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Abstract

We consider the problem of reconstructing a set of real numbers up to trans-
lation from the multiset of its subsets of fixed size, given up to translation.
This is impossible in general: for instance almost all subsets of � contain
infinitely many translates of every finite subset of �. We therefore restrict
our attention to subsets of � which are locally finite; those which contain
only finitely many translates of any given finite set of size at least 2.

We prove that every locally finite subset of � is reconstructible from the
multiset of its 3-subsets, given up to translation.
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1 Introduction.

Reconstructing combinatorial objects from information about their subob-
jects is a long-standing problem. The Reconstruction Conjecture and the
Edge Reconstruction Conjecture both deal with the problem of reconstruct-
ing a graph from a multiset of subgraphs; in one case the collection of all
induced subgraphs with one fewer vertex, in the other the collection of all
subgraphs with one fewer edge (see Bondy [2] and Bondy and Hemminger
[3]).

The very general problem is that of reconstructing a combinatorial object
(up to isomorphism) from the collection of isomorphism classes of its subob-
jects. Isomorphism plays a crucial rôle. Thus it seems that the natural ingre-
dients for a reconstruction problem are a group action (to provide a notion of
isomorphism) and an idea of what constitutes a subobject. Reconstruction
problems have been considered from this perspective by, for instance, Alon,
Caro, Krasikov and Roditty [1], Radcliffe and Scott [11], [10], Cameron [4],
[5], and Mnukhin [7], [8], [9].

In this paper we consider the problem of reconstructing subsets of the
groups �, � , and � from the multiset of isomorphism classes of their subsets
of fixed size, where two subsets are isomorphic if one subset is a translate of
the other. Where the subsets have size k we call this collection the k-deck.

Maybe the first thing to notice is that for |A| ≥ k one can reconstruct
the l-deck of A from the k-deck for any l ≤ k. This is a straightforward
translation of Kelly’s lemma (see [2]). On the other hand if |A| < k then the
k-deck of A is empty, and therefore A cannot be distinguished from any other
subset of size strictly less than k. It makes the statement of our theorems
slightly easier if we use a definition of deck for which this issue does not arise.
The definition we adopt below regards the deck as a function on multisets
of size k. It is straightforward to check that this form of the k-deck can be
determined from the deck as defined above, provided |A| ≥ k.

Definition 1 Let A be a subset of �, where � is one of �, � , or �. The
k-deck of A is the function defined on multisets Y of size k from � by

dA,k(Y ) = |{i ∈ � : supp(Y + i) ⊂ A}|,

where supp(Y ) is the set of elements of Y , considered without multiplicity.
We say that A is reconstructible from its k-deck if we can deduce A up to
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translation from its k-deck; in other words, we have

dB,k ≡ dA,k ⇒ B = A+ i, for some i ∈ �.

More generally we say that a function of A is reconstructible from the k-deck
of A if its value can be determined from dA,k.

Certain subtleties arise since the groups involved are infinite. It may be
that the k-deck of A ⊂ � takes the value ∞ on some finite (multi)sets. In
fact, for any fixed finite subset F ⊂ �, almost all subsets of � (with respect
to the obvious symmetric probability measure on P(�)) contain infinitely
many translates of F . Thus it is trivial to find, for all k ≥ 1, two subsets of
� with the same k-deck which are not translates of one another.

For this reason we restrict our attention to subsets A ⊂ � for which the
2-deck (and a fortiori the k-deck for all k ≥ 2) takes only finite values, or
equivalently, every distance occurs at most fintely many times. We shall call
such sets locally finite.

It is easily seen that every finite subset A ⊂ � can be reconstructed from
its 3-deck, dA,3: indeed, let n = diamA := maxA−minA; then

A ' {0, n} ∪ {r : dA,3({0, r, n}) > 0}.

The 2-deck is not, however, in general enough. For instance, if A and B are
finite sets of reals then A+B and A−B have the same 2-deck.

Our aim in this note is to prove a reconstruction result for locally finite
sets of reals. We begin by proving a result for � and work in stages towards
�. We shall write A ' B if A is a translation of B.

Theorem 1 Let A ⊂ � be locally finite. Then A is reconstructible from its
3-deck. In other words, if A,B ⊂ � have the same 3-deck then A ' B.

We shall first prove a lemma. For subsets A,B ⊂ �, we define A+ B to
be the multiset of all a + b with a ∈ A and b ∈ B. (This multiset might of
course take infinte values). Thus, for finite A and B, if we identify A with
a(x) =

∑
i∈A x

i and B with b(x) =
∑

i∈B x
i, then A + B can be identified

with a(x)b(x), where the coefficient of xi in a(x)b(x) is the multiplicity of i
in the sum A+B.

If L is a multiset of � we write mL(i) for the multiplicity of i in L.

Lemma 2 Let A,B,C ⊂ � be finite and suppose that A+C = B+C. Then
A = B.
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Proof. Straightforward by induction on |A|, noting that min(A + C) =
minA+ minC.

Lemma 3 If A,B ⊂ � are locally finite, infinite sets with A4B finite, and
C is a finite set with A+ C = B + C then A = B.

Proof. Let A0 = A \ B, let B0 = B \ A, and set R = A ∩ B. Now for all i
we have

mA0+C(i) = mA+C(i)−mR+C(i)
= mB+C(i)−mR+C(i)
= mB0+C(i).

Thus A0 + C = B0 + C and it follows from Lemma 2 that A0 = B0 and so
A = B.

Lemma 4 If A,B ⊂ � are locally finite, infinite sets, and C is a finite set
with A+ C = B + C then A = B.

Proof. We may suppose, without loss of generality, that 0 ∈ C. Now let
S = {i : C + i ⊂ A+ C} and c = diam(C). We aim to show that, except
for a finite amount of confusion, we have S = A. To this end, let N be
sufficiently large such that for all distinct a, a′ ∈ A with |a| > N we have
|a′ − a| > 4c and for all distinct b, b′ ∈ B with |b| > N we have |b′ − b| > 4c.
(Such an N exists since A and B are locally finite.) Suppose now that k, with
|k| > N+4c, belongs to two sets from {C+i : i ∈ S}, say k ∈ (C+i)∩(C+j).
Define D = (C + i) ∪ (C + j). Since diam(D) > c, while D ⊂ A+ C, there
must be distinct elements a1, a2 ∈ A such that D meets both C + a1 and
C + a2. But this is impossible, for then |a1 − a2| ≤ 4c, while |a1| > N . Thus
every k ∈ A+C with |k| > N+4c belongs to exactly one set C+ i. It follows
that i ∈ A, and by the same reasoning i ∈ B.

Now set R = {i ∈ S : |i| > N + 4c}. We have just established that
R ⊂ A and R ⊂ B, and obviously R ⊃ {a ∈ A : |a| > N + 4c} and R ⊃
{b ∈ B : |b| > N + 4c}. Thus A∆B is finite, and by Lemma 3 the result is
established.

Lemma 5 Let A,B ⊂ � be locally finite infinite sets and let C,D ⊂ � be
finite. If A+ C = B +D then A ' B and C ' D.
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Proof. We may clearly assume that minC = minD = 0. Under this hy-
pothesis we will prove that A = B and C = D.

We will show that C (and equally D) is the largest set such that infinitely
many translates of C are contained in A + C = B + D. Suppose then that
A+C contains infinitely many translates of some set E and that no translate
of E is a subset of C. Let E1, E2, . . . be translates of E, where Ei ⊂ A+ C
and |minEi| → ∞ as i → ∞. Since E is contained in no translate of C,
every Ei must meet at least two translates of C, say Cai and Cbi , where ai
and bi are distinct elements of A. Thus there are distinct ai, bi ∈ A with

|ai − bi| ≤ 2 diam(C) + diam(E)

and |ai| → ∞; since there are only finitely many possibilities for ai − bi and
infinitely many ai, some distance must occur infinitely many times, which
contradicts the assumption that A is locally finite.

We conclude that C is the largest set (uniquely defined up to translation)
that has infinitely many translates as subsets of A+C. Hence we have C ' D
and so C ≡ D, since minC = minD. Thus A + C = B + D = B + C, and
by Lemma 4, A = B.

Proof. [of Theorem 1] If A is finite then it is easily reconstructed from its
3-deck, as noted above. Thus we may assume that A is infinite.

Let k be a difference that occurs in A (i.e. there are a1, a2 ∈ A with
a1 − a2 = k). We shall show that A can be reconstructed from its 3-deck;
moreover, it can be reconstructed from its 3-deck restricted to multisets of
the form {0, k, α}. Indeed, let B be another set with the same 3-deck. Define

XA = {a ∈ A : a+ k ∈ A}

and
XB = {b ∈ B : b+ k ∈ B}.

Then, translating if necessary, we may assume that minXA = minXB. We
claim now that A = B.

In order to prove our result it is enough to show that−A+XA = −B+XB,
for then the result follows immediately from Lemma 5: since −A = −B we
also have A = B.

Now for i ∈ �, the multiplicity of i in −A+XA is

|{j : j ∈ XA, i− j ∈ −A} = |{j : j ∈ XA, j − i ∈ A}|
= |{j : j, j + k, j − i ∈ A}|.
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If i 6= 0,−k, then this is the multiplicity of {0, i, i+ k} in the 3-deck of A; if
i = 0 or i = −k then this is |XA|, the multiplicity of {0, k} in the 2-deck of
A. Clearly, similar calculations hold for B, so −A+XA = −B +XB.

Theorem 6 Lemmas 2, 3, 4, and 5 hold in �n for all positive integers n.
Moreover if A,B ⊂ �n have the same 3-deck then A ' B.

Proof. The proofs are almost identical to those for the corresponding results
about �. We use the norm |a| = ‖a‖2, and order �n lexicographically, so
a ≤ b if the first nonzero coordinate of b − a is positive. The assumptions
minC = minD in the proof of Lemma 2 and minXA = minXB in the
proof of Theorem 1 then make sense. Moreover, the claim in the proof of
Lemma 4 that diam(D) > diam(C) is easily seen to hold in �n also: suppose
D = (C+i)∪(C+j) and x, y ∈ C satisfy |x−y| = diam(C). Let v = i−j 6= 0.
Now |(x+ i)− (y + j)| = |(x− y) + v| and |(x+ j)− (y + i)| = |(x− y)− v|
and one of these two norms is strictly greater than |x − y| = diam(C) (by
the strict convexity of the norm we have chosen).

Theorem 7 Let A,B ⊂ � be locally finite and have the same 3-deck, then
A ' B.

Proof. Suppose A and B are locally finite subsets of � with the same 3-
deck. Let k be some distance that occurs in A, and again define XA =
{a ∈ A : a+ k ∈ A} and XB = {b ∈ B : b+ k ∈ B} as in the proof of The-
orem 1. We may assume minXA = minXB = 0. Now suppose n is an integer
such that 1/n divides k and all differences in XA and XB. That is, nk ∈ �

and for all q, r ∈ XA ∪XB we have n(q− r) ∈ �. In particular nq ∈ � for all
q ∈ XA ∪XB. We will show that for all i we have

A ∩ 1

in
� = B ∩ 1

in
�

Since � =
⋃
i≥1

1
in
� the result will then be proved.

As in the proof of Theorem 1, it is enough to show that the 3-decks of
A∩ 1

in
� and B∩ 1

in
�, restricted to multisets of form {0, k, α}, are equal. Now

if a+ {0, k, α} ⊂ A then a ∈ XA, and so

a+ {0, k, α} ⊂ A ∩ 1

in
� ⇐⇒ a+ α ∈ 1

in
�

⇐⇒ α ∈ 1

in
�.
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Thus the relevant parts of the 3-decks of A∩ 1
in
� and B ∩ 1

in
� are equal, and

hence A ∩ 1
in
� = B ∩ 1

in
�.

Theorem 8 Let A ⊂ � n be locally finite. Then A is reconstructible from
its 3-deck.

Proof. Similar to the proof of Theorem 7, with modifications as indicated
in the proof of Theorem 6.

Theorem 9 Let A ⊂ � be locally finite. Then A is reconstructible from its
3-deck.

Proof. Let {q : q ∈ I} be a Hamel basis for � over � , where the set I is
well-ordered by ≺. This induces a total ordering on � by defining x < y iff
y−x =

∑n
i=1 aiqi with q1 ≺ q2 ≺ · · · ≺ qn and a1 > 0. Given a subset S ⊂ R

we write 〈S〉 for the collection of finite � -linear combinations of elements of
S.

Now suppose that A,B ⊂ � are locally finite, and that the 3-decks of
A and B are the same. Let r be a distance that occurs in A and let XA =
{a ∈ A : a+ r ∈ A}, and XB = {b ∈ B : b+ r ∈ B}. We may assume that
minXA = minXB = 0. Let I0 ⊂ I be a finite subset of I such that x−y ∈ 〈I0〉
for all x, y ∈ XA∪XB, and also r ∈ 〈I0〉. Such a subset exists, since XA∪XB

is finite and every element of � can be written as a � -linear combination of
a finite set of elements from I.

We will show that for finite subsets J with I0 ⊂ J ⊂ I, the sets A ∩ 〈J〉
and B ∩ 〈J〉 are equal, from which it easily follows that A = B. Consider
then such a J . If a+ {0, r, α} ⊂ A then a ∈ XA and

a+ {0, r, α} ⊂ A ∩ 〈J〉 ⇐⇒ a+ α ∈ 〈J〉
⇐⇒ α ∈ 〈J〉 .

Since 〈J〉 is isomorphic to �N , for some N , and, by the argument above,
the 3-decks of A ∩ 〈J〉 and B ∩ 〈J〉 restricted to multisets of form {0, r, α}
are the same, it follows from Theorem 8 that A ∩ 〈J〉 = B ∩ 〈J〉. Since⋃
J⊃I0 〈J〉 = �, we have that A = B.

It would be interesting to have a measure-theoretic version of this result.
Let S be a Lebesgue-measurable set of reals, and for every finite set X, define
S(X) = λ(x : X + x ⊂ S). Call S locally finite if S(X) is finite whenever
|X| > 1. We regard sets X, Y as equivalent if λ(X 4 (Y + t)) = 0 for some
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real number t. Can we reconstruct every set of finite measure from its 3-
deck? Can we reconstruct every locally finite set from its 3-deck? Or from
the k-deck for sufficiently large k?
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