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Abstract

Let m and n be positive integers, and let R = (r1, . . . , rm) and S =
(s1, . . . , sn) be non-negative integral vectors. Let A(R, S) be the set of all
m× n (0, 1)-matrices with row sum vector R and column vector S, and let Ā
be the m × n (0, 1)-matrix where for each i, 1 ≤ i ≤ m, row i consists of ri
1’s followed by n − ri 0’s. If S is monotone, the discrepancy d(A) of A is the
number of positions in which Ā has a 1 and A has a 0. It equals the number
of 1’s in Ā which have to be shifted in rows to obtain A. In this paper, we
study the minimum and maximum d(A) among all matrices A ∈ A(R, S). We
completely solve the minimum discrepancy problem by giving an explicit for-
mula in terms of R and S for it. On the other hand, the problem of finding an
explicit formula for the maximum discrepancy turns out to be very difficult.
Instead, we find an algorithm to compute the maximum discrepancy.
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1 Introduction

Let m and n be positive integers, and let R = (r1, . . . , rm) and S = (s1, . . . , sn) be
non-negative integral vectors. The vector R is called monotone if r1 ≥ · · · ≥ rm.
Let A(R, S) be the set of all m × n (0, 1)-matrices with row sum vector R and
column vector S, and let Ā be the m× n (0, 1)-matrix where for each i, 1 ≤ i ≤ m,
row i consists of ri 1’s followed by n − ri 0’s. Let the column sum vector of Ā be
R∗ = (r∗1, . . . , r

∗
n). It follows that R∗ is monotone and

r∗j = |{i : ri ≥ j, i = 1, . . . ,m}| for j = 1, . . . , n.

R and R∗ are called conjugate partitions of τ = r1 + · · ·+ rm = r∗1 + · · ·+ r∗n.

Let S = (s1, . . . , sn) and T = (t1, . . . , tn) be two non-negative integral vectors.
For convenience, we write

|T − S| :=
n∑
i=1

max{0, ti − si}.

(Notice that |T − S| is, in general, not equal to |S − T |.) In particular,

|T | :=
n∑
i=1

ti.

The vector S is said to be majorized by T , written S ≺ T , if

j∑
i=1

si ≤
j∑
i=1

ti for all j = 1, 2, . . . , n

with equality when j = n. We emphasis here that we do not assume the monotone
properties of S and T in our definition of majorization throughout the paper. This
generalizes the traditional definition of majorization in the literature. To avoid any
ambiguity, we will specify in each of the lemmas and theorems which vectors are
assumed to be monotone.

The set A(R, S) was the subject of intensive study during the late 1950s and early
1960s by many researchers. (See [1] for a survey paper.) For example, the following
lemma of Gale-Ryser stated the conditions for the existence of a matrix in A(R,S).
It was originally stated under the condition that both R and S were monotone. It
is clear that the monotone property of R can be dropped from the lemma since any
reordering of rows in a matrix in A(R, S) does not affect the vectors R∗ and S.

Lemma 1 (Gale [3], Ryser [4]) Suppose S is monotone. Then A(R, S) 6= ∅ if
and only if S ≺ R∗ and ri ≤ n for all i = 1, . . . ,m.
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If A(R, S) 6= ∅, then each A ∈ A(R, S) can be obtained from Ā by shifting 1’s
in each row. Throughout the paper, by shifting 1’s we always means shifting 1’s to
the right. If S is monotone, Brualdi and Sanderson [2] defined the discrepancy d(A)
of A to be the number of positions in which Ā has a 1 and A has a 0. It equals the
number of 1’s in Ā which have to be shifted to obtain A. We are interested in the
discrepancy set {d(A) : A ∈ A(R, S)}. Let

d̃ = d̃(R, S) = min{d(A) : A ∈ A(R,S)}

and
d̄ = d̄(R, S) = max{d(A) : A ∈ A(R, S)}.

In 1957, Ryser [4] defined an interchange to be a transformation which replaces
the 2× 2 submatrix [

1 0
0 1

]
of a matrix A of 0’s and 1’s with the 2× 2 submatrix[

0 1
1 0

]
,

or vice versa. Clearly an interchange (and hence any sequence of interchanges) does
not alter the row and column sum vectors of a matrix, and therefore transforms a
matrix in A(R, S) into another matrix in A(R, S). Ryser [4] proved the converse of
the result by inductively showing that given A,B ∈ A(R,S) there is a sequence of
interchanges which transforms A into B. In particular, if d(A) = d̃ and d(B) = d̄,
then there is a sequence of interchanges which transforms A into B. Thus for each
integer d with d̃ ≤ d ≤ d̄, there is a matrix in A(R,S) having discrepancy d, since an
interchange can only change the discrepancy of a matrix by at most 1. Therefore

{d(A) : A ∈ A(R,S)} = {d : d̃ ≤ d ≤ d̄};

in other words, to determine the discrepancy set {d(A) : A ∈ A(R,S)}, it suffices to
determine the minimum and maximum discrepancies among all matrices in A(R,S).
Since d(A) is defined under the assumption that S is monotone, we assume that S is
monotone throughout the rest of the paper.

In Section 2, we show that the minimum discrepancy of all matrices in A(R, S)
is |R∗ − S|. On the other hand, the problem of finding an explicit formula for the
maximum discrepancy turns out to be very difficult. We find an algorithm to compute
the maximum discrepancy in Section 3.
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2 Minimum Discrepancy

We prove in this section an explicit formula in terms of R and S for the minimum
discrepancy of all matrices in A(R, S). We begin with the following lemma.

Lemma 2 Suppose S = (s1, . . . , sn) and T = (t1, . . . , tn) are monotone vectors such

that S ≺ T . Then there exist k = |T − S| + 1 monotone vectors Si = (s
(i)
1 , . . . , s

(i)
n ),

1 ≤ i ≤ k, such that

1. S = S1 ≺ S2 ≺ · · · ≺ Sk = T , and

2. |Si+1 − Si| = 1 for all 1 ≤ i ≤ k − 1.

Proof. Set S1 = S and Sk = T . Lemma 2 is trivial if k ≤ 2. Now suppose k ≥ 3.
Since S 6= T , there exists a smallest index l0 satisfying sl0 > tl0 . If l0 ≤ n− 1, then
either sl0 > sl0+1 or sl0+1 = sl0 > tl0 ≥ tl0+1. Thus there exists a smallest index l1
satisfying sl1 > tl1, and satisfying sl1 > sl1+1 if l1 ≤ n− 1. Thus l0 ≤ l1 and

si

{
> ti if l0 ≤ i ≤ l1,
≤ ti if i ≤ l0 − 1.

Since S ≺ T , we have s1 ≤ t1 and l0 > 1. Let l2 be the smallest index i satisfying
1 ≤ i < l0 and si < ti. (Such an i exists since S ≺ T and S 6= T .) Since S ≺ T ,

l2∑
i=1

ti =
l2−1∑
i=1

ti + tl2 >
l2−1∑
i=1

si + sl2 =
l2∑
i=1

si.

Let S2 be defined by

s
(2)
j =


sj − 1 if j = l1,
sj + 1 if j = l2,
sj otherwise.

Thus, for all l such that l2 ≤ l ≤ l0 − 1,

l∑
i=1

ti =
l2∑
i=1

ti +
l∑

i=l2+1

ti >
l2∑
i=1

si +
l∑

i=l2+1

si =
l∑
i=1

si (1)

and, for all l such that l0 ≤ l ≤ l1 − 1,

l∑
i=1

ti =
l1∑
i=1

ti −
l1∑

i=l+1

ti >
l1∑
i=1

si −
l1∑

i=l+1

si =
l∑
i=1

si. (2)
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Since S ≺ T , it follows from (1) and (2) that S2 ≺ T . By the choices of l1 and l2, we
have

s
(2)
l1

= sl1 − 1 ≥ sl1+1 = s
(2)
l1+1 if l1 + 1 ≤ n,

and
s

(2)
l2−1 = sl2−1 = tl2−1 ≥ tl2 ≥ sl2 + 1 = s

(2)
l2

if l2 − 1 ≥ 1.

Thus S2 is monotone. Also it can be checked that S1 ≺ S2, |S2 − S1| = 1 and
|T − S2| = k − 2. By replacing S2 with S, Lemma 2 follows by induction. 2

Theorem 1 Suppose S1 and S2 are monotone vectors such that S1 ≺ S2. If A ∈
A(R, S2), then a matrix in A(R, S1) can be obtained from A by shifting at most
|S2 − S1| 1′s in rows.

Proof. By Lemma 2, it may be supposed that |S2 − S1| = 1. Since S1 ≺ S2,
there are l1, l2 such that l2 < l1 and

s
(2)
j =


s

(1)
j − 1 if j = l1,

s
(1)
j + 1 if j = l2,

s
(1)
j otherwise.

Thus s
(2)
l2

= s
(1)
l2

+ 1 ≥ s
(1)
l1

+ 1 = s
(2)
l1

+ 2; in other words, column l2 of A contains at
least 2 more 1’s than column l1 of A. Thus a 1 can be shifted in a row from column
l2 to column l1, and so a matrix in A(R,S1) is obtained. 2

Corollary 1 Suppose S is monotone. If A(R, S) 6= ∅, then

min
A∈A(R,S)

d(A) = |R∗ − S|.

Proof. Since A(R,S) 6= ∅, we have S ≺ R∗ by Lemma 1. Suppose that
A ∈ A(R, S). Since columns i of Ā and A have r∗i and si 1’s, respectively, at
least max{0, r∗i − si} 1’s in column i must be shifted in rows in order to obtain A
from Ā. This implies d(A) ≥ ∑

i max{0, r∗i − si} = |R∗ − S|. On the other hand,
by applying Theorem 1 in the case S1 = S and S2 = R∗, a matrix in A(R, S) can
be obtained from Ā ∈ A(R,R∗) by shifting at most |R∗ − S| 1′s in rows; that is,
minA∈A(R,S) d(A) ≤ |R∗ − S|, from which Corollary 1 follows. 2
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3 Maximum Discrepancy

In this section, we find an algorithm to compute the maximum discrepancy of all
matrices in A(R, S). We begin with the following lemma which will be used in
Lemma 4. We comment here that Lemma 3, under the weaker condition that only S
is monotone, is weaker than Theorem 1.

Lemma 3 Suppose S is monotone and A ∈ A(R, T ). If S ≺ T , then A(R, S) 6= ∅
and some matrix in A(R,S) can be obtained from A by shifting 1’s in rows.

Proof. We use induction on n, the number of components of S. If T is monotone,
then the lemma follows from Theorem 1; in particular, the lemma holds for n = 2,
since n = 2, S monotone and S ≺ T imply that T is monotone. We now assume
that n ≥ 3 and T is not monotone, and proceed by induction on n. We define
S ′ = (s′1, . . . , s

′
n) to be a maximal monotone vector in the sense of majorization

satisfying
S ≺ S ′ ≺ T

By the choice of S′, there is an l, 1 ≤ l < n, such that
∑l
i=1 s

′
i =

∑l
i=1 ti. We can

partition S ′ and T such that S′ = (S ′1, S
′
2) and T = (T1, T2), where S ′1, T1 are vectors

with l components and S ′2, T2 are vectors with n− l components. It can be seen that
S ′1 ≺ T1 and S′2 ≺ T2 since

∑l
i=1 s

′
i =

∑l
i=1 ti. Also S ′1 and S ′2 are monotone since

S ′ = (S ′1, S
′
2) is.

Now we consider the partition of A = [A1 A2], where A1 and A2 are m × l and
m × (n − l) matrices, respectively. Then A1 ∈ A(R1, T1) and A2 ∈ A(R2, T2) for
some R1 and R2 satisfying R1 +R2 = R. By the induction hypothesis, some matrices
B1 ∈ A(R1, S

′
1) and B2 ∈ A(R2, S

′
2) can be obtained by shifting 1’s in rows from

A1 and A2, respectively. Then the matrix [B1 B2] ∈ A(R, S ′) can be obtained from
[A1 A2] = A by shifting 1’s in rows. Since S ≺ S ′ and S ′ is monotone, by Theorem 1,
some matrix in A(R, S) can be obtained by shifting 1’s in rows from [B1 B2] and so
from A. This completes the proof of the lemma. 2

Suppose S is monotone. For eachA ∈ A(R, S), we can partitionA into two regions
according to the shape of Ā; that is, region 1 consists of positions in {(i, j) : 1 ≤ i ≤
m, 1 ≤ j ≤ ri}, while region 2 consists of positions in {(i, j) : 1 ≤ i ≤ m, ri < j ≤ n}.

Suppose R(1) = (r
(1)
1 , . . . , r(1)

m ), R(2) = (r
(2)
1 , . . . , r(2)

m ) are two non-negative integral

vectors such that r
(1)
i ≤ ri and r

(2)
i ≤ n−ri for all i, 1 ≤ i ≤ m. Define Ā(R(1), R(2)) =
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(aij) to be the m× n matrix defined, for each i, by

aij =

{
1 if 1 ≤ j ≤ r

(1)
i or ri + 1 ≤ j ≤ ri + r

(2)
i ,

0 otherwise.

In other words, Ā(R(1), R(2)) is the matrix with row sum vectors R(i) in region i,
i = 1, 2, and with all 1’s in the leftmost possible positions. Let (R(1), R(2))∗ denote
the column sum vector of Ā(R(1), R(2)). If R(1) = O, a zero vector, and R(2) = R,
then Ā(R(1), R(2)) is the matrix Ā(O,R), and (O,R)∗ is the column sum vector of
Ā(O,R). Let

J = J (R, S) := {Ā(R(1), R(2)) : R(1) +R(2) = R and S ≺ (R(1), R(2))∗}.

Lemma 4 Suppose S is monotone. Then

max
A∈A(R,S)

d(A) = max
Ā(R−T,T )∈J

|T |.

Proof. Let A ∈ A(R, S) with maximum d(A). Let B be the matrix obtained
from A by moving all 1’s in rows to the leftmost possible positions within each of
the two regions. Then the column sum vector of B majorizes S and so B ∈ J . Let
B = Ā(R− TA, TA). Then d(A) = |TA|. This implies that

max
A∈A(R,S)

d(A) ≤ max
Ā(R−T,T )∈J

|T |.

Now suppose that B = Ā(R−T, T ) ∈ J has maximum |T | among all matrices in J .
Since S ≺ (R−T, T )∗, by Lemma 3, some matrix A ∈ A(R, S) can be obtained from
B by shifting 1’s in rows. Since shifting 1’s in rows does not decrease the number
of 1’s in region 2 (recall that shifting 1’s means shifting 1’s to the right), we have
|T | ≤ d(A). Thus

max
Ā(R−T,T )∈J

|T | ≤ max
A∈A(R,S)

d(A),

from which Lemma 4 follows. 2

For two vectors U = (u1, . . . , un) and V = (v1, . . . , vn), we define U < V in the
sense of lexicography; that is, there is some j such that uj < vj and ui = vi for all
i < j. Similarly, we can define U ≤ V in the sense of lexicography; that is, either
U = V or U < V holds.

Throughout the rest of the section, we select C := Ā(R−U,U) ∈ J with priority
in the order: (1.) (O,U)∗ is lexically maximum, (2.) maximal (R − U,U)∗ in the
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sense of majorization. In other words, among all candidates Ā(R − U,U) with the
property that (O,U)∗ is lexically maximum, we select C with maximal (R − U,U)∗

in the sense of majorization. We also select D := Ā(R − V, V ) ∈ J with priority
in the order: (1.) maximum |V |, (2.) (O, V )∗ is lexically maximum, (3.) maximal
(R− V, V )∗ in the sense of majorization.

Now we focus on the structure of C and D. It is known that C, D can be obtained
from Ā by shifting 1’s in rows. We may assume the following rule when shifting 1’s
in rows to obtain C, D from Ā:

Shifting Rule: For each i, let (i, ji) be the rightmost position having a 1 in row i
in region 1, and let (i, ki) be the leftmost position having a 0 in row i in region 2. If
a shift takes place in row i, then the 1 at the (i, ji) position is moved to the (i, ki)
position.

It is trivial that every matrix in J can be obtained from Ā by a sequence of 0-1
shifts satisfying the above Shifting Rule. For each position (i, j) in region 2 (thus
j ≥ ri + 1), we assign to it a weight w(i, j) as follow:

w(i, j) =

{
2j − 2ri − 1 if ri + 1 ≤ j ≤ 2ri,
∞ if 2ri + 1 ≤ j ≤ n,

Indeed, it can be checked that w(i, j) is the distance that a 1 has to be moved from
region 1 to the position (i, j) in region 2 by the Shifting Rule. (In the case that
2ri + 1 ≤ j ≤ n, the (i, j) position must have a 0 for any matrix in J . Thus it is
natural to define the distance that a 1 has to be moved from region 1 to the position
(i, j) as infinity.)

Lemma 5 Both matrices C and D satisfy the following: For each fixed j, the 1’s
in column j that lie in region 2 appear in the positions (i, j) with w(i, j) as small as
possible.

Proof. We only prove the lemma for C = (cij). A similar proof works for D.
Suppose the lemma fails for C. Then there are i, j, k such that (i, j), (k, j) are in
region 2, and cij = 1, ckj = 0 and w(i, j) > w(k, j). By the Shifting Rule, the positions
(i, j −w(i, j)) and (k, j −w(k, j)) have a 0 and a 1, respectively. Let C1 be obtained
from C by making 0-1 switches at the four positions (i, j), (i, j−w(i, j)), (k, j), (k, j−
w(k, j)). Then the column sum vector of C1 majorizes (R−U,U)∗ since j−w(i, j) <
j − w(k, j). Let C2 = Ā(R − U1, U1) be obtained from C1 by moving all 1’s in rows
within each of the two regions to the leftmost possible positions. Then |U | = |U1| and
(O,U)∗ ≤ (O,U1)∗. Also (R − U,U)∗ ≺ (R − U1, U1)∗ since (R − U1, U1)∗ majorizes
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the column sum vector of C1. Thus C 6= C2 ∈ J . This contradicts the choice of C.
2

Theorem 2
|U | = |V |.

Proof. Let D = (dij). By the choice of D, we have |U | ≤ |V |. Now suppose
|U | < |V |. Let (O,U)∗ = (u1, . . . , un) and (O,V )∗ = (v1, . . . , vn). Since (O,U)∗ is
lexically maximum, there is a j such that uj > vj and ui = vi for all i ≤ j − 1. Let

P := {positions (i, k) in region 2 : dik = 1 and k ≤ j}.

By Lemma 5, we may properly choose the matrix C such that cik = 1 whenever
(i, k) ∈ P . Since uj > vj, there is a position (i, j) in region 2 such that cij = 1 and
dij = 0. Let k = j − w(i, j). Then cik = 0 and dik = 1 by the Shifting Rule. Let
(R− U,U)∗ = (c∗1, . . . , c

∗
n), (R− V, V )∗ = (d∗1, . . . , d

∗
n).

Claim 1: There is some l, k ≤ l < j, such that

l∑
t=1

st =
l∑

t=1

d∗t .

Proof of Claim 1: Otherwise
∑l
t=1 st <

∑l
t=1 d

∗
t for all l, k ≤ l < j, since S ≺

(R − V, V )∗. Let D1 be obtained from D by making a 0-1 switch at positions (i, j)
and (i, k). Then the number of 1’s that lie in region 2 in D1 is |V | + 1. Since
S ≺ (R− V, V )∗, it can be checked that S is majorized by the column sum vector of
D1. By moving all 1’s in rows within each of the two regions to the leftmost possible
positions in D1, we can obtain a matrix in J contradicting the choice of D with
maximum |V |. Thus Claim 1 holds.

Now we may choose l to be the smallest index satisfying Claim 1.

Claim 2: There exists in region 2 a position (i′, j′) 6∈ P such that di′j′ = 1 and
di′k′ = 0 with k′ = j′ − w(i′, j′) ≤ l.

Proof of Claim 2: Otherwise no 1 with column index less than or equal to l is shifted
in a row to a position outside of P in D. But in C, the 1 in the (i, k) position is shifted
in row i to the (i, j) position which is outside of P. Thus

∑l
t=1 st =

∑l
t=1 d

∗
t >

∑l
t=1 c

∗
t ,

which contradicts S ≺ (R− U,U)∗. Thus Claim 2 holds.

Since di′j′ = 1, by the definition of P, we have j′ > j. Let D2 be obtained
from D by making 0-1 switches at positions (i, j), (i, k), (i′, j′) and (i′, k′). Let D3 =
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Ā(R− V3, V3) be obtained from D2 by moving all 1’s in rows within each of the two
regions to the leftmost possible positions. Then |V | = |V3| and (O, V )∗ < (O, V3)∗.

Case 1: k′ ≤ k. Then it is easy to see that (R − V, V )∗ ≺ (R − V3, V3)∗ since j′ > j.
Thus S ≺ (R − V3, V3)∗ since S ≺ (R− V, V )∗.

Case 2: k < k′ ≤ l. Let (R − V3, V3)∗ = (e∗1, . . . , e
∗
n). Since l is the smallest index

satisfying Claim 1,
l′∑
t=1

st ≤
l′∑
t=1

d∗t − 1 ≤
l′∑
t=1

e∗t

for all l′, k ≤ l′ < l. Then it can be verified that S ≺ (R− V3, V3)∗ since j′ > j.

Since S ≺ (R−V3, V3)∗ is always true in both cases above, we have D3 ∈ J . This
contradicts the choice of D since |V | = |V3| and (O,V )∗ ≺ (O,V3)∗. This completes
the proof of |U | ≥ |V |. Therefore |U | = |V |. 2

By Lemma 4 and Theorem 2, we have the following Corollary.

Corollary 2 Suppose S is monotone. Then

max
A∈A(R,S)

d(A) = |U |.

Since (O,U)∗ is lexically maximum, we can use the following greedy algorithm to
construct a C = Ā(R− U,U). By Corollary 2, this yields an algorithm to compute
maxA∈A(R,S) d(A).

Algorithm to construct a matrix C = Ā(R− U,U) ∈ A(R, S) with
d(C) = d̄(R, S):

Begin with the matrix Ā with row sum vector R.

1. Let j be the smallest index i such that column i has a non-empty intersection
with region 2.

2. Apply the Shifting Rule to shift a 1 to the position (i, j) in region 2 with the
smallest weight w(i, j) among all positions in column j that lie in region 2 and
contain a 0, under the condition that the column sum vector of the ending
matrix majorizes S. If more than one shift is possible, arbitrarily choose one.

3. Repeat Step 2, shifting to the positions in column j in region 2 as many 1’s as
possible. If no more shifts are possible, then go to Step 4.
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4. j := j + 1.

5. If j ≤ n, then go back to Step 2; otherwise, output the current matrix.

4 Concluding Discussion

We may generalize the minimum and maximum discrepancy problems by allowing
regions 1 and 2 to have a general shape not necessarily determined by the shape of
Ā. For example, if we only assume that regions 1 and 2 satisfy the following:

1. Region i is connected for each i = 1, 2, and

2. The intersection of each row of A with region i is connected for each i = 1, 2,

and define, for each A ∈ A(R,S), the discrepancy d(A) of A to be the number of 1’s
of A in region 2, then we have the following

Generalized Problems: Suppose S is monotone. For any two regions satisfying
the above conditions, find

min
A∈A(R,S)

d(A) and max
A∈A(R,S)

d(A).

The above two generalized problems are equally difficult since a matrix A ∈
A(R, S) having the maximum number of 1’s in region 2 clearly has the minimum
number of 1’s in region 1. By slightly modifying our techniques in Section 3, we
can give similar algorithms to compute the minimum and maximum discrepancies.
However, we believe that to give explicit formulas for the minimum and maximum
discrepancies is almost hopeless for the general case.
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