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Abstract

A rational matrix is totally dyadic if all of its nonzero subdeterminants are
in {±2k : k ∈ Z}. An oriented matriod is dyadic if it has a totally dyadic
representation A. A dyadic oriented matriod is dyadic of order k if it has a
totally dyadic representation A with full row rank and with the property that
for each pair of adjacent bases A1 and A2

2−k ≤

∣∣∣∣det(A1)

det(A2)

∣∣∣∣ ≤ 2k.

In this note we present a counterexample to a conjecture on the relationship
between the order of a dyadic oriented matroid and the ratio of agreement to
disagreement in sign of its signed circuits and cocircuits (Conjecture 5.2, Lee
(1990)).

A rational matrix is totally dyadic if all of its nonzero subdeterminants are in
{±2k : k ∈ Z}. An oriented matriod is dyadic if it has a totally dyadic represen-
tation A. A dyadic oriented matriod is dyadic of order k if it has a totally dyadic
representation A with full row rank and with the property that for each pair of adja-
cent bases A1 and A2

2−k ≤

∣∣∣∣det(A1)

det(A2)

∣∣∣∣ ≤ 2k.

In (Lee (1990)) it is shown that the order of a dyadic oriented matroid provides
a necessary condition on the ratio of agreement to disagreement in sign of its signed
circuits and cocircuits. It is the point of this note to show that this necessary condition
is not sufficient (Conjecture 5.2, Lee (1990)).
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1 Background

We assume some familiarity with matroid theory (see Oxley (1992)). The ground set
of a matroid M is denoted by E(M). For a matrix A over a field F, let M [A] denote
the matroid represented by A. Let C(M) (resp., C∗(M)) denote the set of circuits
(cocircuits) of a matroid M .

Orientations of a matroid M arise by partitioning (or signing) each circuit X
(resp., cocircuit Y ) as X+, X− (Y +, Y −) so that

⊥ : (X+ ∩ Y +) ∪ (X− ∩ Y −) 6= ∅ ⇐⇒ (X+ ∩ Y −) ∪ (X− ∩ Y +) 6= ∅

holds for all X ∈ C(M), Y ∈ C(M∗). We note that negating any signed circuit (or
cocircuit) by interchanging X+ and X− (resp., Y + and Y −) preserves ⊥ for all pairs
of signed circuits and cocircuits. If two orientations of the same matroid are related
by negating some signed circuits and cocircuits, then we consider the orientations to
be identical.

An oriented matroid M is a matroid M equipped with a signing that satisfies ⊥.
We say that M is the matroid underlying M .

Let (I|A) be a matrix over an ordered field F. Each circuit X (resp. cocircuit
Y ) of M [I|A] naturally partitions into two sets X+ and X− (Y + and Y −) depending
on the signs of the coefficients in the essentially unique linear-dependence relation∑

e∈X λe(I|A)e = 0 (
∑

e∈Y λe(−A
T |I)e = 0) (the uniqueness is up to a nonzero mul-

tiple, so the partition can be reversed). The resulting orientation of M [A] is said to
be induced by A over F.

Let A be a matrix over an ordered field F, and let M be an oriented matroid.
If M = M [A] and the orientation of M is identical to the orientation induced by A,
then A represents M over F.

Two rational representations of an oriented matroid over an ordered field F are
equivalent if one can be obtained from the other through a sequence of elementary
row operations, nonzero column scaling, interchanging columns with their labels, and
appending or deleting 0-rows.

Proposition 1 (Lee (1990), Proposition 5.3) Any two dyadic representations of
the same oriented matroid are equivalent.

The 2-sum of the matrices A =

( e

A′ 0
a 1

)
and B =

( e
1 b
0 B′

)
on e, denoted

S(A,B, e), is the matrix A′ 0
a b

0 B′

 .

Proposition 2 (Lee (1990), Proposition 2.2) If A and B are totally dyadic ma-
trices, then S(A,B, e) is a totally dyadic matrix.
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2 The conjecture

Conjecture (Conjecture 5.2 of Lee (1990)) A dyadic oriented matroid M is
dyadic of order k if and only if

4−k ≤
|(X+ ∩ Y+) ∪ (X− ∩ Y−)|

|(X+ ∩ Y−) ∪ (X− ∩ Y+)|
≤ 4k

for each circuit X and cocircuit Y such that (X+ ∩ Y−) ∪ (X− ∩ Y+) 6= ∅.

Lee’s conjecture was motivated by (i) the fact that it is true for k = 0, (ii) his short
proof of the “only if” direction (see Lemma 5.1, Lee (1990)), and (iii) some evidence
for the “if” direction in the case of k = 1. His tangible evidence consisted of his
rank-5 10-element matroid J which (i) is dyadic of order 2, (ii) is a (minor) minimal
matroid that is not dyadic of order 1, (iii) every orientation has a circuit/cocircuit
pair for which the ratio of agreement to disagreement in sign is 5 : 1 (note that this
is a smallest matroid that could possibly have this property), and (iv) has a rank-
4 8-element minor where the ratio is 4 : 1 (again, this is a smallest matroid that
could possibly have this property). In this note we give a counterexample to the “if”
direction of this conjecture for each positive integer k.

3 The counterexample

For a fixed positive integer k we define a square matrix Dk of order 2(k+1) as follows:

(Dk)ij =



1, if j = 1;
1, if i = j − 1 and j ≥ 2;
2, if j = 2 and i ≥ 2;
2, if i = j = 2k + 2;
−1, if i ≥ j and 3 ≤ j ≤ 2k + 1;

0, otherwise.

Let e1, e2, . . . , e2(k+1) denote the columns of Dk. For example, if k = 2, then

D2 =



e1 e2 e3 e4 e5 e6

1 1 0 0 0 0
1 2 1 0 0 0
1 2 −1 1 0 0
1 2 −1 −1 1 0
1 2 −1 −1 −1 1
1 2 −1 −1 −1 2

 .

The matrices Bk and S2k+1 defined below will be used to show that (Dk|I) is
totally dyadic. The square matrix Bk of order 2(k + 1) is defined as follows:

(Bk)ij =

 1, if i = j;
−1, if j = i− 1 and 2 ≤ i ≤ 2(k + 1);

0, otherwise.
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The matrix S2k+1 is the result of the following recursion:

S2 = S(M1,M2, e2), and

Si = S(Si−1,Mi, ei) for i = 3, 4, . . . , 2k + 1,

where

Mi =



( ei ei+1

1 1 1 0
0 1 −1 1

)
,

if i ∈ {1, 2k + 1};

( ei ei+1

1 1 1 0
0 −1 −2 1

)
,

if i ∈ {2, 3, . . . , 2k}.

By Proposition 2, Si is totally dyadic for i = 2, 3, . . . , 2k + 1; in particular, S2k+1 is
totally dyadic.

Now the columns of Bk(Dk|I) can be reordered to produce the matrix S2k+1, hence
Bk(Dk|I) is totally dyadic. Next we note that the determinant of a nonsingular square
submatrix of (Dk|I) is equal to the product of det(B−1

k ) and the determinant of a
square submatrix of Bk(Dk|I). Since Bk(Dk|I) is totally dyadic this product is a
signed power of 2; hence, (Dk|I) is totally dyadic. We let Mk denote the dyadic
oriented matroid represented by Ak = (Dk|I).

In what follows we will show that the oriented matroid Mk is not dyadic of order
k. After establishing this fact we only need note that the rank of the matrix Ak is
2(k+1); hence the size of each circuit of Mk is bounded by 2(k+1)+1, and therefore

4−k ≤
1

2(k + 1)
≤
|(X+ ∩ Y+) ∪ (X− ∩ Y−)|

|(X+ ∩ Y−) ∪ (X− ∩ Y+)|
≤

2(k + 1)

1
≤ 4k,

for all X ∈ C and Y ∈ C∗. Hence, Mk satisfies the hypothesis of the “if” direction of
the conjecture, yet Mk is not dyadic of order k.

We begin our proof by considering the following pairs of adjacent bases:

B1 = {e2(k+1)+1, e2, e3, . . . , e2k+1, e4(k+1)}
B2 = {e2(k+1)+1, e4(k+1)−1, e3, . . . , e2k+1, e4(k+1)}

and
B3 = {e1, e2, e2(k+1), e2(k+1)+2, . . . , e4(k+1)−2}
B4 = {e1, e4(k+1)−1, e2(k+1), e2(k+1)+2, . . . , e4(k+1)−2}.

Routine calculations show that det(B1) = −4k, det(B2) = 1, det(B3) = 1 and
det(B4) = 2. Hence, we have the following adjacent base ratios:

det(B1)

det(B2)
= ±4k and

det(B3)

det(B4)
=

1

2
.

Next, we assume that Mk is dyadic of order k and that A
′

k = (D̃k|I) is a repre-
sentation of Mk that realizes this order. Since Ak and A

′

k represent the same oriented
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matroid, we apply Proposition 1 and conclude that Ak and A
′

k are equivalent repre-
sentations of Mk. Each representation is in standard form with respect to the same
base, so we conclude that the columns of Ak can be scaled to result in a dyadic matrix
A
′′

k that represents Mk and realizes the order k also. We use c1, c2, . . . , c4(k+1) ∈ Q to
denote the column scalars.

Scaling the columns of Ak (to produce A
′′

k) has the following effect on
det(B1)

det(B2)

and
det(B3)

det(B4)
:

det(B1)

det(B2)
= ±

4kc2

c4(k+1)−1

and
det(B3)

det(B4)
=

c2

2c4(k+1)−1

.

Now, we have the following inequalities:

2−k ≤
4k|c2|

|c4(k+1)−1|
,

|c2|

2|c4(k+1)−1|
≤ 2k. (1)

In particular,

2−k ≤
|c2|

2|c4(k+1)−1|
=⇒ 2−k+1 ≤

|c2|

|c4(k+1)−1|
.

But multiplying by 4k yields

2k+1 ≤
4k|c2|

|c4(k+1)−1|
,

which is a direct violation of (1). We conclude that Mk is not dyadic of order k. �

4 Open Questions

The oriented matroid Mk is 2-connected but it is not 3-connected as the partition of
E(Mk) into {e1, e2, e2(k+1)+1} and its complement is a 2-separation of E(Mk). This
fact motivates the first question.

Question 1 Is Lee’s conjecture true if we assume that the dyadic oriented matroid
is 3-connected?

The following related question is also of interest.

Question 2 Is it possible to get a nontrivial bound on the order of a dyadic ori-
ented matroid based on a bound on the ratio of agreement to disagreement in sign for
circuit/cocircuit pairs?

Finally, a positive answer to the following question would facilitate further study
of the class of dyadic oriented matroids that are dyadic of order k.

Question 3 Is there an efficient combinatorial algorithm for determining the order
of a dyadic oriented matroid?
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