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Abstract

In this paper we work with power algebras associated to hyperplane arrange-
ments. There are three main types of these algebras, namely, external, central, and
internal zonotopal algebras. We classify all external algebras up to isomorphism in
terms of zonotopes. Also, we prove that unimodular external zonotopal algebras are
in one to one correspondence with regular matroids. For the case of central algebras
we formulate a conjecture.

Mathematics Subject Classifications: 05B35; 05C05; 05E40; 13P99

1 Introduction

In this paper we work with power algebras, which are the quotients of polynomial rings
by power ideals. In particular, we consider zonotopal ideals, which are associated to
zonotopes. These ideals were independently introduced in two different ways. The first
definition was used by F. Ardila and A. Postnikov [2]; it originates from the algebras
generated by the curvature forms of tautological Hermitian linear bundles [4, 29], see
also papers [5, 6, 15, 16, 17, 23, 24, 27, 28, 30], where the quotient algebras by these
ideals were discussed by details. At the same time a similar definition and the term were
established by O. Holtz and A. Ron [13]; Their definitions originates from Box-Splines and
from Dahmen-Micchelli’s space [1, 9, 11], see also the papers [10, 12, 14, 19, 20, 21, 22, 31].

More concretely, let A ∈ Rn×m be a matrix of rank n. Denote by y1, . . . , ym ∈ Rn the
columns and by t1, . . . , tn ∈ Rm the rows of A. For a matrix A, we define the zonotope

ZA :=
⊕
i∈[m]

[0, yi] ⊂ Rn
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as the Minkovskii sum of intervals [0, yi], i ∈ [m]. By F(A) we denote the set of facets of
ZA. For any facet H ∈ F(A), we define m(H) as the number of non-zero coordinates of
the vector ηHA ∈ Rm, where ηH ∈ Rn is a normal vector to H.

Let C(k)A be the quotient algebra

C(k)A := R[x1, . . . , xn]/I(k)A ,

where I(k)A is the zonotopal ideal generated by the polynomials

p
(k)
H = (ηh · (x1, . . . , xn))m(H)+k, H ∈ F(A).

Here ηh ·(x1, . . . , xn) is the linear form in xi, i ∈ [n] obtained by taking the scalar product.

There are 3 main cases studied of the above construction, where k = ±1 and 0; they
were considered in [2, 13].

• k = 1 : CExA = C(1)A is the external zonotopal algebra for A;

• k = 0 : CCA = C(0)A is the central zonotopal algebra for A;

• k = −1 : CInA = C(−1)A is the internal zonotopal algebra for A.

Remark 1. The case k > 1 is not “zonotopal”, because the ideal Î(k) generated by

ph = (h · (x1, . . . , xn))m(h)+k, h ∈ Rn

is different from I(k). They coincide only in the case when k 6 1.
In the case k 6 −5, the Hilbert series is not a specialization of the corresponding

Tutte polynomial, see [2].

Theorem 2 (cf. [2, 5, 13, 21], external case [28], central case for graphs [27]). For a
matrix A ∈ Rn×m, the Hilbert series of the zonotopal algebras are given by

• H(CExA ) = qm−nTA(1 + q, 1
q
);

• H(CCA ) = qm−nTA(1, 1
q
);

• H(CInA ) = qm−nTA(0, 1
q
),

where TA is the Tutte polynomial of the vector configuration of the columns of A (i.e.,
vectors y1, . . . , ym).

There are other definitions of external algebras in [28]. Let Φm be the square-free
commutative algebra generated by φi, i ∈ [m], i.e., by relations

φiφj = φjφi, i, j ∈ [m] and φ2
i = 0, i ∈ [m].

the electronic journal of combinatorics 26(1) (2019), #P1.32 2



Theorem 3 (cf. [28]). The external algebra CExA is isomorphic to the subalgebra of ΦExA :=
Φm generated by

Xi := ti · (φ1, . . . , φm), i ∈ [n].

According to the works [3] and [2] there is a similar definition of central zonotopal
algebras. In papers [16, 17] we obtained the analog of the Theorem 3 in the case of
internal zonotopal algebras for totally unimodular matrices, see the definition below.

The main interesting examples of zonotopal algebras arise for totally unimodular ma-
trices and for graphs. Namely, a matrix A is totally unimodular if any its minors is equal
to ±1 or 0. In this case, the total dimensions of the algebras have a nice interpretation.

Theorem 4 (cf. [13]). Let A ∈ Rn×m be a totally unimodular matrix of rank n. Then the
following holds:

• dim(CExA ) is equal to the number of lattice points of ZA;

• dim(CCA ) is equal to the volume of ZA;

• dim(CInA ) is equal to the number of interior lattice points of ZA.

The main examples of totally unimodular matrices are graphs. Namely, let G be a
graph on n vertices, then the incidence matrix of any orientation of G is totally uni-
modular. To construct the zonotopal algebra, we should forget exactly one row for each
connected component of G. These algebras are independent (up to isomorphism) of the
choice of orientations and rows.

These graphical algebras were considered in [15, 16, 23, 24, 28]. In the graphical case
Theorem 4 can be written in graph theoretical terminology.

Theorem 5 (cf. [27]). Let G be a graph. Then the following holds:

• dim(CExG ) is equal to the number of forests in G;

• dim(CCG) is equal to the number of trees in G (in the connected case).

It is well-known that the number of lattice points (volume) of the corresponding zono-
tope and the number of forests (trees) of a graph are the same, see for example [7, 18].
(Points of the zonotope correspond to score vectors).

Example 6. Let G be graph on the vertex set {0, 1, 2} having 4 edges

(0, 1), (0, 2), (1, 2), and (1, 2),

see fig. 1, left. Let us orient all edges from the smaller to the larger vertex. Consider the
incidence matrix after forgetting of 0-th row

A :=

[
−1 0 1 1
0 −1 −1 −1

]
,

see zonotope ZA on fig. 1, right.
The zonotope ZA has 6 facets. We need the set of its normals (note that parallel facets

have the same normal up to a factor). There are 3 normals

the electronic journal of combinatorics 26(1) (2019), #P1.32 3



b

b

b0

1

2

-3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

bb

b b

b

b

b

b

b

b

b

Figure 1: A graph and its corresponding zonotope.

• η1 = (1, 0);

• η2 = (0, 1);

• η3 = (1, 1).

It is easy to check that m(η1) = m(η2) = 3 and m(η3) = 2. Hence,

I(k)A = 〈x3+k
1 , x3+k

2 , (x1 + x2)
2+k〉.

Then

• H(CExA ) = 1 + 2q + 3q2 + 3q3 + q4 and dim(CExA ) = 10;

• H(CCA ) = 1 + 2q + 2q2 and dim(CCA ) = 5;

• H(CInA ) = 1 + q and dim(CInA ) = 2.

It is easy to check that 10, 5, and 2 are exactly the number of lattice points, the area,
and the number of interior lattice points of ZA, respectively. Furthermore, 10 and 5 are
the number of forests and trees in G. In this case the Tutte polynomial of the graph is
given by TG(x, y) = TA(x, y) = x+ y + x2 + xy + y2.

The following important property of external graphical algebras has been proven
in [24].

Theorem 7 (cf. [24]). Given two graphs G1 and G2. Then the following are equivalent:

• CExG1
and CExG2

are isomorphic as non-graded algebras;

• CExG1
and CExG2

are isomorphic as graded algebras;

• the graphical matroids MG1 and MG2 are isomorphic.

Conjecture 8 (cf. [24]). Given two connected graphs G1 and G2, the following claims
are equivalent:
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• CCG1
and CCG2

are isomorphic as non-graded algebras;

• CCG1
and CCG2

are isomorphic as graded algebras;

• the bridge-free matroids MG1 and MG2 are isomorphic.

Here the bridge-free matroid of a graph is its graphical matroid obtained after deleting
all bridges.

In the paper [23], the K-theoretic filtrations of external and central graphical algebras
were considered, see definitions there. Denote by KExG the K-theoretic filtration of CEx.G

Theorem 9 (cf. [23]). Given two graphs G1 and G2 without isolated vertices, the filtered
algebras KExG1

and KExG2
are isomorphic if and only if G1 and G2 are isomorphic.

The structure of this paper is as follows: in § 2 we present a classification of external
zonotopal algebras and a conjecture for the central case; in § 3 we prove our classification.

2 Main results

Definition 10. Two linear spaces V1 ⊂ Rm1 and V2 ⊂ Rm2 are called z-equivalent if
m1 = m2 = m and there is an invertible diagonal matrix D ∈ Rm×m and a permutation
π ∈ Sm such that

V1 = V2(πD).

The matrices A1 ∈ Rn1×m1 of rank n1 and A2 ∈ Rn2×m2 of rank n2 are called z-
equivalent if the span of rows of A1 is z-equivalent to the span of rows of A2.

Remark 11. It is easy to see that z-equivalence is an equivalence relation.
In the case when A1 and A2 do not have proportional columns, we can say that the

matrix A1 is equivalent to A2 if and only if their zonotopes are equivalent (since we can
reconstruct the “matrix” from the zonotope in this case).

This equivalence is weaker than that of matroids.

Proposition 12. If two matrices A1 and A2 are z-equivalent, then the matroids MA1 and
MA2 are isomorphic.

It is easy to check that CExA1
and CExA2

are isomorphic if A1 and A2 are z-equivalent. The
converse also holds.

Theorem 13. Let A1 ∈ Rn1×m1 and A2 ∈ Rn2×m2 be two matrices of rank n1 and n2

respectively. Then the following are equivalent:

• CExA1
and CExA2

are isomorphic as non-graded algebras;

• CExA1
and CExA2

are isomorphic as graded algebras;
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• A1 and A2 are z-equivalent.

Corollary 14. Let A1 ∈ Rn1×m1 and A2 ∈ Rn2×m2 be two matrices of ranks n1 and n2

respectively, with isomorphic external algebras CExA1
∼= CExA2

. Then the matroids MA1 and
MA2 are isomorphic.

The following theorems shows that unimodular external zonotopal algebras are in
one-to-one correspondence with regular matroids.

Theorem 15. Let A1 ∈ Rn1×m1 and A2 ∈ Rn2×m2 be two unimodular matrices of rank n1

and n2 respectively. Then the following are equivalent:

• CExA1
and CExA2

are isomorphic as non-graded algebras;

• CExA1
and CExA2

are isomorphic as graded algebras;

• A1 and A2 are z-equivalent.

• the matroids MA1 and MA2 are isomorphic.

Since for graphs we have a totally unimodular matrix, all graphical matroids are regu-
lar; the converse is almost true. Every regular matroid may be constructed by combining
graphic matroids, co-graphic matroids, and a certain ten-element matroid R10, see [26]
or the book [25]. In the graphical case the last theorem says that the algebra remembers
graph up to 2-isomorphism, see [32].

For the central case, we can extend Conjecture 8 for all matrices. For a matrix A, we
say that a column is a bridge-column if after deleting it the rank decreases.

Conjecture 16. Let A1 ∈ Rn1×m1 and A2 ∈ Rn2×m2 be two matrices of ranks n1 and n2

respectively. Then the following are equivalent:

• CCA1
and CCA2

are isomorphic as non-graded algebras;

• CCA1
and CCA2

are isomorphic as graded algebras;

• A′1 and A′2 are z-equivalent, where A′i ∈ R(ni−ki)×(ni−ki) is the submatrix of Ai

resulting after deleting all ki bridge-columns and those ki rows such that rk(A′i) =
ni − ki.

3 Proofs

Let B be a finite dimension of algebra over R. We say that an element r =
∑k

i=1 a2ia2i+1

is reducible if ai ∈ B, i ∈ [2k] are nilpotent elements.
For a nilpotent element a ∈ B, we define the length `(a) as the maximal ` such that

a` 6= 0.
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Proof of Theorem 13. Clearly, we have 1 ⇐= 2 ⇐= 3, so we will prove 1 =⇒ 3. Let CExA
be our algebra. We will work with the square-free definition, i.e., CExA is a subalgebra of
Φm, where

m = max(`(a) : a ∈ CExA ).

(Notice that at the moment we do not describe this embedding of CExA to Φm, we know only
its existence). We know which element is the unity, so we can choose a basis x1, . . . , xn
of nilpotents of CExA with the following property:

`(x+ r) > `(x),

for any reducible r ∈ CExA and x ∈ span{x1, . . . , xn}. Since we can define the algebra via
some matrix A, then there is such a basis.

Any element has the representation

xi =
m∑
k=1

ai,kφi + ri,

where ai,k ∈ R and ri is reducible. Let A′ = {ai,k : (i, k) ∈ [n]× [m]} be the corresponding
matrix. Our goal is to reconstruct A′ up to z-equivalece.

Consider the projective space Pn−1 over R. To finish the proof we should find the
multiset

A := {(a1,k, a2,k, . . . , an,k) ∈ Pn−1, k ∈ [m]}.

Define the set S of all non-zero s ∈ R such that there are i 6= j ∈ [n] and a non-zero
t ∈ R for which

`(xi − sxj) < `(xi − txj).

It is easy to see that S is exactly the set{
ai,k
aj,k

: i, j ∈ [n], k ∈ [m], and ai,k, aj,k 6= 0

}
.

Then S is a finite set. Define the set S of possible elemnts of A as

S := {(s1, s2, . . . , sn) ∈ Pn−1, si ∈ S ∪ {0}}.

Any element of A is an element of S, so it is enough to find the multiplicity of any
s ∈ S.

Consider the following partial order on elements of Pn−1:

(p1, p2, . . . , pn) > (p′1, p
′
2, . . . , p

′
n)

if there is t ∈ R such that

∀i ∈ [n], p′i =

{
tpi

0.
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Note that if, for any s, we know the common multiplication of all s′ > s in A (the sum
of multiplications), then we can calculate multiplicity of all elements.

Given s ∈ S, then the summary multiplication of all s′ > s is equal to

`

(∑
i∈I

bixi

)
− `

(∑
i∈I

cixi

)
,

where

• I ⊆ [n] is the support of s;

• bi, i ∈ I are generic;

• ci, i ∈ I are generic with the linear condition
∑

i∈I cisi = 0.

Let us check it:

`

(∑
i∈I

bixi

)
= `

(∑
i∈I

bi(
m∑
k=1

ai,kφk + rk)

)
= `

(∑
i∈I

bi(
m∑
k=1

ai,kφk)

)
=

= `

(
m∑
k=1

(
∑
i∈I

biai,k)φk

)
= #{i ∈ k :

∑
i∈I

biai,k 6= 0},

Similarly we have

`

(∑
i∈I

cixi

)
= #{i ∈ k :

∑
i∈I

ciai,k 6= 0}.

Since bi, i ∈ I and ci, i ∈ I are generic with one condition
∑

i∈I cisi = 0, we have the
following property: if

∑
i∈I biai,k 6= 0 then

∑
i∈I ciai,k = 0 if and only if (a1,k, . . . , an,k) > s.

Hence, we can compute the multiplicity of any s.

Proof of Theorem 15. We know 1 ⇐⇒ 2 ⇐⇒ 3 =⇒ 4 by Theorem 13, where we also
reconstructed a matrix, so we know the matroid.

3 ⇐= 4. Let A1 and A2 be two totally unimodular matrices which give the same
regular matroid (we assume that the order of elements are the same).

Also if M is a regular matroid, then all orientations of M differ only by reorientations
(see Corollary 7.9.4 [8]). Hence, we can multiply some columns of A2 by −1 and get A′2
such that A1 and A′2 have the same oriented matroid.

It is well-known that if we have a totally unimodular matrix Ai, then all minimal
linear dependents of its columns have coefficients ±1. We get that matrices A1 and A′2
have linear dependents with the same coefficients and, hence, A1 ∼z A

′
2 ∼z A2.
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