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ABSTRACT. Consider, for a permutation o € S, the number F(n, o) of permuta-
tions in &§,, which avoid o as a subpattern. The conjecture of Stanley and Wilf is
that for every o there is a constant ¢(o) < oo such that for all n, Fi(n,o) < ¢(o)™.
All the recent work on this problem also mentions the “stronger conjecture” that for
every o, the limit of F(n,o)"/™ exists and is finite. In this short note we prove that
the two versions of the conjecture are equivalent, with a simple argument involving
subadditivity.

We also discuss n-permutations, containing all o € Sy as subpatterns. We prove
that this can be achieved with n = k2, we conjecture that asymptotically n ~ (k/e)?
is the best achievable, and we present Noga Alon’s conjecture that n ~ (k/2)? is
the threshold for random permutations.

Mathematics Subject Classification: 05A05,05A16.

1. INTRODUCTION

Consider, for a permutation o € S, the set A(n, o) of permutations 7 € S,, which
avoid o as a subpattern, and its cardinality, F'(n,o0) := |A(n,o0)|. Recall that “r
contains ¢” as a subpattern means that there exist 1 < xy < x5 < --- < xp < n such
that for 1 <1i,5 <k,

(1) 7(x;) < 7(z;) if and only if (i) < o(j).

An outstanding conjecture is that for every o there is a finite constant ¢(o) such
that for all n, F(n,o) < ¢(0)". In the 1997 Ph.D. thesis of Béna [2], supervised by
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Stanley, this conjecture is attributed to “Wilf and Stanley [oral communication] from
1990.” All the recent work on this problem also mentions the “stronger conjecture”
that for every o, the limit of F'(n, o)"/™ exists and is finite. According to Wilf (private
communication, 1999) the original conjecture was of this latter form.

In this short note we give, as Theorem 1, a simple argument, involving subadditiv-
ity, which shows that the two versions of the conjecture are equivalent.

Here is some background information on the current status of the Stanley-Wilf
conjecture. Represent ¢ € S; by the word o(1)0(2) ---o(k). For the case of
the increasing pattern, i.e the identity permutation, o = 12---k, the upper bound
F(n,o) < ((k—1)?)" is well known, and follows from the Robinson-Schensted-Knuth
correspondence; also Regev [7] gives the asymptotics

(k— 1)

F(n 12+ k) ~ Mo

with an explicit constant A;. Simion and Schmidt [8] give a bijective proof that for

each 0 € 83, F(n,0) = n+r1 (2:); see also Knuth [6], section 2.2.1, exercises.

For o = 1342, Béna 2] finds the explicit generating function for F'(n, o), showing
that for all n, F(n,1342) < 8", and lim F'(n, 1342)"/" = 8. Note in contrast that
lim F(n,1234)'/" = 9. Béna observes that indeed, in all cases for which lim F(n, o)'/"
is known explicitly, it is an integer! For the special class of “layered patterns,” such
as 0 = 67345 12, Béna [3] has shown that sup,, F/(n, o)'/" is finite. Alon and Friedgut
[1] prove an upper bound for the general case which is tantalizingly close to the goal;
they relate the problem to a result on generalized Davenport-Schinzel sequences from
Klazar [5], and show that for every o € S there exists ¢(o) < oo such that for all
n, F(n,o) < c(o)™ ™, where v*(n) is an extremely slowly growing function, given
explicitly in terms of the inverse of the Ackermann function.

Theorem 1. For every k > 2 and o € S, for every m,n > 1,

(2) F(m +n,0) > F(m,o) F(n,o)
and F(n,o) > 1; hence by Fekete’s lemma on subadditive sequences,
(3) c(o) == lim F(n,0)"" € [1,00] eists,

and¥n >1, F(n,o) <c(o)™.

Proof. First we will show (2) by constructing, from an m-permutation and an n-
permutation which avoid 7, an (m + n)-permutation which avoids 7, injectively.

Without loss of generality, we may assume that k precedes 1 in o (since, with (-)"
to denote the left-right reverse of a permutation, 7 avoids ¢ iff 7" avoids ¢”, and hence
for all n, F(n,o) = F(n,o").)
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Let 7 € S,, and 7 € S,,, where each of 7 and 7" avoids o. Let 77 be the result
of adding m to each symbol in the word for 7", so that 7 is a word in which each of
the symbols m + 1, ... ,m + n appears exactly once.

Consider the concatenation 7 of 7/ with 7" as a permutation, 7 € S,,,,. Clearly,
7 avoids o, establishing (2).

[In detail, suppose to the contrary that 7 contains o, say at the k-tuple of positions
given by 1 < 27 < 29 < .-+ < 2 < m + n. Recall that k precedes 1 in o; say
that o(a) = 1 and o(b) = k with 1 < b < a < k, so that by (1), for 1 < i <k,
T(xq) < 7(2;) < 7(x). If 2 < m then 7’ contains o, and if z; > m then 7" contains
o. If neither of these, then the z; < m so that 7(x;) < m, hence 7(z,) < 7(z1) <m
and therefore x, < m; similarly z; > m so that 7(zx) > m, hence 7(x}) > 7(zx) > m
and therefore z;, > m, contradicting b < a.]

Recalling that k& precedes 1 in o, the identity permutation in S, avoids ¢ and
demonstrates that F'(n,0) > 1 for every n > 1. Fekete’s lemma [4], see also [9], is
that if a1, as,... € R satisfy for all m,n > 1, ap, + a, < @y, then lim, . a,/n =
inf, > a,/n € [0, 00). Applying this with a,, := —log F'(n, o) completes our proof.

O

There exist [10] examples with 0,0’ € Sk, with ¢’ the identity permutation, and
F(n,o) > F(n,0’), and Boéna [2], Theorem 4 shows that for all n > 7, F(n,1324) >
F(n,1234). Nevertheless, it is possible that for every k, the largest exponential growth
rate is the (k — 1)? achieved by the identity permutation.

Conjecture 1. ($100.00) For allo € Sy andn > 1, F(n,o) < (k —1)*".

The problem of the shortest common superpattern.

Define G(n, k) to be the number of permutations 7 € S,, which avoid at least one
permutation in Sy, i.e.

G(n, k) :== | Upes, A(n,o) |, where F(n,o) = |A(n,0)|.

Simion and Schmidt [8], p. 398, give a formula for n! — G(n,3), the number of
n-permutations which contain all six patterns of length 3. In considering G(n, k), it
is natural to consider the length m(k) of the shortest permutation which contains
every o € S as a subpattern, i.e. to consider

m(k) == min{n: G(n,k) <n! } =min{n: Uyes, A(n,0) #S, }.

For a trivial lower bound on m(k), since 7 € S,, contains at most (Z) subpatterns, to
contain every subpattern requires () > k!, hence liminfy, m(k)/k* > 1/e?.

Theorem 2. There exists an n-permutation, withn = k?, containing every k-permutation
as a subpattern; i.e. m(k) < k.
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Proof. Consider the lexicographic order on [k]? as a one-to-one map specifying the

ranks of the ordered pairs, i.e. let r : [k]* — [k?], with (i,7) — (i — 1)k + j. Also
consider the transposed lexicographic order ¢ : [k]* — [k?] given by (i, j) := r(j,1).
Consider the permutation 7 € Sj2 given by 7 = r ot~ !; for example, with k = 3, this
is 7 = 147258369. Then, clearly, 7 contains every o € Sy as a subpattern. In detail,

with the positions z; := t(c(1),1),..., zx := t(o(k), k) we have 1 < --- < x and
form =1%ok, 7(z,) = (rot™!)(t(o(m),m)) = r(c(m),m) so that 7(za) < 7(z3)
iff o(a) < a(b). O

Conjecture 2. As k — oo, m(k) ~ (k/e)?* .

In contrast, from the known behavior of the length L, of the longest increasing
subsequence, L, ~ 2y/n with high probability, one cannot hope to use random per-
mutations to show that liminfm(k)/k* < (1/e)?. The probability that a random
n-permutation does not contain every o € Sy as a subpattern is G(n, k)/n!. Define
the threshold t(k) by t(k) = min{n: G(n, k)/n! < 1/2}, so that trivially m(k) < t(k),
and hence liminf ¢(k)/k* > 1/4.

Conjecture 3. (Noga Alon) The threshold length t(k), for a random permutation to
contain all k-permutations with substantial probability, has t(k) ~ (k/2)%.
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