, h) ∈ Λ × Γ is given by (a, g)(b, h) =
(ab, gφa(h)).

Theorem 3 Let H = Cay(Λ, X) be a Cayley graph and let φ : Λ → Aut(Γ) be a
group homomorphism.
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(i) Let α be a proper voltage assignment on H in Γ satisfying (1). Then the
lift Hα is isomorphic to the Cayley graph Cay(Λ×φ Γ, Xα), with generating sequence
Xα = (x1, α(id, 1)), (x2, α(id, 2)), . . . , (xd, (α(id, d)).

(ii) Conversely, let Cay(Λ×φ Γ, Y ) be a Cayley graph for the semidirect product
Λ ×φ Γ with a generating sequence Y = ((x1, y1), (x2, y2), . . . , (xd, yd)). Then there
exists a Cayley graph H = Cay(Λ, X) and a voltage assignment α on G satisfying (1),
such that Hα ' Cay(Λ×φΓ, Y ). Explicitly, X = (x1, x2, . . . , xd) and α(a, i) = φa(yi).

Proof. (i) Let the generating sequence X have d terms. By the definition of a
lift, for 1 ≤ i ≤ d there is an arc in Hα from (a, g) to (b, h) with “label” i if and
only if axi = b for xi in X and, at the same time, h = gα(a, i) = gφa(α(id, i)). But
this adjacency condition is equivalent to the following multiplicative property in the
semidirect product Λ×φ Γ:

(a, g)(xi, α(id, i)) = (axi, gφa(α(id, i))) = (b, h)

which actually defines the Cayley graph Cay(Λ×φ Γ, Xα).
(ii) Let Y = ((x1, y1), (x2, y2), . . . , (xd, yd)) be the generating sequence for the

semidirect product. Then X = (x1, x2, . . . , xd) is a generating sequence for the group
Λ. For each arc (a, i) of the Cayley graph Cay(Λ, X) define the voltage assignment
α by α(a, i) = φa(yi) ∈ Γ. The verification of the isomorphism Hα ' Cay(Λ×φ Γ, Y )
is straightforward.

5 Application

The 1–1 correspondence in Theorem 3 opens up a new direction in a possible search
for large vertex-transitive graphs of given degree and diameter. As mentioned ear-
lier [19], a large number of the currently known record examples were found among
Cayley graphs of semidirect products of cyclic groups. Our Theorem 3 shows how to
reconstruct each such Cayley graph in terms of a lift of a smaller Cayley graph of a
cyclic group, with voltages taken in some smaller cyclic group as well.

This strongly suggests that a computer search over lifts of small graphs (not
necessarily Cayley) using various voltage assignments (not necessarily satisfying the
compatibility condition in case of Cayley graphs) may lead to further new examples
of large graphs of given diameter and degree. Lemma 1 may then serve as a tool for
testing the diameter of the lift.

We shall now illustrate the above facts on one of the current record graphs.

Example. The largest known vertex-transitive graph of degree 9 and diameter 4,
which has 1430 vertices, was found [11] as the Cayley graph G = Cay(Z10×φZ143, Y ).
The homomorphism φ : Z10 → Aut(Z143) is given by φa(j) = 64aj, a = 0, 1, 2, . . . , 8, 9
(multiplication in the ring (Z143,+, .)) and Y = ((0, 59), (0, 84), (1, 51), (3, 80), (3, 121),
(5, 0), (7, 54), (7, 121), (9, 64)). (We note that in [11, 19] this semidirect product is
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denoted by the symbol 10 ×64 143, and the exposition there is based on a different
but algebraically equivalent description of semidirect products.)

By Theorem 3, the graph G is isomorphic to the lift of a Cayley graph H =
Cay(Z10, X) whose structure is easily determined. For the generating sequence X =
(x1, x2, . . . , x9) we have x1 = x2 = 0, x3 = 1, x4 = x5 = 3, x6 = 5, x7 = x8 = 7,
and x9 = 9; the corresponding involution τ is given by τ(1) = 2, τ(3) = 9, τ(4) = 7,
τ(5) = 8, and τ(6) = 6. Note that H has, at each vertex, one loop and two pairs of
parallel edges (see Fig. 1). For brevity, let αi denote the voltage of the arc (id, i) =
(0, i) of H, 1 ≤ i ≤ 9, in the group Z143. Then, following the part (ii) of Theorem 3 we
have α1 = 59, α2 = 84, α3 = 51, α4 = 80, α5 = 121, α6 = 0, α7 = 54, α8 = 121, and
α9 = 64. In accordance with the compatibility condition (1) the voltage assignment
extends to the remaining arcs of H by setting α(a, i) = φa(α(0, i)) = φa(αi) = 64aαi.

As we see, using a suitable voltage assignment in the cyclic group of order 143,
the graph G of order 1430 can be obtained by “blowing up” a comparatively very
small graph – of order 10 only!

3
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Figure 1: A local view of the base Cayley graph H = Cay(Z10, X) for the graph
G = 10×64 143; the rest of the graph is obtained by rotation. The values in brackets
are voltages (in Z143) on the arcs (0, i) corresponding to the generators xi. The
voltages on the remaining arcs (a, i) are given by α(a, i) = φa(α(0, i)).
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