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Abstract. We study the 2-adic behavior of the number of domino tilings of a 2n× 2n square as n varies.
It was previously known that this number was of the form 2nf(n)2, where f(n) is an odd, positive integer.
We show that the function f is uniformly continuous under the 2-adic metric, and thus extends to a function
on all of �. The extension satisfies the functional equation f(−1 − n) = ±f(n), where the sign is positive
iff n ≡ 0, 3 (mod 4).

Kasteleyn [K], and Temperley and Fisher [TF], proved that the number of tilings of a 2n×2n square with
1× 2 dominos is

n∏
i=1

n∏
j=1

(
4 cos2 πi

2n+ 1
+ 4 cos2 πj

2n+ 1

)
.

Although it is by no means obvious at first glance, this number is always a perfect square or twice a perfect
square (see [L]). Furthermore, it is divisible by 2n but no higher power of 2. This fact about 2-divisibility
was independently proved by several people (see [JSZ], or see [P] for a combinatorial proof), but there seems
to have been little further investigation of the 2-adic properties of these numbers, except for [JS].

Write the number of tilings as 2nf(n)2, where f(n) is an odd, positive integer. In this paper, we study the
2-adic properties of the function f . In particular, we will prove the following theorem, which was conjectured
by James Propp:

Theorem 1. The function f is uniformly continuous under the 2-adic metric, and its unique extension to
a function from �2 to �2 satisfies the functional equation

f(−1− n) =

{
f(n) if n ≡ 0, 3 (mod 4), and
−f(n) if n ≡ 1, 2 (mod 4).

John and Sachs [JS] have independently investigated the 2-adic behavior of f , and explicitly determined
it modulo 26. Their methods, as well as ours, can be used to write formulas for f modulo any power of 2,
but no closed form is known.

The proof of Theorem 1 will not make any use of sophisticated 2-adic machinery. The only non-trivial
fact we will require is that the 2-adic absolute value extends uniquely to each finite extension of �. For this
fact, as well as basic definitions and concepts, the book [G] by Gouvêa is an excellent reference.

It is helpful to keep in mind this more elementary description of what it means for f to be uniformly
continuous 2-adically: for every k, there exists an ` such that if n ≡ m (mod 2`), then f(n) ≡ f(m)
(mod 2k). In particular, we will see that for our function f , the condition n ≡ m (mod 2) implies that
f(n) ≡ f(m) (mod 2), and n ≡ m (mod 4) implies that f(n) ≡ f(m) (mod 4).
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As a warm-up in using 2-adic methods, and for the sake of completeness, we will prove that that number
of tilings of a 2n× 2n square really is of the form 2nf(n)2, assuming Kasteleyn’s theorem. To do so, we will
make use of the fact that the 2-adic metric extends to every finite extension of �, in particular the cyclotomic
extensions, which contain the cosines that appear in Kasteleyn’s product formula. We can straightforwardly
determine the 2-adic valuation of each factor, and thus of the entire product.

Let ζ be a primitive (2n+ 1)-st root of unity, and define

αi,j = ζi + ζ−i + ζj + ζ−j .

Then the number of domino tilings of a 2n× 2n square is
n∏
i=1

n∏
j=1

(4 + αi,j).(1)

To determine the divisibility by 2, we look at this number as an element of �2(ζ). Because 2n+ 1 is odd,
the extension �2(ζ)/�2 is unramified, so 2 remains prime in �2(ζ). We will use | · |2 to denote the unique
extension of the 2-adic absolute value to �2(ζ).

Lemma 2. For 1 ≤ i, j ≤ n, we have

|4 + αi,j |2 =

{
1 if i 6= j, and
1/2 if i = j.

Proof. The number 4 + αi,j is an algebraic integer, so its 2-adic absolute value is at most 1. To determine
how much smaller it is, first notice that

αi,j = (ζi + ζj)(ζi+j + 1)ζ−iζ−j .

In order for 4 + αi,j to reduce to 0 modulo 2, we must have

ζi ≡ ζ±j (mod 2).

However, this is impossible unless i ≡ ±j (mod 2n + 1), because ζ has order 2n + 1 in the residue field.
Since 1 ≤ i, j ≤ n, the only possibility is i = j.

In that case, 4 + αi,i = 2(2 + ζi + ζ−i). In order to have |4 + αi,i|2 < 1/2, the second factor would need
to reduce to 0. However, that could happen only if ζi ≡ ζ−i (mod 2), which is impossible.

By Lemma 2, the product (1) is divisible by 2n but not 2n+1. The product of the terms with i = j,
divided by 2n, is

n∏
i=1

(2 + ζi + ζ−i),(2)

which equals 1, as we can prove by writing
n∏
i=1

(2 + ζi + ζ−i) =
n∏
i=1

(1 + ζi)(1 + ζ−i) =
n∏
i=1

(1 + ζi)(1 + ζ2n+1−i) =
2n∏
i=1

(1 + ζi) = 1;

the last equality follows from substituting z = −1 in

z2n+1 − 1 =
2n∏
i=0

(z − ζi).

Thus, the odd factor of the number of tilings of a 2n× 2n square is

f(n)2 =
∏

1≤i<j≤n
(4 + αi,j)2.
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We are interested in the square root of this quantity, not the whole odd factor. The positive square root is

f(n) =
∏

1≤i<j≤n
(4 + αi,j)

(notice that every factor is positive). It is clearly an integer, since it is an algebraic integer and is invariant
under every automorphism of �(ζ)/�. Thus, we have shown that the number of tilings is of the form
2nf(n)2, where f(n) an odd integer.

In determining the 2-adic behavior of f , it seems simplest to start by examining it modulo 4. In that
case, we have the formula

f(n) ≡
∏

1≤i<j≤n
αi,j (mod 4),

and the product appearing in it can actually be evaluated explicitly.

Lemma 3. We have ∏
1≤i<j≤n

αi,j =

{
1 if n ≡ 0, 1, 3 (mod 4), and
−1 if n ≡ 2 (mod 4).

Proof. In this proof, we will write ζ∗ to indicate an unspecified power of ζ. Because the product in question
is real and the only real power of ζ is 1, we will in several cases be able to see that factors of ζ∗ equal 1
without having to count the ζ’s.

Start by observing that

∏
1≤i<j≤n

αi,j =
n−1∏
i=1

n∏
j=i+1

(ζi+j + 1)(ζi−j + 1)ζ−i

= ζ∗
n−1∏
i=1

n∏
j=i+1

(ζi+j + 1)(ζ2n+1+i−j + 1)

= ζ∗
n−1∏
i=1

2n∏
s=2i+1

(ζs + 1).

(To prove the last line, check that i+ j and 2n+ 1 + i− j together run over the same range as s.)
In the factors where i > n/2, replace ζs + 1 with ζs(ζ2n+1−s + 1). Now for every i, it is easy to check that

2n∏
s=2i+1

(ζs + 1)
2n∏

s=2(n−i)+1

(ζ2n+1−s + 1) =
2n∏
s=1

(ζs + 1) = 1.

When n is odd, pairing i with n − i in this way takes care of every factor except for a power of ζ, which
must be real and hence 1. Thus, the whole product is 1 when n is odd, as desired.

In the case when n is even, the pairing between i and n − i leaves the i = n/2 factor unpaired. The
product is thus

ζ∗
2n∏

s=n+1

(ζs + 1).(3)
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Notice that (
2n∏

s=n+1

(1 + ζs)

)2

=
2n∏

s=n+1

ζs(1 + ζ2n+1−s)
2n∏

s=n+1

(1 + ζs)

=
2n∏

s=n+1

ζs

= ζ∗.

Hence, since every power of ζ has a square root among the powers of ζ (because 2n+ 1 is odd),

2n∏
s=n+1

(ζs + 1) = ±ζ∗.

Substituting this result into (3) shows that the product we are trying to evaluate must equal ±1, since the
ζ∗ factor must be real and therefore 1. All that remains is to determine the sign.

Since
2n∏

s=n+1

(1 + ζs)

and
n∏
t=1

(1 + ζt)

are reciprocals, it is enough to answer the question for the second one (which is notationally slightly simpler).
We know that it is plus or minus a power of ζ, and need to determine which. Since ζ = ζ−2n, we have

n∏
t=1

(1 + ζt) =
n∏
t=1

(1 + ζ−2nt) = ζ∗
n∏
t=1

(ζnt + ζ−nt).

The product
n∏
t=1

(ζnt + ζ−nt)

is real, so it must be ±1; to determine which, we just need to determine its sign. For that, we write

ζnt + ζ−nt = 2 cos
(
tπ − tπ

2n+ 1

)
,

which is negative iff t is odd (assuming 1 ≤ t ≤ n). Thus, the sign of the product is negative iff there are an
odd number of odd numbers from 1 to n, i.e., iff n ≡ 2 (mod 4) (since n is even).

Therefore, the whole product is −1 iff n ≡ 2 (mod 4), and is 1 otherwise.

Now that we have dealt with the behavior of f modulo 4, we can simplify the problem considerably by
working with f2 rather than f . Recall that proving uniform continuity is equivalent to showing that for
every k, there exists an ` such that if n ≡ m (mod 2`), then f(n) ≡ f(m) (mod 2k). If we can find an ` such
that n ≡ m (mod 2`) implies that f(n)2 ≡ f(m)2 (mod 22k), then it follows that f(n) ≡ ±f(m) (mod 2k),
and our knowledge of f modulo 4 pins down the sign as +1. The same reasoning applies to the functional
equation, so if we can show that f2 is uniformly continuous 2-adically and satisfies f(−1−n)2 = f(n)2, then
we will have proved Theorem 1.
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We begin by using (1) to write

2nf(n)2 =

 n∏
i,j=1

αi,j

 n∏
i,j=1

(
1 +

4
αi,j

)

=

 n∏
i,j=1

αi,j

∑
k≥0

4kEk(n),

where Ek(n) is the k-th elementary symmetric polynomial in the 1/αi,j ’s (where 1 ≤ i, j ≤ n). We can
evaluate the product

n∏
i,j=1

αi,j

by combining Lemma 3 with the equation
n∏
t=1

(ζt + ζ−t) = (−1)b
n+1

2 c,

which can be proved using the techniques of Lemma 3: it is easily checked that the product squares to 1,
and its sign is established by writing

ζt + ζ−t = 2 cos
2tπ

2n+ 1
,

which is positive for 1 ≤ t < (2n+ 1)/4 and negative for (2n+ 1)/4 < t ≤ n. This shows that
n∏

i,j=1

αi,j = (−1)b
n+1

2 c2n,

so we conclude that

f(n)2 = (−1)b
n+1

2 c
∑
k≥0

4kEk(n).(4)

The function n 7→ (−1)b
n+1

2 c is uniformly continuous 2-adically and invariant under interchanging n with
−1− n, so to prove these properties for f2 we need only prove them for the sum on the right of (4).

Because αi,j has 2-adic valuation at most 1, that of Ek(n) is at least −k, and hence 2kEk(n) is a 2-adic
integer (in the field �2(ζ)). Thus, to determine f(n)2 modulo 2k we need only look at the first k + 1 terms
of the sum (4).

Define

Sk(n) =
n∑

i,j=1

1
αki,j

.

We will prove the following proposition about Sk.

Proposition 4. For each k, Sk(n) is a polynomial over � in n and (−1)n. Furthermore,

Sk(n) = Sk(−1− n).

We will call a polynomial in n and (−1)n a quasi-polynomial. Notice that every quasi-polynomial over �
is uniformly continuous 2-adically.

In fact, Sk is actually a polynomial of degree 2k. However, we will not need to know that. The only use
we will make of the fact that Sk is a quasi-polynomial is in proving uniform continuity, so we will prove only
this weaker claim.



6 the electronic journal of combinatorics 6 (1999), #R14

Given Proposition 4, the same must hold for Ek, because the Ek’s and Sk’s are related by the Newton
identities

kEk =
k∑
i=1

(−1)i−1SiEk−i.

It now follows from (4) that f2 is indeed uniformly continuous and satisfies the functional equation. Thus,
we have reduced Theorem 1 to Proposition 4.

Define

Tk(n) =
2n∑
i,j=0

1
αki,j

,

and

Rk(n) =
2n∑
i=0

1
αki,0

.

Because αi,j = α−i,j = αi,−j = α−i,−j , we have

Tk(n) = 4Sk(n) + 2Rk(n)− 1
αk0,0

.

To prove Proposition 4, it suffices to prove that Tk and Rk are quasi-polynomials over �, and that Tk(−1−
n) = Tk(n) and Rk(−1− n) = Rk(n).

We can simplify further by reducing Tk to a single sum, as follows. It is convenient to write everything in
terms of roots of unity, so that

Tk(n) =
∑
ζ,ξ

1
(ζ + 1/ζ + ξ + 1/ξ)k

,

where ζ and ξ range over all (2n + 1)-st roots of unity. (This notation supersedes our old use of ζ.) Then
we claim that

Tk(n) =

∑
ζ

1
(ζ + 1/ζ)k

2

.

To see this, write the right hand side as∑
ζ

1
(ζ + 1/ζ)k

∑
ξ

1
(ξ + 1/ξ)k

 =
∑
ζ,ξ

1
(ζξ + 1/(ζξ) + ζ/ξ + 1/(ζ/ξ))k

,

and notice that as ζ and ξ run over all (2n+ 1)-st roots of unity, so do ζξ and ζ/ξ. (This is equivalent to the
fact that every (2n + 1)-st root of unity has a unique square root among such roots of unity, because that
implies that the ratio ξ2 between ζξ and ζ/ξ does in fact run over all (2n+ 1)-st roots of unity.)

We can deal with Rk similarly: as ξ runs over all (2n+ 1)-st roots of unity, so does ξ2, and hence

Rk(n) =
∑
ζ

1
(2 + ζ + 1/ζ)k

=
∑
ξ

1
(2 + ξ2 + 1/ξ2)k

=
∑
ξ

1
(ξ + 1/ξ)2k

.

Define
Uk(n) =

∑
ζ

1
(ζ + 1/ζ)k

.

Now everything comes down to proving the following proposition:

Proposition 5. The function Uk is a quasi-polynomial over �, and satisfies

Uk(−1− n) = Uk(n).
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Proof. The proof is based on the observation that for any non-zero numbers, the power sums of their
reciprocals are minus the Taylor coefficients of the logarithmic derivative of the polynomial with those
numbers as roots, i.e.,

d

dx
log

m∏
i=1

(x− ri) =
m∑
i=1

1
x− ri

=
m∑
i=1

−1/ri
1− x/ri

= −
m∑
i=1

(
1
ri

+
x

r2
i

+
x2

r3
i

+ . . .

)
.

To apply this fact to Uk, define

Pn(x) =
∏
ζ

(x− (ζ + 1/ζ))

=
2n∏
j=0

(x− 2 cos(2πj/(2n+ 1)))

= 2(cos((2n+ 1) cos−1(x/2))− 1).

Then
d

dx
logPn(x) =

2n+ 1
2
√

1− x2/4
sin((2n+ 1) cos−1(x/2))

cos((2n+ 1) cos−1(x/2))− 1
.

This function is invariant under interchanging n with −1 − n (equivalently, interchanging 2n + 1 with
−(2n+1)), so its Taylor coefficients are as well. By the observation above, the coefficient of xk is −Uk+1(n).
Straightforward calculus shows that these coefficients are polynomials over � in n, sin((2n + 1)π/2), and
cos((2n + 1)π/2). Using the fact that cos((2n + 1)π/2) = 0 and sin((2n + 1)π/2) = (−1)n completes the
proof.
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