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Abstract

We say that an antichain A in the boolean lattice Bn is flat if there exists
an integer k ≥ 0 such that every set in A has cardinality either k or k + 1.
Define the volume of A to be

∑
A∈A |A|. We prove that for every antichain A

in Bn there exist an antichain which is flat and has the same volume as A.
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1 Introduction

Throughout the paper the universal set is [n] = {1, 2, . . . n}. A collectionA of subsets
of [n] is an antichain if for any distinct A, B ∈ A, A 6⊆ B. The parameters of an
antichain A are the non-negative integers pi, 0 ≤ i ≤ n, such that pi = |Ai| where
Ai = {A : |A| = i, A ∈ A}.

Let A be an antichain. We say that A is flat if, for any A ∈ A, |A| = k or |A| = k+1,
for some non-negative integer k. Thus the parameters of A are such that pi = 0 for
i 6= k, k + 1. The size of A is |A| and its volume is V (A) =

∑
A∈A |A|.

The concept of flattening an antichain is illustrated in the proof of Sperner’s seminal
result which establishes the maximal size an antichain can have. In this proof it is
shown that, if A is an antichain of size s, then there exists an antichain consisting of
s
⌊
n
2

⌋
-sets.

A result by Kleitman and Milner[5], Clements[2], and more recently by Maire[8],
shows that, if A is an antichain whose average set size is an integer, then there exists
a flat antichain having the same size and volume as A. The ideal of a collection
of sets B is IB = {C : C ⊆ B,B ∈ B}. Clements[2] proved that, given s, an
antichain A of size s which achieves minimum (or maximum) volume and minimum
(or maximum) ideal is flat.

Lieby[7] conjectured that, if A is an antichain of size s and volume V , then there
exists a flat antichain of size s and volume V . Note that the result by Kleitman and
Milner[5] and others is a special case of the latter conjecture. In this paper we remove
the constraint on s to prove that for every antichain A there exists a flat antichain
with same volume as A.

Our main result is:

Theorem 1. If A is an antichain then there exists a flat antichain with volume
V (A).

The next section, Section 2, provides the necessary background material; Section 3
establishes preliminary results needed in the proof of Theorem 1 which is presented
in Section 4.

2 Background

If B is a collection of k-sets, 0 < k ≤ n, the shadow of B is 4B = {C : |C| =
k − 1, C ⊂ B,B ∈ B}. Similarly, the shade of B is 5B = {C : |C| = k + 1, B ⊂
C,B ∈ B}.

Sperner’s lemma gives a relationship between the size of a collection of sets and the
sizes of its shadow and shade:
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Lemma 1 (Sperner[9]). Let B be a collection of k-subsets of [n]. Then

|4B| ≥ k

n− k + 1
|B| if k > 0

and

|5B| ≥ n− k
k + 1

|B| if k < n.

An order relation on sets, the squashed order, denoted by ≤S, is defined: If A
and B are any sets, then A ≤S B if the largest element of A + B is in B, where
A + B denotes the symmetric difference of A and B. A squashed antichain A is
an antichain such that for each i, the sets in A of size i, together with the sets of size
i contained in all the larger members of A, constitute an initial segment of the sets
of size i in squashed order.

Kruskal[6] and Katona[4] showed that the shadow of a collection of k-sets B is min-
imised when B is an initial segment of the k-sets in squashed order. One important
consequence of this result is

Theorem 2 (Clements[1], Daykin[3]). There exists an antichain with pi i-sets if
and only if there exists a squashed antichain with pi i-sets, 0 ≤ i ≤ n.

If B is any collection of consecutive k-sets in squashed order, then the new-shadow
of B, denoted by 4NB, is the collection of the (k− 1)-sets that belong to the shadow
of B but not to the shadow of any k-set that comes before any set of B in the squashed
ordering of sets. That is, the new-shadow of B is the contribution of the sets in B to
the shadow of the first p k-sets in squashed order, where p is such that the pth set in
squashed order is the last set in B.

The new-shade of B, denoted by 5NB, is defined in a similar way. It consists of the
(k + 1)-sets that are in the shade of B but not in the shade of any k-set that comes
after any set of B in the squashed ordering of sets.

Formally, if B is a collection of consecutive k-sets in squashed order, then the new-
shadow of B is 4NB = {D : D ∈ 4B and D 6∈ 4C for all C ≤S B,C 6∈ B, B ∈ B}.
The new-shade of B is 5NB = {D : D ∈ 5B and D 6∈ 5C for all C,B ≤S C,C 6∈
B, B ∈ B}.
Note 1. By Theorem 2 we only need to consider squashed antichains, so that through-
out the rest of this paper only squashed antichains will be considered.

Notation. We set K = n
2

+ 1 for n even and K = n+1
2

for n odd.

3 Preliminary Results

This section presents the technical results needed in the proof of Theorem 1. Lemma 2
establishes a relationship between the respective sizes of the volume of a collection of
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sets in squashed order and the volume of its shadow. Lemma 3 establishes a similar
relationship with the volume of its shade.

Lemma 2. Let B be a collection of l-sets. If l > K for n odd or l ≥ K for n even
then V (4B) ≥ V (B).

Proof. By Sperner’s lemma |4B| ≥ l
n−l+1

|B| so that

V (4B) ≥ (l − 1)
l

n− l + 1
|B| ≥ l|B| = V (B)

for l−1
n−l+1

≥ 1, that is for l ≥ n+2
2

.

Lemma 3. Let B be a collection of l-sets. If l < K then V (5B) ≥ V (B).

Proof. By Sperner’s lemma |5B| ≥ n−l
l+1
|B| so that

V (5B) ≥ (l + 1)
n− l
l + 1

|B| ≥ l|B| = V (B)

for n− l ≥ l, that is for l ≤ n
2
.

The next three lemmas give an upper bound for V (A) where A is an antichain
satisfying certain conditions. In particular, Lemma 4 says that if A is an antichain
whose largest set has size K + 1 and having parameter pK+1 > K + 2, then V (A)
is bounded above by the volume of the antichain A∗ obtained from A by replacing
(K + 1)-sets by K-sets so that A∗ has exactly (K + 2) (K + 1)-sets.

Lemma 5 says that, for n odd, if A is an antichain whose smallest set has size K − 1
and having parameter pK−1 > K + 1, then V (A) is bounded above by the volume
of the antichain A∗ obtained from A by replacing (K − 1)-sets by K-sets so that A∗
has exactly (K+ 1) (K− 1)-sets. Lemma 6 says that, for n even, if A is an antichain
whose smallest set has size K − 2 and having parameter pK−2 > K + 1, then V (A)
is bounded above by the volume of the antichain A∗ obtained from A by replacing
(K − 2)-sets by (K − 1)-sets so that A∗ has exactly (K + 1) (K − 2)-sets.

Recall that all antichains are assumed to be squashed, so that “first”and “last” refer
to first and last in the context of the squashed ordering of sets.

Lemma 4. For n ≥ 5 let A be an antichain with parameters pi such that pi = 0 for
i > K + 1, and pK+1 > K + 2. Let A∗ be the antichain obtained from A by replacing
all the (K + 1)-sets of A but the first (K + 2) (K + 1)-sets by all the K-sets in their
new-shadow. Then V (A∗) ≥ V (A).

Proof. We start by describing the list of the (K+1)-sets in squashed order. The idea
of the squashed order is to use as few elements as possible when listing the sets. The
first (K + 1)-set is {1, . . . , K + 1}. This set is followed by

(
K+1
K

)
sets, each of them
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being the union of one of the
(
K+1
K

)
K-subsets of [K + 1] with the set {K + 2}. This

collection is itself followed by
(
K+2
K

)
sets, each of them being the union of one of the(

K+2
K

)
K-subsets of [K + 2] with the set {K + 3}.

Therefore the collection of
(

n
K+1

)
(K + 1)-sets in squashed order can be subdivided

into subcollections of size
(
i
K

)
each, K ≤ i ≤ n − 1. For a given i, any set in the

subcollection of size
(
i
K

)
is the union of one of the

(
i
K

)
K-subsets of [i] and {i+ 1}.

Let A be as defined in the statement of the lemma and consider AK+1, the subcol-
lection of A consisting of its (K + 1)-sets. By the introductory remark, AK+1 is
the union of consecutive collections Ai of consecutive (K + 1)-sets in squashed order
where for some I, K ≤ I ≤ n − 1, |Ai| =

(
i
K

)
for K ≤ i < I, |Ai| ≤

(
i
K

)
for i = I,

and |Ai| = 0 for i > I.

Let i be given, K ≤ i ≤ I. We have seen that any (K + 1)-set of Ai is the union of
one of the

(
i
K

)
K-subsets of [i] sets and {i+ 1}. Therefore the sets in 4NAi, i > K,

are the union of one of the
(

i
K−1

)
(K − 1)-subsets of [i] and {i+ 1}. This is the case

since any K-set not containing the element i + 1, i > K, must be in the shadow of
some set which precedes the sets in Ai in squashed order.

Let Bi = {B : |B| = K,B ⊂ A,A ∈ Ai, i+ 1 /∈ B}. Note that
(i) |Bi| = |Ai| ≤

(
i
K

)
.

(ii) The sets in Bi constitute an initial segment of K-subsets of [i] in squashed order,
so that |4NAi| = |4Bi| for K < i ≤ I.

By Sperner’s lemma we have∣∣4Bi∣∣ ≥ K

i−K + 1

∣∣Bi∣∣ .
From (i) and (ii) it follows that

V
(
4NAi

)
= K|4NAi| ≥ K

K

i−K + 1

∣∣Ai∣∣ ≥ (K + 1)
∣∣Ai∣∣ = V

(
Ai
)

for K < i ≤ I ≤ n− 1. Also,

∣∣4N

(
AK+1 \

(
AK ∪ AK+1

))∣∣ =
I∑

i=K+2

∣∣4NAi
∣∣

so that

V
(
4N

(
AK+1 \

(
AK ∪AK+1

)))
=

I∑
i=K+2

V
(
4NAi

)
≥

I∑
i=K+2

V
(
Ai
)

= V
(
AK+1 \

(
AK ∪ AK+1

))
.
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A∗ is the antichain obtained from A by replacing all the (K + 1)-sets in Ai, K + 2 ≤
i ≤ I, by all the K-sets in 4NAi. Note that |AK ∪AK+1| = K + 2. This implies

V (A∗) = V (A)− V
(
AK+1 \

(
AK ∪ AK+1

))
+ V

(
4N

(
AK+1 \

(
AK ∪ AK+1

)))
≥ V (A) .

This proves the lemma.

We now need to establish a similar result to the one stated in the previous lemma
in the case where A∗ is obtained from A by replacing sets of A by sets in their new-
shade. The proofs of the following lemmas are similar to the proof of Lemma 4 and
we shall try to keep them as short as possible. We need to discuss the cases n odd
and n even separately.

Without loss of generality we assume that for any antichain considered below, the
sets of smallest size, l say, form a terminal segment of l-sets in squashed order.

Lemma 5. For n odd and n ≥ 5 let A be an antichain with parameters pi such that
pi = 0 for i < K − 1 and pK−1 > K + 1. Let A∗ be the antichain obtained from A by
replacing all the (K − 1)-sets but the last (K + 1) (K − 1)-sets by all the K-sets in
their new-shade. Then V (A∗) ≥ V (A).

Proof. Let A be as defined in the statement of the lemma and consider AK−1, the
subcollection ofA consisting of its (K−1)-sets. ThenAK−1 is the union of consecutive
collections Ai of consecutive (K − 1)-sets in reverse squashed order where for some
I, K − 1 ≤ I ≤ n − 1, |Ai| =

(
i

i−K+1

)
for K − 1 ≤ i < I, |Ai| ≤

(
i

i−K+1

)
for i = I,

and |Ai| = 0 for i > I.

To see this, note that the last (K − 1)-set in squashed order is the set {K + 1,K +
2, . . . , n} where n = 2K − 1 as n is odd. This set is preceded by

(
K
1

)
sets, each of

them being the union of one of the singletons of [K] with the set {K + 2, . . . , n}. It
is now easy to see that this collection is itself preceded by

(
K+1

2

)
sets, each of them

being the union of one of the
(
K+1

2

)
2-subsets of [K + 1] with the set {K + 3, . . . , n}.

In general, for K−1 ≤ i ≤ I, any (K−1)-set of Ai is the union of one of the
(

i
i−K+1

)
(i−K + 1)-subsets of [i] and {i+ 2, . . . , n}, so that the sets in 5NAi are the union
of one of the

(
i

i−K+2

)
(i−K + 2)-subsets of [i] and {i+ 2, . . . , n}.

Let Bi = {B : |B| = i−K + 1, B ⊂ A,A ∈ Ai, B ∩ {i+ 2, . . . , n} = ∅}. Note that
(i) |Bi| = |Ai| ≤

(
i

i−K+1

)
.

(ii) The sets in Bi constitute a terminal segment of (i − K + 1)-subsets of [i] in
squashed order, so that |5NAi| = |5Bi|.

By Sperner’s lemma we have∣∣5Bi∣∣ ≥ K − 1

i−K + 2

∣∣Bi∣∣ .
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From (i) and (ii) it follows that

V
(5

NAi
)

= K|5NAi| ≥ K
K − 1

i−K + 2

∣∣Ai∣∣ ≥ (K − 1)
∣∣Ai∣∣ = V

(
Ai
)

for K − 1 ≤ i ≤ I ≤ n− 1. Also,

∣∣5
N

(
AK−1 \

(
AK−1 ∪ AK

))∣∣ =
I∑

i=K+1

∣∣5
NAi

∣∣
so that

V
(5

N

(
AK−1 \

(
AK−1 ∪AK

)))
=

I∑
i=K+1

V
(5

NAi
)

≥
I∑

i=K+1

V
(
Ai
)

= V
(
AK−1 \

(
AK−1 ∪ AK

))
.

Lemma 6. For n even and n ≥ 5 let A be an antichain with parameters pi such that
pi = 0 for i < K − 2 and pK−2 > K + 1. Let A∗ be the antichain obtained from A by
replacing all the (K− 2)-sets but the last (K+ 1) (K− 2)-sets by all the (K− 1)-sets
in their new-shade. Then V (A∗) ≥ V (A).

Proof. Let A be as defined in the statement of the lemma and consider AK−2, the
subcollection ofA consisting of its (K−2)-sets. ThenAK−2 is the union of consecutive
collections Ai of consecutive (K − 2)-sets in reverse squashed order where for some
I, K − 1 ≤ I ≤ n − 1, |Ai| =

(
i

i−K+1

)
for K − 1 ≤ i < I, |Ai| ≤

(
i

i−K+1

)
for i = I,

and |Ai| = 0 for i > I.

The same argument as the one used in the proof of Lemma 5 shows that

V
(5

N

(
AK−2 \

(
AK−1 ∪AK

)))
≥ V

(
AK−2 \

(
AK−1 ∪AK

))
.

4 Proof of Theorem 1

To prove Theorem 1 we first prove that there exists a flat antichain with volume V
for each V < Un, where Un is defined below. Then, by making use of the results
of Section 3, we characterise some antichains whose volume is less than Un, that is,
antichains which can be flattened while keeping the volume constant. Consequently,
we characterise all antichains whose volume is greater than or equal to Un. The proof
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of Theorem 1 concludes by showing that all the latter antichains can be flattened
while keeping size and volume constant.

We start by showing that for every V < Un there exists a flat antichain of volume V .

Observation 1. For every antichain on [n], n ≤ 4, of size s and volume V , there is
a flat antichain of size s and volume V .

Note 2. Observation 1 is trivial for n < 4. It is easy to check that it holds for all
possible antichains on [4].

Observation 2. The new-shades (starting at the end of the squashed order) of the
last n−K + 2 (K − 1)-sets in squashed order have the cardinalities n−K + 1, n−
K, . . . , 1, 0. The size of the shade of the last m (K − 1)-sets, m ≤ n − K + 2, is
2n−2K+3−m

2
×m.

Lemma 7. For n ≥ 5 and for all V ≤ (K − 1)2 there exists a flat antichain with
volume V .

Proof. Using only 1-sets and 2-sets, we can construct antichains with volumes

2x for x ≤
(
n
2

)
,

2x+ 1 for x ≤
(
n
2

)
− (n− 1).

Lemma 8. For n ≥ 5, let

Un =
((

n
K

)
− 2n−3K+4

2
(K − 1) + 1

)
K + (K − 1)(K − 1).

Then for each V < Un there exists a flat antichain with volume V .

Proof. Using only K-sets and (K−1)-sets, we can construct antichains with volumes

Kx for x ≤
(
n
K

)
Kx+ (K − 1), x ≤

(
n
K

)
− (n−K + 1)

Kx+ 2(K − 1), x ≤
(
n
K

)
− (n−K + 1)− (n−K)

Kx+ 3(K − 1), x ≤
(
n
K

)
− (n−K + 1)− (n−K)− (n−K − 1)

...

Kx+ (K − 1)(K − 1), x ≤
(
n
K

)
− 2n−3K+4

2
(K − 1).

This means that we can construct flat antichains with any volume V , (K−1)(K−1) <
V < Un using only K-sets and (K − 1)-sets. By Lemma 7, we can construct flat
antichains with volume V ≤ (K − 1)(K − 1).

Note that Un is the first volume that we cannot obtain from only K-sets and (K−1)-
sets.
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Illustration. Let Vmax(n) be the maximum possible volume of an antichain on [n].
For n even, Vmax(n) = K

(
n
K

)
= (K − 1)

(
n

K−1

)
, and for n odd, Vmax(n) = K

(
n
K

)
.

Let Vmax2(n) be the second largest volume of an antichain on [n] consisting of only
sets of one size. That is, for n even, Vmax2(n) = (K + 1)

(
n

K+1

)
= (K − 2)

(
n

K−2

)
, and

for n odd, Vmax2(n) = (K + 1)
(

n
K+1

)
= (K − 1)

(
n

K−1

)
. Note that Vmax2(n) < Un for

n ≥ 5.

n 5 6 7 8
Un 22 49 117 251

Vmax(n) 30 60 140 280
Vmax2(n) 20 30 105 168

We now describe some antichains whose volume is less than Un.

The next lemma is given without a proof:

Lemma 9. For n ≥ 5,
(i)
((

n
K

)
−
(
K+2

2

))
K + (K + 2) (K + 1) < Un,

(ii)
((

n
K

)
−
(
n−K+2

2

))
K + (K + 1) (K − 1) < Un, for n odd,

(iii)
((

n
K−1

)
−
(
n−K+3

2

))
(K − 1) + (K + 1) (K − 2) < Un for n even.

Recall that the ideal of an antichain A is IA = {B : B ⊆ A,A ∈ A}. We define the
ideal at level i, denoted by IiA, to be {B : B ∈ IA, |B| = i}. The filter of A is
FA = {B : B ⊇ A,A ∈ A}. The filter at level i is FiA = {B : B ∈ FA, |B| = i}.
All antichains are assumed to be squashed. As in the previous section, “first” and
“last” refer to first and last in the context of the squashed ordering of sets.

Lemma 10. For n ≥ 5 let A be an antichain with |IK+1A| ≥ K + 1. Then V (A) <
Un.

Proof. If V (A) ≤ Vmax2(n) then V (A) < Un and we are done. If V (A) > Vmax2(n)
then A must contain sets of size less than K + 1. For, if for each A ∈ A, |A| ≥
K + 1, then V (IK+1A) ≥ V (A) by Lemma 2. But V (IK+1A) ≤ Vmax2(n) < Un,
contradicting our assumption about V (A).

Let A′ be the antichain obtained from A by replacing the sets of size greater than
K+1 by all the sets in their shadow at level K+1. Then V (A′) ≥ V (A) by Lemma 2.
Note that |IK+1A′| = |IK+1A| ≥ K + 1.

Let A′′ be the antichain obtained from A′ by replacing the sets of size less than K by
all the sets in their shade at level K. It follows that V (A′′) ≥ V (A′) by Lemma 3.

A′′ has at least (K + 1) (K + 1)-sets. The shadow of the first (K + 1) (K + 1)-sets
is equal to the shadow of the first (K + 2) (K + 1)-sets, so that Lemma 4 applies to
A′′ and V (A′′) ≤

((
n
K

)
−
(
K+2

2

))
K + (K + 2)(K + 1). By Lemma 9(i), V (A′′) < Un.

We conclude that V (A) < Un.
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Lemma 11. For n odd and n ≥ 5, let A be an antichain with |FK−1| ≥ K. Then
V (A) < Un.

Proof. If V (A) > Vmax2(n), then, by Lemma 3, A must contain sets of size greater
than K − 1. Let A′ be the antichain obtained from A by replacing the sets of size
less than K − 1 by all the sets in their shade at level K − 1. Then V (A′) ≥ V (A) by
Lemma 3. Note that |FK−1A′| = |FK−1A| ≥ K.

Let A′′ be the antichain obtained from A′ by replacing the sets of size greater than
K by all the sets in their shadow at level K. By Lemma 2, V (A′′) ≥ V (A′). A′′
has at least K (K − 1)-sets. The shade of the last K (K − 1)-sets is equal to the
shade of the last (K + 1) (K − 1)-sets, so that Lemma 5 applies to A′′ to give
V (A′′) ≤

((
n
K

)
−
(
n−K+2

2

))
K + (K + 1)(K − 1). It follows that V (A) < Un by

Lemma 9(ii).

Lemma 12. For n even and n ≥ 5 let A be an antichain with |FK−2| ≥ K. Then
V (A) < Un.

Proof. The proof is very similar to the proof of Lemma 11. In the latter, replacing
K and (K − 1)-sets by (K − 1) and (K − 2)-sets respectively, and using Lemmas 6
and 9(iii) in lieu of Lemmas 5 and 9(ii) achieves the desired result.

Observation 3. If A is an antichain such that |IK+1A| < K + 1 then A contains
no set of size larger than (K + 1). If n is odd and |FK−1| < K then A contains no
set of size smaller than K − 1. If n is even and |FK−2| < K then A contains no set
of size smaller than K − 2.

Lemmas 10, 11 and 12 together with Observation 3 imply that the antichains on [n],
n ≥ 5, which are not flat and which have volume V ≥ Un can only be one of the
types listed below:

(i) for n odd, the antichains with parameters pi = 0 for i > K + 1 and i < K − 1,
0 < pK+1 ≤ K and 0 < pK−1 ≤ K − 1 (antichains of type A1);
(ii) for n even, the antichains with parameters pi = 0 for i > K + 1 and i < K − 1,
0 < pK+1 ≤ K and pK−1 6= 0 (antichains of type A2);
(iii) for n even, the antichains with parameters pi = 0 for i > K and i < K − 2,
pK 6= 0 and 0 < pK−2 ≤ K − 1 (antichains of type A3);
(ii) for n even, the antichains with parameters pi = 0 for i > K + 1 and i < K − 2,
0 < pK+1 ≤ K and 0 < pK−2 ≤ K − 1 (antichains of type A4).

In any other case, either n ≤ 4, or, if n ≥ 5, the volume V of the antichain is less
than Un, or the given antichain is already flat. Observation 1 together with Lemma 8
show that if A is not an antichain of any of the types described above, then there
exists a flat antichain with volume V (A).

We show that antichains of type A1, A2, A3 or A4 can be flattened by keeping the
size, as well as the volume, constant.
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In all of the following, A is a squashed antichain on [n] with parameters pi, 0 ≤ i ≤ n.
As before, we assume that the sets of the smallest size, say l, form a terminal segment
of l-sets in squashed order.

Notation. Fk(p) denotes the first p k-sets in squashed order and Lk(p) denotes the
last p k-sets in squashed order.

Observation 4.
Let k ∈ Z+ be such that 0 < k < n.

(i) For 0 ≤ p < k and 0 ≤ m ≤ p, the size of the new-shadow of the last m k-sets of
Fk(p) is greater than or equal to 2m.
(ii) For 0 ≤ p < n− k and 0 ≤ m ≤ p, the size of the new-shade of the first m k-sets
of Lk(p) is greater than or equal to 2m.

The next three lemmas conclude the proof of Theorem 1.

Lemma 13. If A is an antichain of type A1 or A2, then there exists a flat antichain
of size |A| and volume V (A).

Proof. Let p = min{pK+1, pK−1}. Then p ≤ K. By Observation 4(i), there exists an
antichain of size |A| and volume V (A) having parameters qi = 0 for i > K + 1 and
i < K − 1, qK+1 = pK+1 − p, qK = 2p+ pK , qK−1 = pK−1 − p.
Lemma 14. If A is an antichain of type A3, then there exists a flat antichain of
size |A| and volume V (A).

Proof. Note that n = 2K − 2 and let p = min{pK , pK−2}. Then p ≤ K − 1 and
by Observation 4(ii) there exists an antichain of size |A| and volume V (A) having
parameters qi = 0 for i > K and i < K − 2, qK = pK − p, qK−1 = 2p + pK−1,
qK−2 = pK−2 − p.
Lemma 15. If A is an antichain of type A4, then there exists a flat antichain of
size |A| and volume V (A).

Proof. Note that n = 2K − 2. Three cases are considered. In each case, by Observa-
tions 4(i) and (ii), there exists an antichain of size |A| and volume V (A) and having
parameters qi as given below:

(i) pK+1 = pK−2: qi = 0 for i > K and i < K−1, qK = pK+1+pK, qK−1 = pK−1+pK−2.

(ii) pK+1 > pK−2: qi = 0 for i > K + 1 and i < K − 1, qK+1 = pK+1 − pK−2,
qK = pK + pK−2, qK−1 = pK−1 + pK−2. This is an antichain of type A2.

(iii) pK+1 < pK−2: qi = 0 for i > K and i < K − 2, qK = pK+1 + pK, qK−1 =
pK−1 + pK+1, qK−2 = pK−2 − pK+1. This is an antichain of type A3.

By Lemmas 13 and 14 the antichains obtained in cases (ii) and (iii) have a flat
counterpart with same size |A| and volume V (A).
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