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Abstract

We give an integral identity which was conjectured and proved by using the
continuous version of the multi-WZ method.
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0. Introduction

There are relatively few known non-trivial evaluations of k-dimensional integrals, with
arbitrary k. Celebrated examples are the Selberg and the Mehta-Dyson integrals, as
well as the Macdonald constant term ex-conjectures for the various root systems.
They are all very important. See [AAR98] for a superb exposition of the various
known proofs and of numerous intriguing applications.

At present, the (continuous version of the) WZ method [WZ92] is capable of mechan-
ically proving these identities only for a fixed k. In principle for any fixed k (even,
say, k = 100000), but in practice only for k ≤ 5. However, by interfacing a human

∗This work will appear in the author’s Ph.D. thesis.
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to the computer-generated output, the human may discern a pattern, and generalize
the computer-generated proofs for k = 1, 2, 3, 4 to an arbitrary k.

Using this strategy, Wilf and Zeilberger [WZ92] gave a WZ-style proof of Selberg’s
integral evaluation. In this article we present a new multi-integral evaluation, that
was first found by using the author’s implementation of the continuous multi-WZ
method which is called SMint1. Both the conjecturing part, and the proving part,
were done by a close human-machine collaboration. Our proof hence may be termed
computer-assisted but not yet computer-generated.

Now that the result is known and proved, it may be of interest to have a non-WZ proof,
possibly by performing an appropriate change of variables, converting the multi-
integral to a double integral. My advisor, Doron Zeilberger, is offering $100 for such
a proof, provided it does not exceed the length of the present proof.

Since a key to the integral evaluation is the package SMint, first we give a brief
description of the package.

1. A Brief Description of SMint

The ”objects” of study in the continuous version of the multi-WZ theory are expres-
sions of the kind ∫

F (n,m,y,x)dx

and identities between them. In the above general integral-sum, n is a discrete vari-
able, m is a discrete multi-variable, while x and y are continuous multi-variables, and
F is hypergeometric in all its arguments.

For a given hypergeometric function F (n,m,y,x), where y = (y1, . . . , yk), we look for

a recurrence operator
I∑
i=0

ai(n)Ei
n, where ai(n) polynomial in n and En is the forward

shift operator in n, and a k-tuple of rational functions(the certificate) [R1, . . . , Rk]
(Ri = Ri(n,m,y,x)) such that the recurrence-differential operator

I∑
i=0

ai(n)Ei
n −

k∑
j=1

Dxj .Rj

1available from http://www.math.temple.edu/∼akalu/maplepack/SMint
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annihilates F ,i.e.,

I∑
i=0

ai(n)F (n+ i,m,y,x)−
k∑
j=1

Dxj (RjF ) = 0.

The existence of an operator of the above form is guaranteed by the fundamental
theorem of the (continuous version of the) multi-WZ theory [WZ92].

Doron Zeilberger wrote a Maple implementation, TRIPLE INTEGRAL2, that performs
the algorithm described in [WZ92] for the case of three continuous variables(k = 3).
But TRIPLE INTEGRAL does not completely automate the method, for instance, it
requires the user to guess the denominators of the Ri’s.

The author wrote two Maple packages Mint and SMint which improved and generalized
Zeilberger’s TRIPLE INTEGRAL for any specific number of continuous variables so
that it completely automates the continuous multi-WZ method. The package SMint
is specially designed to handle identities which invlove pure multiple integrals where
the integrand is symmetric w.r.t. the integration variables. The detailed technical
description of Mint and SMint is available from the author’s home page3 and will also
appear in a forthcoming paper [T99].

2. Notation

In the sequel, k is a positive integer, m and n are non-negative integers. The notations
used in this article are defined as follows.

x := (x1, . . . , xk),

x̂i :=

 (x2, . . . , xk) for i = 1
(x1, . . . , xi−1, xi+1, . . . , xk) for 1 < i < k
(x1, . . . , xk−1) for i = k

dx = dx1 · · · dxk,

(y)m :=

{
1 for m = 0∏m−1

i=0 (y + i) for m > 0

e1(x) :=
k∑
i=1

xi,

e2(x) :=
∑

1≤i<j≤k
xixj,

2available from http://www.math.temple.edu/∼zeilberg/
3http://www.math.temple.edu/∼akalu/
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∆nF (n,x) := F (n+ 1,x)− F (n,x),

Dx :=
∂

∂x

3. The Integral Evaluation

Theorem∫
[0,+∞)k

(e2(x))m(e1(x))ne−e1(x)dx =
m!(2m+ n + k − 1)!(k/2)m

(2m+ k − 1)!

(
2(k − 1)

k

)m
Tk(m)

for any positive integer k, and for all non-negative integers m and n, where,

Tk(m)− Tk(m− 1) =
(k(k − 2))m((k − 1)/2)m

(k − 1)2m(k/2)m
Tk−1(m) k ≥ 2,

T1(m) = 0, m ≥ 0, and Tk(0) = 1, k ≥ 2.

4. Proof of the Integral Evaluation

If k = 1, then trivially, both sides of the integral equate to zero. Let k > 1 and
Ak(m,n) be the left side of the integral divided by

m!(2m+ n+ k − 1)!(k/2)m
(2m+ k − 1)!

(
2(k − 1)

k

)m
.

We want to show Ak(m,n) = Tk(m), for all m, n in Z≥0. Let

Fk(m,n; x) :=
(2m+ k − 1)!

m!(2m+ n+ k − 1)!(k/2)m

(
k

2(k − 1)

)m
(e2(x))m(e1(x))ne−e1(x)

We construct4

R(u; v1, . . . , vk−1) :=
u

2m+ n+ k
,

with the motive that

(WZ 1) ∆nFk(m,n; x) = −
k∑
i=1

Dxi [R(xi; x̂i)Fk(m,n; x)].

4The production of the rational function R and the corresponding recurrence-differential
equation was done automatically by SMint for k = 2, 3, 4, and the output is available from
http://www.math.temple.edu/∼akalu/maplepack/rational1.output
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Now, we verify (WZ 1),

Fk(m,n+ 1; x)− Fk(m,n; x) +
∑k

i=1Dxi [R(xi; x̂i)Fk(m,n; x)]

Fk(m,n; x)

=
Fk(m,n+ 1; x)

Fk(m,n; x)
− 1 +

k∑
i=1

Dxi [R(xi; x̂i)] +R(xi; x̂i)Dxi [log (Fk(m,n; x))]

=
e1(x)

2m+ n+ k
− 1 +

k

2m+ n+ k
+

k∑
i=1

(
n

e1(x)

xi
2m+ n+ k

+
me1(x̂i)

e2(x)

xi
2m+ n+ k

− xi
2m+ n+ k

)
=

e1(x)

2m+ n+ k
− 1 +

k

2m+ n+ k
+

n

2m+ n+ k
+

2m

2m + n+ k
− e1(x)

2m+ n+ k
= 0.

Hence, by integrating both sides of (WZ 1) w.r.t. x1, . . . , xk over [0,∞)k, we get

Ak(m,n+ 1) −Ak(m,n) ≡ 0.

To complete the proof we show Ak(m, 0) = Tk(m) for all m in Z≥0.

To this end, set Ak(m) := Ak(m, 0) and Fk(m; x) := Fk(m, 0; x). Now, we construct5,

R(u; v1, . . . , vk−1) :=
((k − 1)(m+ 1) + e1(v1, . . . , vk−1))u+ e2(v1, . . . , vk−1)

(k − 1)(m+ 1)(2m+ k)

with the motive that

(WZ 2) Fk(m+ 1; x)− Fk(m; x) = −
k∑
i=1

Dxi [R(xi; x̂i)Fk(m; x)].

Verification of (WZ 2):

Fk(m+ 1; x)− Fk(m; x) +
∑k

i=1Dxi [R(xi; x̂i)Fk(m; x)]

Fk(m; x)

=
Fk(m+ 1; x)

Fk(m; x)
− 1 +

k∑
i=1

Dxi [R(xi; x̂i)] +
k∑
i=1

R(xi; x̂i)Dxi [log (Fk(m; x))]

=
ke2(x)

(m+ 1)(k − 1)(2m+ k)
− 1 +

k∑
i=1

(k − 1)(m+ 1) + e1(x̂i)

(m+ 1)(k − 1)(2m+ k)
+

5The production of the rational function R and the corresponding recurrence-differential equa-
tion was done automatically by SMint for k = 2, 3, 4, 5 and the output is available from
http://www.math.temple.edu/∼akalu/maplepack/rational2.output
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k∑
i=1

(k − 1)(m+ 1)xi + e2(x))

(m+ 1)(k − 1)(2m + k)

(
me1(x̂i)

e2(x)
− 1

)
=

ke2(x)

(m+ 1)(k − 1)(2m+ k)
− 1 +

k

2m+ k
+

e1(x)

(m+ 1)(2m+ k)
+

2m

2m+ k

− e1(x)

2m+ k
+

me1(x)

(m+ 1)(2m+ k)
− ke2(x)

(m+ 1)(k − 1)(2m+ k)
= 0.

Hence, by integrating both sides of (WZ 2) w.r.t. x1, . . . , xk over [0,∞)k, we obtain,

Ak(m+ 1) − Ak(m) =
(k(k − 2))m+1((k − 1)/2)m+1

(k − 1)2(m+1)(k/2)m+1

Ak−1(m+ 1),

and noting that Ak(0) = 1, k ≥ 2, A1(m) = 0, it follows that Ak(m) = Tk(m), for all
m in Z≥0. Consequently, Ak(m,n) = Tk(m) for all m, n in Z≥0. 2

By unfolding the recurrence equation for Tk(m), we obtain the following identity.

Corollary∫
[0,+∞)k

(e2(x))m(e1(x))ne−e1(x)dx =
m!(2m+ n+ k − 1)!(k/2)m

(2m + k − 1)!

(
2(k − 1)

k

)m
(

1 +

k−2∑
r=1

∑
1≤sr≤···≤s1≤m

r∏
i=1

((k − i)2 − 1)si((k − i)/2)si
(k − i)2si((k − i+ 1)/2)si

)

5. Remarks

1. From the computational point of view, the recurrence form of the integral is
nicer than its indefinite summation form (the above corollary),for the former
requires O(mk) calculations, whereas the latter requires O(mk) calculations.
However, in both forms the evaluation of the right side of the integral is much
faster (for specific m, n, and k) than the direct evaluation of the left side of our
intergal. Hence both forms are indeed complete answers in the sense of Wilf
[W82].

2. The present paper is an example of what Doron Zeilberger [Z98] calls WZ The-
ory, Chapter 1 1/2. Even though, at present, our proof, for general k, was
human-generated, it seems that by using John Stembridge’s [S95] Maple pack-
age for symmetric functions,SF, or an extension of it, it should be possible to
write a new version of SMint that should work for symbolic, i.e. arbitrary, k,
thereby fulfilling the hope raised in [Z98].



the electronic journal of combinatorics 6(1999), #N2 7

Acknowledgement: I thank Doron Zeilberger, my Ph.D. thesis advisor, for very
helpful suggestions and valuable support.

References

[AAR98] G. Andrews, R. Askey, and R. Roy, Special Functions, Cambridge Univer-
sity Press, 1998.

[S95] J.R. Stembridge, A Maple package for symmetric functions, J. Symbolic
Comput., 20(1995), 755-768.

[T99] A. Tefera, Complete Automation of the Continuous Multi-WZ Method, in
preparation.

[W82] H.S. Wilf,What is an answer?, Amer. Math. Monthly, 89 (1982), 289-292.

[WZ92] H.S. Wilf and D. Zeilberger, An Algorithmic proof theory for hypergeometric
(ordinary and ”q”) multisum/integral identities, Invent. Math., 108 (1992),
575-633.

[Z98] D. Zeilberger, WZ Theory, Chapter II, The Personal Journal of S.B. Ekhad
and D. Zeilberger, http://www.math.temple.edu/∼zeilberg/pj.html.


