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Abstract

The asymptotic behavior of the number of set partitions of an n-element set into blocks
of distinct sizes is determined. This behavior is more complicated than is typical for set par-
tition problems. Although there is a simple generating function, the usual analytic methods
for estimating coefficients fail in the direct approach, and elementary approaches combined
with some analytic methods are used to obtain most of the results. Simultaneously, we
obtain results on the shape of a random partition of an n-element set into blocks of distinct
sizes.

Mathematics Subject Classification (1991): 05A18, 05A16

1. Introduction

The literature on enumerating set partitions is not as extensive as that on ordinary

partitions, but it is large. We refer to [4, 11, 17] for references to recent papers. In this

note we investigate bn, the number of partitions of an n-element set with blocks of unequal

sizes.

Carlitz [6] has shown that bn has the explicit generating function

F (z) =
∞∑
n=0

bn
n!
zn =

∞∏
k=1

(
1 +

zk

k!

)
. (1.1)

In addition, according to Wilf (p. 96 in [22]), F (z) is a special case of an enumerator in an

exponential family for hands whose cards all have different weights.

One interesting aspect of our work is that although F (z) is defined very simply and

is entire, we do not obtain our estimates by the usual analytic methods which start by

applying Cauchy’s formula to express a coefficient as a contour integral. There are other

problems with similar generating functions for which the asymptotics are easy to derive.

For example, evaluation of sums of multinomial coefficients (p. 126 in [7]) leads to the

generating function

G(z) =
∞∏
k=1

(
1−

zk

k!

)−1

. (1.2)

The function G(z) has a first order pole at z = 1 with residue

R =
∞∏
k=2

(
1−

1

k!

)−1

= 2.529477 . . . .
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The next smallest singularities are the first order poles at ±
√

2. Therefore [zn]G(z), the

coefficient of zn in the Taylor series expansion of G(z), satisfies

[zn]G(z) = R+O(2−n/2) .

The analysis of [zn]G(z) is simple because G(z) has a single dominant singularity at

z = 1. If we consider

H(z) =
∞∏
k=1

(
1 +

zk

k

)
, (1.3)

then [zn]H(z) is the probability that a permutation on n letters will have all cycle lengths

distinct. The unit circle is a natural boundary of analyticity for H(z) and there are no

singularities of H(z) in |z| < 1, so the situation is more complicated than for G(z). Greene

and Knuth [12] used a Tauberian theorem to show that

[zn]H(z) ∼ e−γ as n→∞ ,

where γ = 0.577 . . . is Euler’s constant. A generating function similar to H(z) arises when

we consider the analogous problem of determining the probability that a polynomial over a

finite field with q elements has only distinct degree irreducible factors. See [15].

The function F (z) is entire and has nonnegative coefficients, so at first glance it might

appear that it should be easy to obtain the asymptotics of its coefficients, easier even than

for H(z). The usual method for doing this is the saddle point method. It works well in many

situations where the generating function is smooth and grows rapidly. However, it cannot

be applied to F (z). The basic saddle point conditions are not satisfied, as the high order

logarithmic derivatives of F (z) for z real are not sufficiently small. At a more fundamental

level, the saddle point method fails here because it requires that on a circle centered at the

origin, the integrand can be large only in a small neighborhood of the positive real axis.

The function F (z) has k evenly spaced zeros on each circle of radius

(k!)1/k ∼ k/e as k →∞ .

On the other hand, on the circle of radius r = (k + 1/2)/e, a short analysis shows that

|F (z)| > F (r)/10, say. Therefore the integrand is not small outside a small region, and the

saddle point method cannot possibly work.

The generating function F (z) is also one of the relatively rare cases where the simple

bound

[zn]F (z) ≤ min
x>0

F (x)x−n ,
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gives a poor result. This bound holds for all generating functions with nonnegative coeffi-

cients, and it is often too weak by only a fractional power of n (cf. [16]). For our function

F (z), defined by (1.1), this bound is off only by a constant factor when n = k+m (m+1)/2

for k either very small or very close to m. It is poor when εm ≤ k ≤ (1− ε)m and m→∞,

on the other hand.

For most values of n, we shall use elementary estimates and some well-known bounds

for ordinary partitions (of a number) to express most values of bn in terms of the number

of ordinary partitions of k with bounded or determined largest part. For some particularly

recalcitrant values of n, this requires more sophisticated analytic techniques. Analysis of

the partitions of k completes the task.

We use (1.1) and define an by

an = [zn]F (z) =
bn
n!

=
∑

h1<h2<···<hr∑
hj=n

1
r∏
j=1

hj !
. (1.4)

We will show in Proposition 2.2 that the largest term in this sum, when n = m(m+1)/2+k,

0 ≤ k ≤ m, is
(m+ 1− k)!

m+1∏
j=1

j!

,

which comes from r = m, {h1, . . . , hm} = {1, 2, . . . ,m+ 1}−{m+ 1− k}. This proposition

is not actually used as part of the proof of our asymptotic estimates, but rather to motivate

the following definition. We define f(m,k) to be an divided by this largest term, that is,

bn = n!
(m+ 1− k)!f(m,k)

m+1∏
j=1

j!

. (1.5)

Figure 1 presents a graph of log f(200, k) for 0 ≤ k ≤ 200, which represents the values

of an for 20100 ≤ n ≤ 20300. It shows that the oscillations of f(m,k) are large even for

small values of m.

One disadvantage of f(m,k) as a measure of the behavior of bn is that it compares bn

to the contribution of the largest term, which does not behave smoothly. Table 1 presents

another measure of the irregularity in the behavior of the coefficients bn. It shows the

asymptotic form of bn+1/bn for n near m(m+ 1)/2 as m→∞. It is of interest to note that

bn grows roughly like the square root of the total number of partitions of an n element set,

denoted say by Bn, in the sense that log bn ∼
1
2 logBn as n→∞.
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Figure 1: log f(200, k)

j −3 −2 −1 0 1 2 3

ratio 1
8m

2 1
4m

2 1
2m

2 1
2m m 3

4m
5
6m

Table 1: Asymptotic behavior of the ratio bN+j+1/bN+j for N = m(m+ 1)/2 as m→∞.

Equation (1.4) shows that bn can be interpreted as a certain weighted sum over the ordi-

nary partitions of n with distinct parts. The analogous combinatorial sum over unrestricted

partitions of n has as its exponential generating function the function G(z) of Eq. (1.2).

The same sum over compositions (ordered partitions) of n is B(n) =
∑n

k=1 k!S(n, k), the

number of ordered partitions of an n element set. Finally, by the multinomial theorem, the

same sum over ordered n-tuples of nonnegative integers is nn.

For the similar weighted sum ∑
∑
hj=n

1
r∏
j=1

hj

over partitions with distinct parts we have the generating function H(z) of Eq. (1.3) con-

sidered by Greene and Knuth. The corresponding sums over unrestricted partitions and
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compositions are treated in [14].

The shape of an unrestricted set partition was studied in [8] and [19]. It was proved,

for instance, that in a typical set partition almost all elements of the set are in blocks of

size close to log n ([8]). This situation contrasts sharply with the present topic of partitions

with distinct block sizes. In this case, we show that a typical partition has blocks of sizes

1, 2, . . . , s, where s is approximately
√

2n, with a few missing. We obtain various precise

results about the distribution of the missing sizes, from which the shape is determined

completely.

2. Main results

Let p(n) and Q(x) be defined by

Q(x) =
∞∑
k=0

p(n)xn =
∞∏
l=1

1

1− xl
,

so that p(n) denotes the number of partitions of (the number) n, and Q is its ordinary

generating function. Also, define p(n, k) to be the number of partitions of n with largest

part at most k. We will have use of the rough bound

p(n) ≤ exp(π
√

2n/3) (2.1)

(valid for all n ≥ 1; see Apostol [2] for instance) and the more precise

p(n) ∼
1

4
√

3n
exp

(
π
√

2n/3
)

(2.2)

as n → ∞. Moreover, it is well known from Erdős and Lehner [10], that for almost all

partitions of n the largest part is asymptotic to (π
√

2/3)−1n1/2 log n; thus

p(n, [n1/2 log n]) ∼ p(n) (2.3)

as n→∞.

Theorem 2.1. Let n = k + m(m + 1)/2 and 0 ≤ k ≤ m. Then with f(m,k) defined by

(1.5), we have as m→∞ the asymptotic relations

f(m,k) ∼



[m]k
mk

p(k) , if k = o(m2/3/ logm) ,

1

(s+ 1)!

∑
v≥0

∑
d0<···<dv

d0+···+dv=s+1

v∏
j=0

dj ! , if k = m− s, s fixed .
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Theorem 2.2. Let n = k + m(m + 1)/2 and 0 ≤ k ≤ m. Then with ω(m) denoting an

arbitrary function such that ω(m)→∞ as m→∞, we have as m→∞

f(m,k) ∼
k∑
t=0

[m+ 1− k + t]t
mt

p(t, k − t)

for
√
m logm < k < m− ω(m).

This formula is actually valid for the small k range as well, and when k is fairly large it

can be expressed in an interesting way.

Proposition 2.1. Let n = k + m(m + 1)/2, 0 ≤ k ≤ m. Then with f(m,k) defined by

(1.5) and ω(m) denoting an arbitrary function →∞ as m→∞, we have as m→∞

f(m,k) ∼
k∑
t=0

[m+ 1− k + t]t
mt

p(t, k − t)

if 0 ≤ k < m− ω(m), and

f(m,k) ∼ Q(1− k/m)

provided Cm3/4 logm < k < m− ω(m) for some C > 0.

Remark. Note that the formula given for f(m,k) in Theorem 2.1 or Proposition 2.1 is

asymptotic to p(k) for k = o(
√
m). It is curious that, as shown in Proposition 2.1, the

asymptotics change from this Taylor series coefficient of a generating function to a value of

that generating function as k varies.

To obtain the asymptotics of f(m,k) it is still necessary to evaluate the summation

involving p(t, k − t) in Theorem 2.2 for a wide range of k. For 0 < µ < 1/3, define

S1 = S1(µ) =
1

(24µk)1/4

(
1− µ

1− 3µ

)1/2

exp
(
F (µk) + 2c

√
µk
)
, (2.4)

where c = π/
√

6 and F (t) is defined for 0 ≤ t ≤ k by

F (t) = (m− k + t) log

(
1 +

t

m− k

)
+ t log

(
1−

k

m

)
− t.

Also, define

S0 = eF (k)p(k) ∼
1

4
√

3k
exp

(
2c
√
k + (m− k) log

(
m

m− k

)
− k

)
,

where we used (2.2). Our final asymptotic formula for f(m,k) in terms of simple functions

is the following. Note that we permit β → 0 and β →∞.
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Theorem 2.3. Take m and k as in Theorem 2.1. Set

β = cm/k3/2

and determine ξ by

β =
8

27
+

2

27c4
logm

m
1
3

+
ξ

m
1
3

.

For 0 < β ≤ 2/3
√

3, let µ be the (unique) solution of

µ1/2(1− µ) = β, 0 < µ ≤ 1/3.

Then

f(m,k) ∼



S0 , if ξ →∞,

S0 + S1 , if ξ = O(1),

S1 , if ξ → −∞ and k = o(m),

1

(s+ 1)!

∑
v≥0

∑
d0<···<dv

d0+···+dv=s+1

v∏
j=0

dj ! , if k = m− s, s fixed .

Moreover, for ξ = O(1),

f(m,k) ∼

√
2

√
3c

1
6m

7
96

exp

(
15

32
c

4
3m

1
3

)
×

(
1

9
√

2c
exp

(
513

64
c

4
3 ξ −

243

128
c2
)

+
2

1
4

3
1
4

exp

(
81

64
c

4
3 ξ −

217

384
c2
))

.

Remark on “continuity” of estimates.

This theorem was proved by continuously adding unsuspecting collaborators until the

proverbial camel’s back could hold no longer. Conceptually, what is a camel, if not a horse

designed by a committee? In our case, it was not even a camel, just a function f(m,k).

Its graph in Figure 1 has some suspicious humps, due, no doubt, to the tail behavior!

So it would be comforting to check that the last theorem provides a piece-wise smooth

asymptotic description for f(m,k) dependent on how large k is, compared to m. The first

three formulas for f(m,k) indicate three distinct modes of asymptotic behavior, subcritical

(ξ → ∞), near-critical (ξ = O(1)), and supercritical (ξ → −∞). The ξ- parametrization

and the last formula for the near-critical case ξ = O(1) provides a smooth interpolation (a

magnified bridge) between the three modes. Indeed, it will be seen in the proof that, for

ξ = O(1), the first of the two terms in the long parenthetical factor comes from S0, the
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second - from S1, and the first (second, resp.) term is dominant if ξ → ∞ (if ξ → −∞,

resp.). Thus, for k = o(m), the various asymptotics gracefully merge into each other at

the borders of their respective spheres of influence, and f(m,k) has no humps, except legal

ones! (Actually we shall see that the estimate S0 + S1 is valid for ε1 < β < 8
27 + ε2, for

ε1 > 0 and ε2 sufficiently small.) Next consider large k, in particular the expression in

Theorem 2.1 for k = m − O(1). If we let f(x) =
∑

k≥1 k!xk we see that the terms with

v ≥ 1 are bounded by [xs+1]f(x)v+1. However [xs+1]
∑

v≥0 f(x)v+1 ∼ (s+ 1)! by Bender[3,

Theorem 3]. Thus lims→∞ f(m,m− s) = 1, and so the expression for k = m−O(1) merges

with the expression for large k in Proposition 2.1.

Further remarks. It is also worth checking the extent of overlap of the various formulae

we have for f(m,k). If k = δm
2
3 then

S0 ∼ p(k)
[m]k
mk

∼ p(k) exp

(
−

1

2
δ2m

1
3 −

1

6
δ3 +O(m−

1
3 )

)
and so by Theorem 2.3 the range of the first expression in Theorem 2.1 can be extended to

o(m
2
3 ) and even ξ →∞, which is the limit of its range of validity.

We next check the range of validity of the second formula in Proposition 2.1. If k =

xm
3
4 then β = cx−

3
2m−

1
8 = o(1) so f(k,m) ∼ S1. Now since

√
µ(1 − µ) = β we have

µ = β2 + 2β4 + 7β6 +O(β8) so

µk = c2x−2m
1
2 + 2c4x−5m

1
4 + 7c6x−8 +O

(
m−

1
4

)
,

(m− k + µk) log

(
1 +

µk

m− k

)
= µk +

(µk)2

2(m− k)
+O(m−

1
2 ),

µk log

(
1−

k

m

)
= −

µk2

m
−
µk3

2m2
+O(m−

1
4 ).

Thus

F (µk) = −
c2

x
m

1
4 +

c4

2x4
+O(m−

1
4 ).

Furthermore

2c(µk)
1
2 = 2c2x−1m

1
4 + 2c4x−4 +O(m−

1
4 )

so

exp(F (µk) + 2c
√
µk) = exp

(
c2

x
m

1
4 +

5c4

2x4
+O(m−

1
8 )

)
.
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As (24µk)
1
4 ∼
√

2πm
1
8x
−1
2 we now have

S1 ∼
x1/2m−1/8

√
2π

exp

(
c2m1/4

x
+

5c4

2x4

)
.

However

Q(1− k/m) = Q

(
e
k
m
− k2

2m2 +O
(
k3

m3

))
and it is well known (see for instance Andrews [1]) that

Q(es) = eπ
2/6s
√
s/2π(1 +O(s)) (2.5)

and hence Q(1− k/m) 6∼ f(k,m) if k = xm3/4 for fixed x.

Note next that if k = o(m) but km−3/4 →∞ then β → 0 so µ ∼ β2 and µk ∼ c2m2/k2 =

o(m1/2). Thus

(m− k + t) log

(
1 +

t

m− k

)
= t+O

(
t2

m− k

)
= t+ o(1),

so the sum over those t for which t = µk + O
(
(µk)7/8

)
in
∑

t e
F (t)p(t) is asymptotic

to
∑

t p(t)(1 − k/m)t (summed over these t). We shall see however that the sum over

the other t in
∑

t e
F (t)p(t) is negligible. If |t − µk| ≥ (µk)7/8 then p(t)(1 − k/m)t ≤

p(µk)(1−µk/m)µk exp(−δ(µk)1/4) for some δ > 0 so the sum over these t of p(t)(1−k/m)t

is asymptotic to Q(1 − k/m). Thus the range of validity of f(k,m) ∼ Q(1 − k/m), the

second formula in Proposition 2.1, is m− k →∞ and km−3/4 →∞.

As a final remark, it can be easily verified that, as functions of k, both f(m,k) and S0

attain their respective maxima at k ∼ c2/3m2/3.

From now on, whenever we refer to n, m and k, we will always assume that n =

m(m+ 1)/2 + k, 0 ≤ k ≤ m. Let

Π(n, r) =

(h1, h2, . . . , hr) : 1 ≤ h1 < h2 < · · · < hr,

r∑
j=1

hj = n

 (2.6)

be the set of partitions of the integer n into r distinct parts, and let

Π(n) =
⋃
r≥1

Π(n, r) .

Note that Π(n, r) = ∅ for r ≥ m+ 1. For π ∈ Π(n, r), π = (h1, h2, . . . , hr), let

P (π) =
1

r∏
j=1

hj !
.
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Thus

an =
∑

π∈Π(n)

P (π) .

We will say that π = (h1, h2, . . . , hr) = [u, u′]− [w] if {h1, . . . , hr} = {u, u+1, . . . , u′}−{w}.

Thus π consists of all the integers in an interval with the possible exception of a single

integer, the “hole.” In the case of the partition π0 = [1,m + 1] − [m + 1 − k], we will say

that π0 is the canonical partition of n.

Proposition 2.2. For any r, the maximum of P (π) over π ∈ Π(n, r) is achieved uniquely

by π = [u, u′] − [w] for some u ≤ w ≤ u′. The maximum of P (π) over all π ∈ Π(n) is

achieved by the canonical partition π0.

To get started in our analysis when m−k →∞ it is convenient to characterise partitions

according to which block or part sizes are missing. For π ∈ Π(n,m) as in (2.6), let d0 <

· · · < dv, where v = hm−m−1 ≥ 0, denote the “holes” of π, that is all the numbers from 1

to hm − 1 which do not appear in π. Observe that properly inserting the missing numbers

into π results in the complete staircase diagram with m+ v + 1 steps, that is

m+v+1∑
j=1

j = n+ d0 + · · ·+ dv,

or

k = n−
m(m+ 1)

2
= λ0 + · · ·+ λv, λi := m+ 1 + i− di.

Since di is strictly increasing, λi is nonincreasing. Also λv ≥ 1, because dv ≤ hm−1 = v+m.

Thus λ = (λ0, . . . , λv) is a partition of k, which we call the hole partition corresponding

to π or to the associated set partition, from which π can be recovered (given n). When

we come to describe the likely shape of π, we will be comparing P (π) to P (π0), and it is

immediate that

P (π) =
v∏
j=0

dj !

m+v+1∏
j=1

j!

−1

,

P (π0) = (m+ 1− k)!
v∏
j=1

(m+ j + 1)!

m+v+1∏
j=1

j!

−1

,

since π0 has a single hole m+ 1− k, and its largest part is m+ 1. Thus

P (π)

P (π0)
=

d0!

(m+ 1− k)!
·
v∏
i=1

di!

(m+ i+ 1)!
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= [m+ 1− k + t]t ·
v∏
i=1

1

[m+ 1 + i]λi
, (2.7)

where t = λ1 + . . . + λv. It is this formula that will make the notion of the hole partition

so useful for us.

The partition

t = λ1 + . . . + λv

will itself play an important role around the difficult range k ≈ m2/3. It is important to

note the upper bound

λ1 ≤ k − t,

which holds because λ0 = k − t.

By the “shape” of a partition of an n-set we mean the multiset of the cardinalities of

its blocks. As noted just above, for the partitions into distinct parts, the shape (which is a

set) is characterised by the partition {λi}. We can conclude various results about the shape

of a random partition from our main results on asymptotics.

Define Ωn to be the probability space whose elements are partitions λ = {λ0, . . . , λv} of

k, with probability proportional to the number of partitions of an n-set with hole partition

λ. Note that r can be regarded as a random variable on Ωn since it is determined in a natural

way from λ by the fact that the r smallest integers other than those holes determined by

λ sum to n. We say that a random partition π is distributed asymptotically uniformly as a

partition of a number (possibly with a bound on the largest part size) if the total variation

distance between the distribution of π and the uniformly distributed partitions of the same

number (with the same part size bound, if it is specified) tends to 0 as n → ∞. We also

say that an event occurs almost surely if its probability tends to 1 as n→∞.

First we consider small k.

Proposition 2.3. For sufficiently large D, and k < m2/3/D log n, we have r = m almost

surely, and λ ∈ Ωn is distributed asymptotically uniformly as a random partition of k.

Next we have a less conclusive result for a wider range of k.

Proposition 2.4. For k ≥ 0 with m − k → ∞, for λ = (λ0, . . . , λv) ∈ Ωn, r = m almost

surely, and

(i) the sub-partition (λ1, . . . , λv) is distributed asymptotically uniformly as a random par-

tition of k − λ0 with largest part at most λ0.
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(ii) conditional upon k, the distribution of λ0 and the distribution of a random variable X

with P(X = j) proportional to

[m+ 1− j]k−j
mk−j

p(k − j, j)

have total variation distance tending to 0.

When k grows considerably larger than the trouble-spot near m2/3, we can simplify the

previous statement by dropping the bound on the part size. This can be stated as follows.

Proposition 2.5. For some c > 0, if k > cm2/3 and m−k→∞ then for λ = (λ0, . . . , λv) ∈

Ωn, the sub-partition (λ1, . . . , λv) is distributed asymptotically uniformly as a random par-

tition of t, where the distribution of t and the distribution of a random variable X with

P(X = i) proportional to
[m+ 1− k + i]i

mi
p(i)

have total variation distance tending to 0.

In fact, from the proof of Theorem 2.3, it is easy to deduce more about the distribution of

X.

For the remaining, very large, values of k, we have the following.

Proposition 2.6. If s is fixed and k = m− s then in a random partition of n with distinct

block sizes, hr = m + 1 almost surely. Furthermore, the holes d0, . . . , dv are a random

partition of s+ 1 into distinct parts in which the probability is asymptotically proportional

to
∏v
j=0 dj !.

These propositions have immediate corollaries for random partitions of an n-set into

blocks of distinct sizes. For instance, the largest part almost surely has size m + 1 by

Proposition 2.6 when m− k is bounded. On the other hand, when m− k →∞ Proposition

2.4 gives that r = m almost surely, which means the largest part has size m+ 1 + v. Here

v is the number of parts in the random partition λ1, . . . , λv as discussed in Proposition 2.4,

and so this proposition determines its distribution asymptotically, as do Propositions 2.3

and 2.5. The simplest result on this is given by Proposition 2.3, that for k < m2/3/D log n,

v will be distributed asymptotically as the number of parts, plus 1, in a random partition

of k.
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3. Structure of Proof

The propositions and theorems are proved in this section, and proofs of the lemmas used

here are given in the next section. First we show that almost all of the set partitions under

consideration have precisely r = m blocks, unless m − k is bounded, in which case d0 is

bounded.

Lemma 3.1. For m− k →∞,

an ∼
∑

h1<h2<···<hm∑
hj=n

1
r∏
j=1

hj !
.

If m−k is bounded, the contribution to the summation in (1.4) from partitions with d0 →∞

is negligible.

Considering the definition of f(m,k) at (1.4) and (1.5), we can write f(m,k) as the sum

of P (π)/P (π0) over all π ∈ Π(n, r) and over all appropriate r. Lemma 3.1 implies that only

terms with r = m are significant for m− k →∞, and so in this case

f(m,k) ∼
k∑
t=0

[m+ 1− k + t]t
mt

g(m, t, k − t) =
[m+ 1]k
mk

g(m,k) (3.1)

where

g(m, s, b) =
∑

b≥λ1≥λ2≥···≥λv
λ1+···λv=s

v∏
i=1

mλi

[m+ 1 + i]λi
(3.2)

and (as seen by writing λ0 for k − t)

g(m, s) =
∑

λ0≥λ1≥···≥λv∑
λi=s

v∏
i=0

mλi

[m+ 1 + i]λi
. (3.3)

Note that g(m, s) is the same as g(m, s, b) except that it has no restriction on the largest

part size.

Lemma 3.2. For some constant c, the summation in (3.1) is asymptotically unchanged

when it is restricted to

t < c min{m2/3,m2/k2}

and it is also asymptotically unchanged if λ1 in (3.2) is resticted to

λ1 <
√
m(logm)3/2.
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Due to these upper bounds on t, it is possible to determine the behaviour of g(m, s, b)

when k is not near m2/3 using the following lemma.

Lemma 3.3. For D large enough and s < m2/3/D logm,

g(m, s) ∼ p(s)

as s → ∞, and furthermore, for some fixed function w(n) → 0, almost all partitions

λ0, . . . , λv of s satisfy ∣∣∣∣∣1−
v∏
i=0

mλi

[m+ 1 + i]λi

∣∣∣∣∣ ≤ w(n).

Values of t between the upper bounds in Lemmas 3.2 and 3.3 are taken care of primarily

by the following result, which we prove by analysing a function which has already been

studied in connection with card shuffling.

Lemma 3.4. (i) For Ms = o(s) with Ms >
√
s log s and s = O(m2/3),

g(m, s,Ms) ∼ p(s)

as s→∞, and furthermore

(ii) for some fixed function w(n) → 0, almost all partitions λ1, . . . , λv of s with λ1 ≤ Ms

satisfy ∣∣∣∣∣1−
v∏
i=1

mλi

[m+ 1 + i]λi

∣∣∣∣∣ ≤ w(n).

Proof of Theorem 2.1

First consider k < m2/3/D logm. Lemma 3.1 implies that only terms with r = m are

significant, Lemma 3.3 gives g(m,k) ∼ p(k), and so the formula on the right in (3.1)

becomes
[m+ 1]k
mk

p(k) ∼
[m]k
mk

p(k).

This gives the first part of the theorem.

Next consider m − k bounded, let s denote m − k, and as usual let d0, . . . , dv denote

the holes in π. Partitions with less than m parts are now significant in (1.4). Note that the

largest part hr is at least m. If hr = m then k = 0, and m− k is not bounded so we do not
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have to consider this here. Next suppose hr = m + 1. We will show that this is the only

significant case. Note that

1 + 2 + · · · + (m+ 1)− d0 − d1 − · · · − dv = h1 + h2 + · · ·+ hr

= (1 + 2 + · · ·+m) + k

= 1 + 2 + · · ·+ (m+ 1)− s− 1,

so d0 + d1 + · · · + dv = s+ 1. Since P (π) =
∏v
i=0 di!

∏m+1
i=1

1
i! , the second part of Theorem

2.1 follows if these are the only significant partitions. So now suppose hr ≥ m+ 2. Then

h1 + h2 + · · ·+ hr ≥ 1 + 2 + · · · + (m+ 2)− d0 − · · · − dv

> n+ (m+ 2)− d0 − · · · − dv.

But the sum on the left is n and so, since the di are distinct, dv ≥
√
m. From Lemma 3.1

we have d0 bounded. So adding 1 to the part d0 − 1 (if d0 = 1, this means creating a new

part 1) and subtracting 1 from the part dv + 1 multiplies the contribution to (1.4) by at

least dv/d0 → ∞. The number of ways of reversing this operation is bounded (the only

possible ambiguity caused by holes moving to 0 or to the top at hr) and we conclude that

these partitions are not significant.

Proof of Theorem 2.2

Take any k >
√
m logm, but m− k → ∞. We break the terms in the summation in (3.1)

into groups according to the value of t.

Case 1. t ≥ k − k2/3.

By Lemma 3.2 we can assume k = O(m2/3). Then

[m+ 1]k−t
mk−t

∼ 1

for all such t. Thus, on multiplication by this quantity, the sum of the terms with t in this

range is

k∑
t=dk−k2/3e

[m+ 1− k + t]t
mt

g(m, t, k − t) ∼
k∑

t=dk−k2/3e

[m]k
mk

g(m, t, k − t).
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But this equals [m]k
mk

g(m,k, dk2/3e). Now by Lemma 3.4 this is asymptotic to [m]k
mk

p(k), which

is in turn asymptotic to

k∑
t=dk−k2/3e

[m+ 1− k + t]t
mt

p(t, k − t)

by (2.3).

Case 2. logm < t < k − k2/3.

By Lemma 3.2, we can assume that λ0 (= k− t) is at most
√
m(logm)3/2. This is o(k). So

by Lemma 3.4, and then using (2.3), g(m, t, k − t) ∼ p(t) ∼ p(t, k − t), and so

[m+ 1− k + t]t
mt

g(m, t, k − t) ∼
[m+ 1− k + t]t

mt
p(t, k − t) (3.4)

as required. Since Lemma 3.4 requires s→∞, we deal with small t separately in the next

case.

Case 3. t ≤ logm.

Here, immediately from the definition (3.2), g(m, t, k − t) ∼ p(t, k − t) and so we again

have (3.4). This gives the theorem.

Proof of Proposition 2.1

Since p(t, k − t) is equal to the number of partitions of k with largest part equal to k − t,

the formula in Theorem 2.2 can be written as

k∑
λ0=0

[m+ 1− λ0]k−λ0

mk−λ0
p(k − λ0, λ0) (3.5)

or ∑
λ0≥λ1≥···
λ0+λ1+···=k

[m+ 1− λ0]k−λ0

mk−λ0
. (3.6)

The summand in (3.6) for any term with λ0 < m1/2−ε (ε > 0 arbitrarily small) is asymptotic

to [m]k/m
k. Hence these terms contribute asymptotically p(k)[m]k/m

k to the summation.

On the other hand, the contribution from terms with λ0 ≥ m1/2−ε can be estimated using

(3.5), where for each λ0 the term is at most p(k − λ0, λ0) ≤ p(k − λ0). For k ≤
√
m logm,

this contribution is o(p(k)[m]k/m
k). The first part of Proposition 2.1 follows.

From Lemma 3.2, only the terms with t < cm2/k2 are significant in the statement of

Theorem 2.1. Note that m2/k2 = O(m1/2/ log2m). Suppose k = o(m). Now

[m+ 1− k + t]t = (m+ 1− k)t exp

(
t2

2(m+ 1− k)
+O

(
t3

(m+ 1)2

))
∼ (m+ 1− k)t. (3.7)
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Hence,

∑
t

[m+ 1− k + t]t
mt

p(t, k − t) ∼
∑
t

(1− k/m)tp(t)

= Q(1− k/m).

If k ≥ m/ω(n) for some x > 0 and m+ 1− k > ω3(n), then by (3.7)

∑
t≥ω(n)

[m+ 1− k + t]t
mt

p(t, k − t) ≤
∑
t≥ω(n)

(1− x/2)tp(t)

= o(1).

Note that

∑
t<ω(n)

[m+ 1− k + t]t
mt

p(t, k − t) ∼
∑
t<ω(n)

[m+ 1− k + t]t
mt

p(t)

∼
∑
t<ω(n)

(1− k/m)tp(t)

∼ Q(1− k/m).

Proof of Theorem 2.3

The last part of the theorem, referring to m− k bounded, is the same as in Theorem 2.1.

For m− k →∞ but k 6= o(m), the theorem is covered by Proposition 2.1 together with the

check (in the remarks after the statement of the present theorem) that the formula there

corresponds with the formula in the present theorem for such k. For the rest, we can assume

k = o(m) and start from

f(m,k) ∼
k∑
t=0

[m+ 1− k + t]t
mt

p(t, k − t),

which is valid for k = o(m), according to Proposition 2.1. By Stirling’s formula,

log
[m+ 1− k + t]t

mt
= log(m+ 1− k + t)!− log(m+ 1− k)!− t logm

= (m− k + t+ 3/2) log(m− k + t+ 1)− t

− (m− k + 3/2) log(m− k + 1)− t logm+ o(1)

= (m− k) log

(
1 +

t

m− k

)
− t+ t log

(
1−

k − t

m

)
+ o(1)

= (m− k + t) log

(
1 +

t

m− k

)
+ t log

(
1−

k

m

)
− t+ o(1)

= F (t) + o(1).
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(We note for later reference that

F ′(t) = log

(
1−

k − t

m

)
, F ′′(t) =

1

m− k + t
, F ′′′(t) = O(m−2).) (3.8)

Thus

f(m,k) ∼
k∑
t=0

eF (t)p(t, k − t). (3.9)

To proceed, notice that

p(t, k − t) ≤ p(t) ≤ exp(2c
√
t)

by (2.1), and so

eF (t)p(t, k − t) ≤ eG(t), G(t) := F (t) + 2c
√
t.

Recall that we introduced β via k3/2 = cm/β.

Case 1. Consider the small β’s first. Pick a small ε > 0 and suppose that β ≤ ε and that

k = o(m), which is equivalent to βk1/2 →∞. An easy calculation shows that G(t) has two

stationary points

t0 = β2k

[
1 +O

(
β2 +

1

βk1/2

)]
,

t1 = k − βk(1 +O(β)),

which are a local maximum and local minimum respectively. Further, with more algebra,

G(t0) =

(
2c
√
t0 −

kt0
m

)[
1 +O

(
β2 +

1

βk1/2

)]
= cβk1/2

[
1 +O

(
β2 +

1

βk1/2

)]
, (3.10)

G(k) = −
k2

2m

(
1 +O(β + (βk21/2)−1)

)
+ 2c
√
k

= −
ck1/2

2β

(
1 +O(β + (βk1/2)−1)

)
. (3.11)

Since G(t0) ≥ G(k), G(t) attains its absolute maximum at t0. Also, for t ≤ t∗ = t0 + t
7/8
0 ,

G′′(t) =
1

m− k + t
−

c

2t3/2
(3.12)

≤ −
c

2.5t
3/2
0

,

whence

eG(t∗) ≤ exp

(
G(t0)−

c(t∗ − t0)2

5t
3/2
0

)
= exp(G(t0)− 1

5
ct

1/4
0 ). (3.13)
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Introduce t∗∗ = βk. It is easy to see that

G(t∗∗) = −
t∗∗k

m

[
1 +O

(
β2 +

1

βk1/2

)]
= −ck1/2

[
1 +O

(
β2 +

1

βk1/2

)]
, (3.14)

and that, for t ∈ [t∗, t∗∗],

G′(t) ≤ G′(t∗) = G′(t0) +G′′(t̃)(t∗ − t0)

(for some t̃ ∈ [t0, t
∗])

≤ −
c

2.5
t
−5/8
0 .

(The inflection point t̂ of G(t) is of order kβ2/3 � kβ, so that G′(t) decreases for t ≤ t∗∗.)

Therefore, for t ∈ [t∗, t∗∗], we bound

eG(t+1)

eG(t)
≤ exp

(
−

c

2.5
t
−5/8
0

)
, (3.15)

so the terms eG(t) are bounded by the terms of a geometric progression with denominator

given by the right hand expression. Combining (3.11)–(3.15), we bound

∑
t≥t∗

eG(t) ≤ eG(t0) e−ct
1/4
0 /5

1− e−ct
−5/8
0 /2.5

+ kmax{G(t∗∗), G(k)}

≤ eG(t0) · e−ct
1/4
0 /6 + e−ck

1/2/2. (3.16)

Analogously to (3.13) and (3.15), for t∗ = t0 − t
7/8
0 and t ∈ [2, t∗],

eG(t∗) ≤ exp(G(t0)− ct
1/4
0 /5),

eG(t−1)

eG(t)
≤ exp

(
−

c

2.5
t
−5/8
0

)
,

so that ∑
t≤t∗

eG(t) ≤ eG(t0) · e−ct
1/4
0 /6. (3.17)

Finally, using (3.13), we obtain

∑
t∈(t∗,t∗)

eG(t) ∼ eG(t0)

t∗∫
t∗

exp

(
G′′(t0)

2
(t− t0)2

)
dt

∼ eG(t0) ·

√
2π

−G′′(t0)
.
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To evaluate G′′(t0) we note that from G′(t0) = 0 it follows that

k − t0
m

∼
c
√
t0
.

Therefore

−G′′(t0) =
c

2t
3/2
0

−
1

m− k + t0

∼
c

2t
3/2
0

−
1

m
∼

c

2t
3/2
0

−
c

t
1/2
0 (k − t0)

=
c(k − 3t0)

2t
3/2
0 (k − t0)

.

Thus, observing from (2.2) that

p(t, k − t) ∼ p(t) ∼
e2c
√
t

4
√

3t0

uniformly for t ∈ (t∗, t
∗), we evaluate

k∑
t=0

eF (t)p(t, k − t) =
1 + o(1)

4
√

3t0

∑
t∈(t∗,t∗)

eG(t) +O
(
eG(t0) · e−ct

1/4
0 + e−ck

1/2/2
)

∼
eG(t0)

(24t0)1/4

(
k − t0
k − 3t0

)1/2

∼ S1 (3.18)

since t0 ∼ µk.

Case 2. Now consider the case of large β’s, that is β ≥ ε, or k3 = O(m2). Expanding F (t)

at k and using (3.10),

eF (t)p(t, k − t) = O
(
eF (k)eg(t)

)
,

g(t) := (k−t)2

2m + 2c
√
t.

If the equation

g′(t) = −
k − t

m
+

c
√
t

= 0

has a root τ∗ then, setting µ∗ = τ∗/k, we get

β =
√
µ∗(1− µ∗).

Note that
√
y(1 − y) attains its maximum (equal to 2

3
√

3
) for y > 0 at y = 1/3. Thus, if

β > 2
3
√

3
, then there is no root τ∗, and g(t) is strictly increasing for all t’s. If β = 2

3
√

3
, then



the electronic journal of combinatorics 6 (1999), #R2 21

there is a unique root τ∗ = k/3, but it is an inflection point for g(t), which therefore remains

strictly increasing for all t’s. If β < 2
3
√

3
, then there are two roots 0 < τ0 < k/3 < τ1 < 1,

so that g(t) is increasing on [0, τ0] ∪ [τ1, 1], and decreasing on [τ0, τ1]. The single inflection

point is k(β/2)2/3.

Let ε > 0 be given.

Case 2(a). β ≥ 8
27 + ε. A little algebra shows that g(t) = g(k) for some t < k iff

k − t =
4βk3/2

√
k +
√
t
. (3.19)

Since β > 8/27 and
√
τ0(k − τ0) = βk3/2, τ0 > k/9 and so (k − t)(

√
k +
√
t) is decreasing

on τ0 ≤ t ≤ k. Thus g(t) < g(k), (∀ t < k), if τ0 satisfies

k − τ0 <
4βk3/2

√
k +
√
τ0

,

which is clearly true once again using
√
τ0(k − τ0) = βk3/2 and τ0 > k/9.

We know that g(t) is increasing if β ≥ 2
3
√

3
. If β < 2

3
√

3
, then there exists τ2 ∈ (τ1, k)

such that g(τ0) = g(τ2). Since β is bounded away from 8
27 , the difference k − τ2 is of order

k exactly. (This follows from the conditions

g(τ0) = g(τ2), g′(τ0) = 0.)

Thus, in either case,

eF (k)
k−k5/8∑
t=0

eg(t) = O
(
k exp[F (k) + g(k − k5/8)]

)
= O

(
k exp[F (k) + 2c

√
k − ck1/8]

)
. (3.20)

On the other hand, F (t) ∼ F (k) uniformly for t ∈ [k − k5/8, k], since k = O(m2/3); so

k∑
t=k−k5/8

eF (t)p(t, k − t) ∼ eF (k)
k∑

t=k−k5/8

p(t, k − t)

= eF (k)
k∑

t=k−k5/8

P (k, k − t)

∼ eF (k)p(k)

∼
exp[G(k)]

4
√

3k
. (3.21)
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(We have used the formula p(a, b) = P (a+b, b), where P (a+b, b) is the number of partitions

of a+ b with the largest part equal to b exactly. We also know that for almost all partitions

of ν the largest part is of order O(
√
ν log ν).) Comparing (3.20) and (3.21) we get

k∑
t=0

eF (t)p(t, k − t) ∼
exp[G(k)]

4
√

3k
∼ S0. (3.22)

Case 2(b). β ≤ 8/27 + ε < 2
3
√

3
. The equation

G′(t) = log

(
1−

k − t

m

)
+

c
√
t

= 0

has two roots 0 < t0 < 1/3 < t1 < k (cf. Case 1), which are relatively close to τ0 and τ1

respectively; more precisely

ti − τi = O

(
k2

m

)
= O(k1/2), i = 1, 2.

Arguing basically as in Case 1, we obtain

t1∑
t=0

eF (t)p(t, k − t) = (1 + o(1))
∑

|t−t0 |≤t
7/8
0

eF (t)p(t) +O(eG(t0±t
7/8
0 ))

∼
1

4
√

3t0

∑
|t−t0|≤t

7/8
0

eG(t)

∼
eG(t0)

4
√

3t0
·

√
2π

−G′′(t0)
,

−G′′(t0) ∼
c

2t
3/2
0

−
1

m
∼

c(k − 3t0)

2t
3/2
0 (k − t0)

,

or
t1∑
t=0

eF (t)p(t, k − t) ∼
eG(t0)

(24t0)1/4

(
k − t0
k − 3t0

)1/2

. (3.23)

Since k − t1 is of order k exactly, we get (see Case 2(a)):

k∑
t=t1

eF (t)p(t, k − t) ∼
eG(k)

4
√

3k
. (3.24)

From (3.23) and (3.24) it follows that

k∑
t=0

eF (t)p(t, k − t) = (1 + o(1))
eG(t0)

(24t0)1/4

(
k − t0
k − 3t0

)1/2

+(1 + o(1))
eG(k)

4
√

3k

∼ S1 + S0 (3.25)
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after a little algebra. This finishes Case 2(b).

The parts of the theorem for k = o(m) have now been established by (3.18) and (3.22)

except for the range ε ≤ β ≤ 8
27 + ε, for some ε > 0. For this remaining range, from (3.9),

(3.22) and (3.25) we have

f(m,k) ∼ S0 + S1. (3.26)

It is interesting that S0 and S1 represent the contributions to f(m,k) from two parts

of the summation in (3.9), one for t close to k and the other for t close to µk. For most

values of k, one dominates the other, but at the point where they become comparable in

magnitude they are still two distinct local maxima of the expression being summed, and

one takes over from the other as global maximum as k increases. So it only remains to

determine which of S0 and S1 dominates the other. For ε ≤ β ≤ 8
27 + ε, we only need to

investigate when log(S0/S1) goes to 0 or to ∞. Note that we have k3 = O(m2), and in

particular we can assume µ ≤ 1
3 − ε. Then first considering the exponents in S0 and S1,

2c
√
k + (m− k) log

(
1 +

k

m− k

)
− k = 2c

√
k −

1

2
k2/m+O(k3/m2),

F (µk) + 2c
√
µk = 2c

√
µk +

1

2
µ2k2/m− µk2/m+O(k3/m2),

and so

log

(
S0

S1

)
= 2c(1−

√
µ)
√
k −

1

2
(1− µ)2k

2

m
−

3

4
log k +

1

2
log(1− 3µ) +O

(
1 +

k3

m2

)
= 2c(1−

√
µ)
√
k −

c

β
(1− µ)2

√
k −

3

4
log k +

1

2
log(1− 3µ) +O

(
1 +

k3

m2

)
= c

√
k

(
2− 2

√
µ−

1− µ

2
√
µ

)
−

3

4
log k +

1

2
log(1− 3µ) +O

(
1 +

k3

m2

)
=

c
√
k

2
√
µ

(1−
√
µ)(3
√
µ− 1)−

3

4
log k +

1

2
log(1− 3µ) +O

(
1 +

k3

m2

)
. (3.27)

It is easily verified that
√
k/
√
µ dominates here. So the behaviour of this expression is

determined by the sign and magnitude of (1 −
√
µ)(3
√
µ − 1). Setting this equal to zero

and ignoring the error term gives

µ =
1

9
+

log k

c
√
k

+O(1/m3), β =
8

27
+

2

27c4/3
logm

m
1
3

.

We conclude that with ξ defined as in the statement of the theorem, S0 = o(S1) for ξ → −∞

and S1 = o(S0) for ξ →∞. This establishes the formulae for f(m,k) in these two cases.
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For ξ = O(1) we already have (3.26), but taking expansions of the functions in the

previous paragraph about

µ =
1

9
+
τ + ξ

m
1
3

,

where

τ =
2 logm

27c4/3

to the k3/m2 terms, we find with θ = k/m

β =
8

27
+
τ + ξ + o(1)

m
1
3

,

S0 =
1

4
√

3θm
em((4β−1)θ2/2−θ3/6+O(θ4))

∼

√
2

√
3c

1
6m

7
96

exp

(
15

32
c

4
3m

1
3

)
1

9
√

2c
exp

(
513

64
c

4
3 ξ −

243

128
c2
)

S1 =
21/4

31/4θ1/4m1/4
em(−µ(2−µ)θ2/2+2β

√
µθ2−µ(3−3µ+µ2)θ3/6+O(θ4))

∼

√
2

√
3c

1
6m

7
96

exp

(
15

32
c

4
3m

1
3

)
2

1
4

3
1
4

exp

(
81

64
c

4
3 ξ −

217

384
c2
)

as required. (We omit the details of the final calculations, which were performed with the

assistance of Maple.)

Note. As we have seen, the asymptotic formula for f(m,k) depends essentially on the

shape of g(t) = (k − t)2/2m + 2c
√
t. This formula and the classification of possible modes

are curiously similar to those for van der Waals (phenomenological) equation that connects

pressure p, volume V and temperature T (Uhlenbeck and Ford [21], pp. 33–34):

p =
γT

V − β
−

α

V 2
.

Proof of Proposition 2.2

Suppose that π ∈ Π(n, r), and suppose that x and y are positive integers such that

x < y ,

x, y 6∈ {h1, . . . , hr} ,

x− 1, y + 1 ∈ {h1, . . . , hr}, x− 1 = hi, y + 1 = hj .

Consider now π′ = (h′1, . . . , h
′
r) ∈ Π(n, r) with h′i = hi + 1 = x, h′j = hj − 1 = y, and

h′t = ht for all other t. Then P (π′) > P (π). Therefore the π ∈ Π(n, r) which maximizes

P (π) cannot have two integers x and y with h1 < x < y < hr and x, y 6∈ {h1, h2, . . . , hr},

which proves the claim for Π(n, r).
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Suppose that π ∈ Π(n, r) with r < m maximizes P (π) for that r. Then 1 < h1, as

otherwise we would have one integer at least 2 missing (by the first part of the proposition),

hence
r∑
j=1

hj ≤ 1 + 3 + 4 + · · ·+ (r + 1) =

(
r + 2

2

)
− 2 <

(
m+ 1

2

)
.

If 2 < h1, then π′ ∈ Π(n, r + 1) with π′ = (h′0, h
′
1, . . . , h

′
r), h

′
0 = 1, h′1 = h1 − 1, h′t = ht

for t ≥ 2 yields P (π′) > P (π). If 2 = h1, then there is an integer y, 2 < y < hr, such that

y 6∈ {h1, . . . , hr}. We let hj = y + 1. Then π′ = (h′0, . . . , h
′
r) with h′0 = 1, h′j = hj − 1 = y,

and h′t = ht for all other t has the property that P (π′) > P (π). Thus in all cases we have

found a π′ ∈ Π(n, r+1) with P (π′) > P (π), which completes the proof of the proposition.

Proof of Proposition 2.3

The statement that almost surely r = m follows, as we have seen, from Lemma 3.1. In view

of (2.7), the partition λ in (3.3) corresponds to the hole partition of π. So the rest follows

from (1.4), (1.5), (3.1), (3.3) and Lemma 3.3.

Proof of Proposition 2.4

As with the previous proposition, according to Lemma 3.1, r = m almost surely. For the

rest, note that from (1.4), (1.5), and Lemma 3.2, we can restrict t to O(m2/3) and λ1 to at

most
√
m(logm)3/2. The rest of the proof is obtained essentially by examining the proof

of Theorem 2.2. Firstly, for any particular t ≥ k − k2/3, almost all partitions with the

given bound on the maximum part size contribute [m+ 1−k+ t]t/m
t asymptotically to the

summation in (3.2). Since this depends only on t, both parts of the proposition now follow

easily in this case. Next, for t < k−k2/3, firstly consider the case that
√
m(logm)3/2 = o(t).

Then the upper bound on part size is o(t), so putting s = t in Lemma 3.4, we obtain the

asymptotic uniformity required in (i). Secondly, if t = O(
√
m(logm)3/2), Lemma 3.3 with

s = t suffices, the upper bound on the part size being negligible by (2.3). The statement

(ii) in the case k >
√
m logm follows from the proof of Theorem 2.2, whilst for smaller k it

follows from Proposition 2.3.

Proof of Proposition 2.5

In the light of the proof of Theorem 2.2, we only need to consider Cases 2 and 3, where

it was shown that the restriction on the maximum part size can be ignored when counting

the partitions. It follows that the restriction can be dropped from Proposition 2.4.
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Proof of Proposition 2.6

This follows immediately from the fact that in the proof of Theorem 2.1 for the case k =

m− s, the di represent the holes in the partition.

4. Proofs of lemmas

Proof of Lemma 3.1

If r ≥ m+ 1, then
∑r

i=1 hi ≥ 1 + 2 + · · ·+ (m+ 1) > n, so this case never arises.

We first deal with the statement about m − k → ∞. The first idea of the proof is

to analyse a mapping from partitions with r parts to those with r + 1 parts. Consider a

partition with r ≤ m − 1 parts. Such a partition must have at least two holes, since a

partition with at most one hole has m parts by the definition of m.

Recall that d0 denotes the smallest hole. So hd0−1 = d0 − 1 and hd0 > d0. Informally,

the mapping is obtained by inserting a part of size d0, which gives a partition of n + d0,

and then compensating by reducing the size of some of the larger parts. Inductively, this

compensation can always be accomplished because any partition of a number at least n+ 1

into m or less distinct parts must have at least one hole, and hence a part whose size can be

decreased. The compensation is done by replacing the part hd0 by d0 + 1, hd0+1 by d0 + 2,

etc., until the sum of the parts is reduced to n. To be precise, write qi = hi − i − 1 for

i ≥ d0. Then 0 ≤ qd0 ≤ qd0+1 ≤ · · ·. Determine l and j by

d0 = qd0 + qd0+1 + · · ·+ qj + l, 0 ≤ l < dj+1.

The partition with r + 1 parts derived from {hi} is {h′i} where

h′i =


i i ≤ j + 1

hj+1 − l i = j + 2
hi−1 i > j + 2

This partition contributes 1∏r+1
i=1 h

′
i!

to (1.4), whereas the original partition contributed

1∏r
i=1 hi!

. The compensation spoken of above reduces the sum of the parts hi for i =

d0, d0 + 1, . . . , j by a total of d0, but each remains at least d0 + 1. Hence the ratio of

the old to the new contributions is at most

d0!

dd0
0

≤
√

2πd0e
−d0

as d0 →∞ by Stirling’s formula.
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In how many ways can we reverse this operation? We pick d0, we pick l ≤ d0, we note

that the lowest hole in the partition {h′i} occurs exactly at j + 2. Then the number of

possible partitions qd0, qd0+1, . . . , qj of d0 − l into j − d0 + 1 nonnegative parts is at most

p(d0 − l). Thus, the contribution of the original partitions to (1.4) is bounded by

p(d0)d0

√
2πd0

ed0
(1 + o(1))

times the contribution of all partitions with r + 1 parts. Since the sum over d0 of this

expression converges (by (2.1), the lemma is proven for d0 →∞.

Suppose now, with m − k ≥ ω(n), that the smallest hole is at d0 ≤ ω1/3(n). We first

show that there exists a hole above ω1/2(n). If not, then the sum of the largest parts is

≥ ω1/2(n) + (ω1/2(n) + 1) + · · · + hr

=
hr(hr + 1)

2
−
ω1/2(n) (ω1/2(n)− 1)

2

≥
hr(hr + 1)

2
−
ω(n)

2
.

Thus n, the sum of all the parts, satisfies hr(hr+1)
2 − ω(n)

2 ≤ n ≤ hr(hr+1)
2 . Now n =

m(m+ 1)/2 + k implies hr = m+ 1 and k ≥ m− ω(n)/2 or m− k ≤ ω(n)/2. Since we are

supposing m−k ≥ ω(n) that is not possible. We know, therefore, that there is a hole above

ω1/2(n), say at d′. We subtract one from the first part above this hole and add one to the

part d0 − 1. That is, move the hole at d′ up one and the hole at d0 down one (with the

understanding that if d0 = 1, we merely fill this hole in rather than moving it to 0). The

ratio of the contributions to (1.4) of the old and new partitions is d′/d0 > ω1/6(n). The

number of ways to reverse this operation is at most 2 and so we conclude the partitions

with r ≤ m− 1 are negligible if m− k > ω(n). This establishes the first part of the lemma.

The proof of the second part of the lemma, when m−k is bounded, is similar to the first

of the two arguments above, with the following modifications. We assume d0 → ∞. After

filling in the hole at d0, also delete the part m−k+1. Then this becomes the smallest hole,

and the number of parts remains the same. For n sufficiently large, every partition of at

least n+ 1 into m or fewer parts with its smallest hole at m−k+ 1 must have another hole,

and so again the compensation referred to above can always be carried out. The rest of the

argument follows just as before (in the case d0 → ∞) except that there is an extra factor

(m− k+ 1)! in the ratio of the contributions, which is negligible because it is bounded.
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Proof of Lemma 3.2

The ratio between the contribution of the partition π = {hj} to (1.4) and that of the

canonical partition π0 = {h′j} is, by (2.7),∏
j h
′
j !∏

j hj !
≤

[m+ 1− (k − t)]t
(m+ 1− (k − t))t

≤ exp

(
−
t(t− 1)

2m

)
. (4.1)

The number of partitions with a given value of t is bounded above by p(t). The total

contribution to (1.4) for a given t is therefore bounded by

p(t) exp

(
−
t(t− 1)

2m

)
≤ exp

(
κ
√
t−

t(t− 1)

2m

)
by (2.1). Take c > (2κ)2/3 to prove the statement about t < cm2/3.

Recall that in a partition π = {hj} ∈ Π(n,m) the holes are at d0, d1, . . . , dv. Move the

hole at d0 to a hole at d0 − s, where s = m− d1 + 2. Also, noting that there are exactly s

parts above the hole at d1, move each of these parts down by 1. Call the resulting partition

π′ = {h′j}. The ratio between the contributions of π and π′ to (1.4) is

P (π)

Π(π′)
=

∏
j h
′
j !∏

j hj !
=

1/(d0 − s)!

1/d0!

∏
t

(t− 1)!

t!
,

where t runs over all part sizes above the hole at d1. Therefore,∏
j h
′
j !∏

j hj !
=

d0!

(d0 − s)!

∏
t

1

t
≤

d0!

(d0 − s)!

d0!

(d0 + s)!
≤ e−s

2/d0 .

The number of ways of reversing this procedure is bounded above by k. Hence, the propor-

tion of (1.4) which is contributed from all s ≥
√
m(logm)3/2 is at most∑

s≥
√
m(logm)3/2

ke−s
2/d0 ≤

∑
s≥
√
m(logm)3/2

ke−s
2/m → 0.

This permits the bound on λ1 in the statement of the lemma.

If k < 2cm2/3 then the fact that t ≤ k implies the statement about t < cm2/k2 (for c

sufficiently large). Otherwise, we have by t < cm2/3 that t < k/2. In this case, since the

second-bottom hole in {hj} is at least m− t, the bound in (4.1 ) can be improved to

[m+ 1− (k − t)]t
(m+ 1− (k − t))t

≤ exp

(
−
t(t− 1)

2m

)(
m+ 1− (k − t)

m+ 1− t

)t
≤ exp

(
−
t(t− 1)

2m
−
t(k − 2t)

m

)
= exp

(
−
t(2k − 3t− 1)

2m

)
< exp

(
−
t(1

2k − 1)

2m

)
.
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Thus, the contribution to (1.4) is bounded by O(exp
(
− tk

4m

)
p(t)). Using (2.1) as before

shows that this is negligible if tk/m ≥ c
√
t (c sufficiently large), or t ≥ cm2/k2, as re-

quired.

Proof of Lemma 3.3

We prove an upper bound is by induction on s for m fixed; the inductive hypothesis we use

is that for some w(m,D)→ 0 as m→∞ with D fixed,

g(m, s) ≤ p(s)(1 +O(w(m,D))) (4.2)

where O() is independent of s and m. (Or we can replace O(w(m,D)) by o(1) independent

of s.)

We can start the induction at any s < m1/2−ε, since here

mλi

[m+ 1 + i]λi
= exp(O(λ2

i /m))

and so
v∏
i=0

mλi

[m+ 1 + i]λi
= exp

(
O
(∑

λ2
i /m

))
= exp(O(s2/m)) = eo(1).

Now consider any s < m2/3/D logm.

Case 1: λ0 < D(logm)
√
s.

Then
m

m+ 1− λi
≤ exp(O(D(logm)

√
s)/m)

so

v∏
i=0

mλi

[m+ 1 + i]λi
≤

∏
i

exp(O(λiD(logm)
√
s)/m

≤ exp(O(D(logm)s3/2/m))

= eo(1).

Thus the partitions in Case 1 contribute at most p(s)(1 + w(m,D)/2) to g(m, s) for

w(m,D) going to 0 sufficiently slowly.

Case 2: s ≥ λ0 ≥ D(logm)
√
s.

Here
mλ0

[m+ 1]λ0

≤ exp(λ2
0/m),
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and we have ∑
λ1≥···≥λv

λ1+···+λv=s−λ0

v∏
i=1

mdi

[m+ 1 + i]λi
≤ g(m, s− λ0)

which is by induction at most

p(s− λ0)(1 +O(w(m,D))) ≤ p(s)(1 +O(w(m,D)))e−Cλ0/
√
s

for some constant C > 0. The product of these two factors is

O(p(s) exp(λ2
0/m− Cλ0/

√
t)) = O(p(s) exp(−CD(logm)/2))

for m sufficiently large. Summing over all λ0 in this case multiplies by at most m, so for D

large enough these partitions contribute o(p(s)) to g(m, s).

Now (4.2) follows by induction. Note that by (2.3), for D sufficiently large, almost all

partitions fall into Case 1 and hence for almost all of them,

v∏
i=0

mλi

[m+ 1 + i]λi
≤ eo(1). (4.3)

To prove the corresponding lower bound

g(m, s) ≥ p(s)(1 +O(r(m,D))),

we only need to observe that a random partition of s will almost surely have at most

(D(logm)
√
s) parts, by (2.3) applied to the dual partition. Calculations as above show

that the contribution of such a partition to g(m, s) is asymptotically at least 1. The lower

bound follows, as does the statement about random partitions, in view of (4.3).

Proof of Lemma 3.4 (i)

It is enough to show

E

(∏ 1

[m+ 1 + i]λi
1{λ1≤Ms}

)
/P (λ1 ≤Ms) ∼ m

−s,

where λ1 ≥ · · · ≥ λv is a random partition of s, 1H denotes the indicator function of the

event H and Ms >
√
s log s. This assumption about Ms implies P (λ1 ≤Ms)→ 1, by (2.3),

hence it suffices that

E

(∏ 1

[m+ 1 + i]λi
1{λ1≤Ms}

)
∼ m−s. (4.4)

Given a partition λ of s, we define ρ(λ) as

ρ(λ) =
∑
j

[
λ2
j − (2j − 1)λj

]
.
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The function ρ(λ) arises in the analysis of card shuffling; see [9]. Using Stirling’s formula

we find that

∏ 1

[m+ 1 + i]λi
= m−s(1 +O(s/m)) exp

(∑
i

λ2
i − 2iλi

2(m+ 1)

+
∑
i

i2λi − iλ2
i

2(m+ 1)2
+
∑
i

λ3
i

6(m+ 1)2

+ O

(∑
i

λ4
i + iλ3

i + i2λ2
i + i3λi

(m+ 1)3

)}

Now iλi ≤ s and
∑
λai ≤ (

∑
λi)

a ≤ sa so
∑
λ4
i = O(s4),

∑
iλ3
i = O(s3),

∑
i2λ2

i = O(s3),∑
i3λi = O(s4). Also

∑
i2λi = O(s2),

∑
iλ2
i = O(s2),

∑
λ3
i = O(s

∑
λ2
i ) = o(m

∑
λ2
i )

since s = O(m2/3). Hence

v∏
i=1

1

[m+ 1 + i]λi
= m−s exp

(∑
i

λ2
i − 2iλi

2(m+ 1)
+O

(∑
λ3
i

m2

)
+ o(1)

)
(4.5)

= m−s exp

(
ρ(λ)

2(m+ 1)
−

∑
λi

2(m+ 1)
+O

(∑
λ3
i

m2

)
+ o(1)

)
= m−s exp

(
ρ(λ)

2(m+ 1)
+O

(∑
λ3
i

m2

)
+ o(1)

)
,

where the o(1) is independent of λ. We know from [18] that that ρ(λ)/s3/2 = Op(s
−1/4) (a

weaker result from [9], ρ(λ)/s2 = op(1), is not sufficient for our purposes here); therefore

ρ(λ)
2(m+1) ⇒ δ0, where δx denotes the point mass at x. We know from 2.3 that λ1 <

√
s log s

almost surely, so
∑
λ3
i

m2 ⇒ δ0. By a standard result ([5], page 341) we can add these three

functions and revert to (4.5) to get

∑
i

λ2
i − 2iλi

2(m+ 1)
+O

(∑
λ3
i

m2

)
+ o(1)⇒ δ0

and so

Zs ⇒ δ1 (4.6)

where

Zs = ms
s∏
i=1

1

[m+ 1 + i]λi
1{λ1≤Ms}

= exp

(∑
i

λ2
i − 2iλi

2(m+ 1)
+O

(∑
λ3
i

m2

)
+ o(1)

)
1{λ1≤Ms}

by (4.5).
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It is well known from probability theory that if variables Zn converge weakly, so that

Zn ⇒ Z, and EZn
1+ε = O(1) for some ε > 0, then EZn → EZ; see [5], page 348. Therefore,

the following lemma establishes (4.4) by taking any β > 1, and so completes the proof of

Lemma 3.4 (i).

Lemma 4.1. Let Xj be the number of parts of size j in a random partition of s. If s =

O(m2/3), β > 0 and Ms = o(s), then

E

exp

βm−1
Ms∑
j=1

j2Xj

 = O(1).

Proof

We use a technique found in [18]. In view of the condition on s, it is enough to show

E

exp

βs−3/2
Ms∑
j=1

j2Xj

 = O(1).

Let z and x = (x1, x2, . . .) be such that sup{|zjxj | : j ≥ 1} < 1, and
∑

j≥1 |z
jxj| < ∞.

Then ∑
s≥0

zsp(s)E

∏
j≥1

x
Xj
j

 =
∏
j≥1

1

1− zjxj
.

Therefore (using Cauchy’s formula for the circular contour {z = reiθ : θ ∈ (−π, π]}),

E

∏
j≥1

x
Xj
j

 =
1

2πrsp(s)

∫ π

−π
e−inθ

∏
j≥1

1

1− rjeijθxj
dθ, (4.7)

where r is such that sup{rj |xj| : j ≥ 1} < 1, and
∑

j≥1 r
j|xj | <∞. Let us set

xj =

{
eβs
−3/2j2 ifj ≤Ms,

1 ifj > Ms.

As for r, we choose r = e−cs
−1/2

, c = π/
√

6. For j ≤Ms,

−cs−1/2j + βs−3/2j2 ≤ −cs−1/2j/2, (4.8)

if s is sufficiently large, since Ms = o(s). So sup{rjxj : j ≥ 1} < 1, and
∑

j≥1 r
jxj < ∞.

Using an inequality∣∣∣∣ 1

1− z

∣∣∣∣ ≤ 1

1− |z|
exp [<e z − |z|] , (z ∈ C , |z| < 1),
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and (4.8), we bound the integrand by

Ms∏
j=1

1

1− e−cjs−1/2+βs−3/2j2
·
∏
j>Ms

1

1− e−cjs−1/2
· exp

∑
j≥1

e−cjs
−1/2/2(cos jθ − 1)

 .
Using the formula (2.5), we estimate the product of the two products as follows:

∞∏
j=1

1

1− e−cjs−1/2
·
Ms∏
j=1

1− e−cjs
−1/2

1− e−cjs−1/2+βs−3/2j2

= exp

[
π2

6z
+

1

2
log

z

2π
+O(z)

]∣∣∣∣
z=cs−1/2

exp

2
Ms∑
j=1

eβs
−3/2j2 − 1

ecjs
−1/2 − 1

 . (4.9)

The exponential bound for the second product is based on the fact that

sup
1≤j≤Ms

eβs
−3/2j2 − 1

ecjs
−1/2 − 1

→ 0,

as s→∞. Indeed, for j ≤ s3/4 the ratio is of order

O

(
s−3/2j2

(js−1/2)2

)
= O(s−1/2);

for s3/4 ≤ j ≤Ms the ratio is of order

O
(

exp
{
βs−3/2j2 − cs−1/2j

})
= O

(
exp

{
−cjs−1/2(1− βc−1Ms/s)

})
= O

(
exp

{
−cjs−1/2/2

})
= O

(
exp

{
−cs1/4/2

})
.

Furthermore, the sum of the ratios is of order

s3/4∑
j=1

s−3/2j2

ecjs
−1/2 − 1

+
Ms∑

j=s3/4

e−cjs
−1/2/2 = O

 ∞∫
0

x2

ecx − 1
dx+

e−cs
1/4/2

1− e−cs−1/2/2


= O(1). (4.10)

Using (4.9), (4.10), we bound the product of two products by

O

(
ecs

1/2

s1/4

)
. (4.11)

The θ-dependent factor is bounded above by

exp

(
−

aθ2

s−3/2 + s−1/2θ2

)
,
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a > 0 being an absolute constant; see (2.9) of [18]. And the integral of this function over

[−π, π] is O(s−3/4). Combining this estimate with (4.11), and taking into consideration the

outside factor
1

2πrsp(s)
= O

(
1

e−cs
1/2
p(s)

)
in (4.7), we conclude that

E exp

βs−3/2
Ms∑
j=1

j2Xj

 = O

(
ecs

1/2

sp(s)rs

)

= O

(
e2cs1/2

sp(s)

)
= O(1),

since

p(s) = O

(
e2cs1/2

s

)
.

Proof of Lemma 3.4 (ii)

This follows immediately from (4.6).
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