Improved identifying codes for the grid

Gérard Cohen
cohen@inf.enst.fr
Iiro Honkala
honkala@utu.fi
Michel Mollard
Michel.mollard@imag.fr

Sylvain Gravier
Sylvain.gravier@imag.fr

Antoine Lobstein
lobstein@inf.enst.fr
Charles Payan
Charles.payan@imag.fr

Gilles Zémor
zemor@infres.enst.fr

Abstract

Let $G=(V, E)$ be an undirected graph and C a subset of its vertices. For any vertex $v \in V$, the neighbouring set $N(v, C)$ is the set of vertices of C at distance at most one from v. We say that C is an identifying code of G if the neighbouring sets $N(v, C), v \in V$, are all nonempty and different. What is the smallest size of an identifying code C ? We give improved constructions when G is the two-dimensional square lattice that we conjecture are optimal.

AMS subject classification: 05C70, 68R10, 94B99, 94C12.

[^0]This short note is meant as an addendum to [1] on identifying codes in the infinite rectangular grid. For complete definitions and motivation we refer to that paper. The following two tiles

generate periodic tilings of the plane with periods $(10,0)$ and $(1,4)$ in the first case, and periods $(10,0)$ and $(3,2)$ in the second case. They are represented on figure 1. Both yield identifying codes with density $14 / 40=7 / 20=0.35$. This reduces the gap between upper and lower bounds on the smallest density of an identifying code in the infinite rectangular grid to less than 0.002 . We conjecture that 0.35 is the exact value.

Figure 1: Two identifying codes of density 0.35

References

[1] G. Cohen, I. Honkala, A. Lobstein and G. Zémor: New bounds for codes identifying vertices in graphs, Electronic Journal of Combinatorics, vol. 6(1), R19, 1999.

[^0]: G. Cohen, A. Lobstein and G. Zémor are with ENST and CNRS URA 820, Computer Science and Network Dept., Paris, France, S. Gravier, M. Mollard and C. Payan are with CNRS, Laboratoire Leibniz-IMAG, Grenoble, France, I. Honkala is with Turku University, Mathematics Dept., Turku, Finland

