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Abstract

We show that if P (x) is a polynomial with nondecreasing, nonnegative coefficients,
then the coefficient sequence of P (x+ 1) is unimodal. Applications are given.

1. Introduction

A finite sequence of real numbers {d0, d1, · · · , dm} is said to be unimodal if there
exists an index 0 ≤ m∗ ≤ m, called the mode of the sequence, such that dj increases
up to j = m∗ and decreases from then on, that is, d0 ≤ d1 ≤ · · · ≤ dm∗ and
dm∗ ≥ dm∗+1 ≥ · · · ≥ dm. A polynomial is said to be unimodal if its sequence of
coefficients is unimodal.

Unimodal polynomials arise often in combinatorics, geometry and algebra. The
reader is referred to [2] and [3] for surveys of the diverse techniques employed to
prove that specific families of polynomials are unimodal.

A sequence of positive real numbers {d0, d1, · · · , dm} is said to be logarithmically
concave (or log-concave for short) if dj+1dj−1 ≤ d2

j for 1 ≤ j ≤ m − 1. It is easy to
see that if a sequence is log-concave then it is unimodal [4]. A sufficient condition for
log-concavity of a polynomial is given by the location of its zeros: if all the zeros of a
polynomial are real and negative, then it is log-concave and therefore unimodal [4]. A
second criterion for the log-concavity of a polynomial was determined by Brenti [2].
A sequence of real numbers is said to have no internal zeros if whenever di, dk 6= 0
and i < j < k then dj 6= 0. Brenti’s criterion states that if P (x) is a log-concave
polynomial with nonnegative coefficients and with no internal zeros, then P (x+ 1) is
log-concave.

1www: <http://www.math.tulane.edu:80/~vhm>
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2. The main result

Theorem 2.1. If P (x) is a polynomial with positive nondecreasing coefficients, then
P (x+ 1) is unimodal.

Proof. Observe first that Pm,r(x) := (1 + x)m+1 − (1 + x)r with 0 ≤ r ≤ m
is unimodal with mode at 1 + bm

2
c. This follows by induction on m ≥ r using

Pm+1,r(x) = Pm,r(x) + x(1 + x)m+1. For m even, Pm+1,r is the sum of two unimodal
polynomials with the same mode. For m = 2t + 1, the modes are shifted by 1, so it
suffices to check

at+1 +

(
m+ 1

t

)
≤ at+2 +

(
m+ 1

t+ 1

)
, (2.1)

where at+1 is the coefficient of xt in Pm,r(x). The case t ≥ r yields equality in (2.1).
If t ≤ r − 2 then (2.1) is equivalent to r ≤ m+ 2. The final case t = r − 1 amounts
to 0 =

(
m+1
r−1

)
−
(
m+1
r+1

)
≤ 1,

Now P (x + 1) = 1
x

(b0Pm,0(x) + (b1 − b0)Pm,1(x) + · · ·+ (bm − bm−1)Pm,m(x)), so
P (x+1) is a sum of unimodal polynomials with the same mode, and hence unimodal.

We now restate Theorem 2.1 and offer an alternative proof.

Theorem 2.2. Let bk > 0 be a nondecreasing sequence. Then the sequence

cj :=
m∑
k=j

bk

(
k

j

)
, 0 ≤ j ≤ m (2.2)

is unimodal with mode m∗ := bm−1
2
c.

Proof. For 0 ≤ j ≤ m− 1 we have

(j + 1)(cj+1 − cj) =
m∑
k=j

bk

(
k

j

)
× (k − 2j − 1). (2.3)

Suppose first that j ≥ m∗, and let m be odd so that m = 2m∗+ 1; the case m even is
treated in a similar fashion. Every term in (2.3) is negative because, if j > m∗, then
k − 2j − 1 ≤ m− 2j − 1 = 2(m∗ − j) < 0, and for j = m∗,

(m∗ + 1)(cm∗+1 − cm∗) =
m−1∑
k=m∗

bk

(
k

m∗

)
× (k −m) < 0. (2.4)

Thus cj+1 < cj.
Now suppose 0 ≤ j < m∗ and define

T1 :=

2j∑
k=j

bk

(
k

j

)
(2j + 1− k) (2.5)
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and

T2 :=
m∑

k=2j+2

bk

(
k

j

)
(k − 2j − 1) (2.6)

so that (j + 1)(cj+1 − cj) = T2 − T1. Then

T1 < b2j+2

2j∑
k=j

(
k

j

)
(2j + 1− k) = b2j+2

(
2j + 2

j

)
< T2.

Thus cj+1 > cj.

3. Examples

Example 1. The case P (x) = xn in Theorem 2.1 gives the unimodality of the bino-
mial coefficients.

Example 2. For 0 ≤ k ≤ m− 1, define

bk(m) := 2−2m+k

(
2m− 2k

m− k

)(
m+ k

m

)
(a+ 1)k

for 0 ≤ k ≤ m− 1. Then

bk+1(m)

bk(m)
=

(m− k)(m+ k + 1)

(2m− 2k − 1)(k + 1)
> 1

so the polynomial

Pm(a) :=
m∑
k=0

bk(m)(a+ 1)k

is unimodal. We encountered Pm in the integral formula [1]∫ ∞
0

dx

(x4 + 2ax2 + 1)m+1
=

π Pm(a)

2m+3/2(a+ 1)m+1/2
. (3.1)

This does not appear in the standard tables.

Example 3. For 0 ≤ k ≤ m− 1, define

bk(m) :=
(−m− β)m

m!

(−m)k(m+ 1 + α+ β)k
(β + 1)k k! 2k

.

Then, with α = m+ ε1 and β = −(m+ ε2), we have

bk+1(m)

bk(m)
=

m− k
m− k + ε2 − 1

× k − 1 +m+ ε1 − ε2
2(k + 1)

> 1
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provided 0 < ε1 ≤ ε2 < 1. Therefore the polynomial

P (α,β)
m (a) :=

m∑
k=0

bk(m)(a+ 1)k

is unimodal. This is a special case of the Jacobi family, where the parameters α and
β are not standard since they depend on m. These polynomials do not have real
zeros, so their unimodality is not immediate. The case of Example 2 corresponds to
ε1 = ε2 = 1

2
.

Example 4. Let n, m ∈ � be fixed. Then the sequences

αj :=
m∑
k=j

nk
(
k

j

)
, βj :=

m∑
k=j

kn
(
k

j

)
, and γj :=

m∑
k=j

kk
(
k

j

)
are unimodal for 0 ≤ j ≤ m.

Example 5. Let 2 < a1 < · · · < ap and n1, · · · , np be two sequences of p positive
integers. For 0 ≤ j ≤ m, define

cj :=
m∑
k=j

(a1m

k

)n1
(a2m

k

)n2

· · ·
(apm

k

)np (k
j

)
. (3.2)

Then cj is unimodal.
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