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Abstract

Let ∆k denote the maximum degree of the kth iterated line graph Lk(G).
For any connected graph G that is not a path, the inequality ∆k+1 ≤ 2∆k − 2
holds. Niepel, Knor, and Šoltés [3] have conjectured that there exists an integer
K such that, for all k ≥ K, equality holds; that is, the maximum degree ∆k

attains the greatest possible growth. We prove this conjecture using induced
subgraphs of maximum degree vertices and locally maximum vertices.

Mathematics Subject Classification: Primary 05C75, Secondary 05C12.

1 Introduction

The line graph L(G) of a graph G is defined as the graph whose vertices are the edges
of G and where two vertices in L(G) are adjacent if and only if the corresponding
edges in G are incident to a common vertex. Line graphs are well studied, and we
direct the reader to [1] for a general discussion of the properties of line graphs. In
particular, if v is a vertex in L(G) and u and w are the endpoints of the edge in G
that corresponds to v, then degL(G)(v) = degG(u)+degG(w)−2. Thus, the maximum
degree ∆(L(G)) of L(G) satisfies

∆(L(G)) ≤ 2∆(G)− 2,
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and the minimum degree δ(L(G)) satisfies

δ(L(G)) ≥ 2δ(G)− 2.

The iterated line graph Lk(G) is defined recursively as L0(G) = G, and Lk(G) =
L(Lk−1(G)) for k ≥ 1. Though much is known about the line graph, few results are
known for the iterated line graph. Some of these results can be found in [2]. Using
the inequalities above, Niepel, Knor, and Šoltés [3] developed the following bounds
for the maximum degree ∆k and minimum degree δk of the iterated line graph Lk(G):

2k(δ0 − 2) + 2 ≤ δk ≤ ∆k ≤ 2k(∆0 − 2) + 2.

Thus, the maximum and minimum degree both have order Θ(2k).
Niepel, et al., have conjectured that the maximum degrees of all iterated line

graphs, with the exception of paths, eventually attain the maximum growth rate of
∆k+1 = 2∆k − 2. In this paper, we say that a graph G has the Maximum Degree
Growth Property (MDGP) if ∆(L(G)) = 2∆(G)−2. Thus, the conjecture states that
there exists an integer K such that, for all k ≥ K, Lk(G) possesses the MDGP. The
focus of this paper is to present a proof of this conjecture.

In the following work, only finite simple connected graphs with no loops are con-
sidered. Note that the iterated line graph of a path eventually becomes the empty
graph and that the iterated line graphs of cycles and K1,3 (whose line graph is a tri-
angle) trivially satisfy the conjecture. Therefore, we consider only graphs that are
not contained in these classes.

2 The Maximum Degree Induced Subgraph

We begin with some basic definitions.

Definition 1. Let ∆(G) be the maximum degree among the vertices of G, and δ(G)
be the minimum degree. Let ∆k denote ∆(Lk(G)) and δk denote δ(Lk(G)).

Definition 2. A graph G has the Maximum Degree Growth Property (MDGP) if
∆(L(G)) = 2∆(G)− 2.

The conjecture of Niepel, Knor, and Šoltés can now be stated as follows.

Conjecture 3. [3] Let G be a connected graph that is not a path. Then there exists
an integer K such that, for all k ≥ K, Lk+1(G) has the MDGP; that is,

∆k+1 = 2∆k − 2.

We now introduce the maximum degree induced subgraph M(G) which will enable
us to characterize those graphs G possessing the MDGP.
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Definition 4. Let the maximum degree induced subgraph M(G) be the subgraph of
G induced by the vertices of G that have maximum degree ∆(G). Let Mk denote
M(Lk(G)).

Lemma 5. The MDGP holds for a graph G if and only if M(G) contains an edge.

Proof. If M(G) contains an edge then two vertices of degree ∆(G) are adjacent, and
the edge joining these vertices will create a vertex of degree ∆(L(G)) = 2∆(G) − 2
in L(G).

Inversely, if M(G) does not contain an edge, then no two vertices of degree ∆(G)
are adjacent, and ∆(L(G)) < 2∆(G)− 2.

Note that Lemma 5 implies that the MDGP holds for all Lk(G), k ≥ 0, if and
only if Mk contains at least one edge for all k ≥ 0.

The following lemma is a well-known result on line graphs, and is stated without
proof.

Lemma 6. If H is a subgraph of G, then L(H) is an induced subgraph of L(G).

We can now prove another characterization of graphs for which the MDGP holds.

Lemma 7. The MDGP holds for a graph G if and only if L(M(G)) ∼= M(L(G)).

Proof. Assume that the MDGP holds for G. Then M(G) has an edge, and by Lemma
6, L(M(G)) is a nonempty subgraph of L(G). Since every edge in M(G) is incident
to two vertices of degree ∆(G), then for all vertices v ∈ L(M(G)), degL(G)(v) =
2∆(G) − 2 = ∆(L(G)) and thus v ∈ M(L(G)). Suppose v is a vertex in M(L(G)).
Since degL(G)(v) = ∆(L(G)) = 2∆(G)−2, the edge e corresponding to v in M(L(G))
must be incident to two vertices in G of degree ∆(G). Thus, e is an edge in M(G),
and v ∈ L(M(G)). Therefore, the vertex sets of M(L(G)) and L(M(G)) are equal.
Since both M(L(G)) and L(M(G)) are induced subgraphs of L(G), the adjacencies
of M(L(G)) and L(M(G)) are exactly the same. Therefore, L(M(G)) ∼= M(L(G)).

Inversely, assume that the MDGP does not hold for G. By Lemma 5, M(G)
does not contain an edge. Thus, L(M(G)) is defined on an empty vertex set. But
M(L(G)) cannot be the empty graph since L(G) is a finite non-empty graph (G is
not a path or a single vertex) and at least one vertex in L(G) must have maximum
degree. Therefore, M(L(G)) 6∼= L(M(G)).

Corollary 8. If Lk(M(G)) contains an edge for all k ≥ 0, then the MDGP will hold
for all Lk(G), k ≥ 0.

Proof. If Lk(M(G)) contains an edge for all k ≥ 0, then, by Lemma 7, Mk contains
an edge for all k ≥ 0, and the result follows by Lemma 5.
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Corollary 8 proves the conjecture for many graphs, since we only need to consider
whether or not Lk(M(G)) always has an edge for k ≥ 0. Paths and (vertex-disjoint)
unions of paths are the only graphs that do not satisfy this condition, and thus the
maximum degree growth of graphs whose M(G) are paths or unions of paths remains
unresolved with the techniques presented thus far. The concept of the maximum de-
gree induced subgraph is insufficient for these cases because it provides no information
about Mk+1 if Mk does not contain an edge. In the next section, we introduce the
concept of a local maximum induced subgraph in order to resolve these difficulties.

3 The Local Maximum Induced Subgraph

Definition 9. Let the neighborhood NG(v) of a vertex v in G be the set of vertices
in G adjacent to v. Note that v /∈ NG(v).

Let the neighborhood NG(S) of a subgraph S of G be the set of vertices adjacent
to vertices in S but not contained inS. Thus, NG(S) = (∪{NG(v) : v ∈ S}) \S.

Definition 10. A vertex v in G is a local maximum if degG(v) ≥ degG(w) for all
w ∈ NG(v).

If u and w are the endpoints of an edge e in G, then uw is an alternative notation
for the vertex v ∈ L(G) that corresponds to e. This notation suggests the following
definition.

Definition 11. A vertex v ∈ L(G) is generated by a vertex u ∈ G if the edge e in
G that corresponds to v is incident to u. A subgraph J of L(G) is generated by a
subgraph H of G if, for each vertex v ∈ J , v is generated by a vertex in H.

Note that for a given J , H is in general not unique.

Lemma 12. Every local maximum v in L(G) is generated by a local maximum w in
G. Moreover, v is generated by w and a vertex in G that is maximum in NG(w).

Proof. Suppose v is in L(G) and v is generated by x, y ∈ G, where x, y are not
local maxima in G. Assume that degG(x) ≤ degG(y). Then there exists a vertex
w ∈ NG(y) such that degG(w) > degG(y). The vertex wy in L(G) has degL(G)(wy) =
degG(w) + degG(y) − 2 > degG(x) + degG(y) − 2 = degL(G)(v). Vertex wy is in
NL(G)(v); therefore, v is not a local maximum.

For the second part of the lemma, assume that v is a local maximum in L(G),
where v is generated by w, y ∈ G, w is a local maximum in G and y is not maximum
in NG(w). There exists a vertex z ∈ NG(w) such that degG(z) > degG(y). The vertex
wz in L(G) has degL(G)(wz) = degG(w) + degG(z) − 2 > degG(w) + degG(y) − 2 =
degL(G)(v). Vertex wz is in NL(G)(v); therefore, v is not a local maximum, resulting
in a contradiction.
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Definition 13. Let the local maximum induced subgraph LM(G) be the subgraph of
G induced by local maximum vertices. Let LMk denote LM(Lk(G)).

We now develop some useful properties of the components of LM(G).

Lemma 14. Let C be a component of LM(G). Then all vertices in C have the same
degree in G.

Proof. Let u, v be adjacent vertices in a component C of LM(G), where degG(u) 6=
degG(v). Then degG(u) > degG(v) and v is not a local maximum, or degG(u) <
degG(v) and u is not a local maximum, generating a contradiction.

Similar to the individual local maxima, the components of LM(L(G)) can be
determined by the components of LM(G). This property is shown in the following
lemmas.

Lemma 15. If a component C of LM(G) contains an edge, then L(C) is a component
of LM(L(G)).

Proof. By Lemma 12, every vertex in LM(L(G)) is generated by a vertex in LM(G).
Let C be a component of LM(G) that contains an edge, where degG(v) = r for all
v ∈ C. If v and w are adjacent vertices in C, then the degree of the vertex vw
in L(G) is degL(G)(vw) = 2r − 2. By Lemma 6, and since the line graph preserves
connectivity, L(C) is a connected induced subgraph of L(G), where every vertex in
L(C) has degree 2r − 2.

To complete the proof of the lemma, we show that no vertex in NL(G)(L(C)) is a
local maximum. Every vertex vy in NL(G)(L(C)) is generated by a vertex y ∈ NG(C)
that is adjacent to a vertex v ∈ C. If degG(y) < r, then degL(G)(vy) < 2r− 2, and vy
is not a local maximum in L(G). If degG(y) = r, then since y /∈ C there exists a vertex
z ∈ NG(y)\C such that degG(z) > r. Then degL(G)(yz) > 2r − 2 = degL(G)(vy), and
vy is not a local maximum in L(G). Therefore, no vertex in NL(G)(L(C)) is a local
maximum, and thus L(C) is a component of LM(L(G)).

Lemma 16. Let C be a component of LM(G) that does not contain an edge (C
consists solely of a vertex v), and let s be the maximum degree of vertices in NG(v).
Then the following hold:

1. If s = degG(v), then no vertex in L(G) generated by v is a local maximum.

2. If s < degG(v), and if for all u ∈ NG(v) with degG(u) = s there exists w ∈
NG(u)\{v} such that degG(w) > degG(v), then no vertex in L(G) generated by
v is a local maximum.

3. If s < degG(v), and if for a given u ∈ NG(v) with degG(u) = s, degG(w) <
degG(v) for all w ∈ NG(u)\{v}, then v will generate a local maximum in L(G)
for each such u. All local maxima thus generated will be adjacent.
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4. If s < degG(v), and if for a given u ∈ NG(v) with degG(u) = s there exists
w ∈ NG(u)\{v} such that degG(w) = degG(v), then v will generate locally
maximum vertices in L(G) that are adjacent, and the locally maximum vertices
generated by v will be adjacent to other locally maximum vertices in L(G) that
are generated by a different component in LM(G).

Proof. Let degG(v) = r, and let u ∈ NG(v) have maximum degree in NG(v). Note
that all local maxima in L(G) generated by v, if any, will be adjacent to each other.

Let y ∈ NG(v), where degG(y) < s. So y is not maximum in NG(v). Then
degL(G)(vy) < r+s−2 = degL(G)(vu), and vy is not a local maximum in L(G). Thus,
only vertices generated by v and vertices maximum in NG(v) can be locally maximum
in L(G).

Assume that degG(u) = r = degG(v). Since u /∈ C there exists a vertex w ∈
NG(u)\{v} such that degG(w) > r. Then degL(G)(uw) > 2r − 2 = degL(G)(vu), and
vu is not a local maximum in L(G), proving part 1.

Assume that r = degG(v) > degG(u) = s. If there exists a vertex w ∈ NG(u)\{v}
such that degG(w) > r, then degL(G)(uw) > r + s− 2 = degL(G)(vu), and vu is not a
local maximum in L(G). If such a vertex w exists for all maximum degree vertices in
NG(v), then no vertex in L(G) generated by v is a local maximum, proving part 2.
If degG(w) ≤ r for all w ∈ NG(u)\{v}, then degL(G)(vu) = r + s− 2 ≥ degL(G)(uw),
and vu is a local maximum in L(G). This proves part 3. If there exists a vertex
w ∈ NG(u)\{v} such that degG(w) = r, then degL(G)(uw) = r+ s− 2 = degL(G)(vu),
and vu and uw are adjacent local maxima in L(G), proving part 4. Note that vertices
vu and uw are in the same component of LM(L(G)), but the component is generated
by more than one component in LM(G).

Thus, we now know the possible effects of the line graph on components of LMk.
However, we can determine the exact effect on a component of LMk if k is large
enough.

Corollary 17. Each component of LM(L(G)) is generated by components of LM(G),
and each component of LM(G) generates at most one component of LM(L(G)).

Proof. The first part of the corollary follows from Lemma 12, and the second part
follows from Lemmas 15 and 16.

Corollary 18. There exists an integer J1 such that every component of LMk gener-
ates a component of LMk+1 for k ≥ J1, and every component of LMk+1 is generated
by exactly one component of LMk.

Proof. Let ck denote the number of components of LMk. By Corollary 17, the se-
quence {ck} is non-increasing. Since G is a finite graph, there exist vertices of maxi-
mum degree, and thus LMk is nonempty and ck ≥ 1 for all k. Therefore, there exists
an integer J1 such that ck is constant for k ≥ J1. Using Corollary 17, the statement
of this corollary follows.
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The following notation will allow us to consider a particular component CJ1 of
LMJ1 and the components in LMk that CJ1 generates for k > J1.

Definition 19. Let J1 be the integer given in Corollary 18, and let {Ck}k≥J1 be a
sequence such that Ck is a component of LMk and Ck+1 is generated by Ck. Let
rk = degLk(G)(v) for all v ∈ Ck.

Lemma 20. For k ≥ J1 given in Corollary 18, let u ∈ NLk(G)(Ck) where degLk(G)(u) =

a. Then there exists a vertex v ∈ Lk+1(G) generated by u where degLk+1(G)(v) =
rk + a− 2, and either v ∈ NLk+1(G)(Ck+1) or v ∈ Ck+1.

Proof. Let w be a vertex in Ck that is adjacent to u ∈ NLk(G)(Ck). Then the degree
of v = uw in Lk+1(G) is rk + a − 2. Since Ck generates Ck+1, there exists a vertex
z ∈ NLk(G)(w) such that wz ∈ Ck+1. If degLk(G)(u) = degLk(G)(z), then v ∈ Ck+1;
otherwise, v ∈ NLk+1(G)(Ck+1).

Note that if Ck has an edge, then

rk+1 − degLk+1(G)(v) = (2rk − 2)− (rk + a− 2)

= rk − a.

If Ck does not have an edge, then

rk+1 − degLk+1(G)(v) < (2rk − 2)− (rk + a− 2)

= rk − a.

Note also that if two vertices u1 and u2 in Lk(G) are adjacent to a common vertex
w in Ck, then vertices v1 = u1w and v2 = u2w are adjacent in Lk+1(G).

The following lemma is another well-known result on iterated line graphs, and is
presented without proof.

Lemma 21. Let G be a connected graph that is not a path, cycle, or K1,3. Then for
all integers q there exists an integer Q such that δQ > q.

We now proceed with our characterization of the components of LMk.

Lemma 22. There exists an integer J2 such that CJ2 contains an edge.

Proof. Assume that there does not exist an integer J2 such that CJ2 contains an
edge. Assume that J1 given in Corollary 18 is large enough such that, by Lemma
21, δJ1 > 1. Then rJ1 > rJ1 − δJ1 + 1. Since rJ1 − δJ1 + 1 represents the number of
possible degrees a vertex in NLJ1 (G)(CJ1) can have, by the Pigeonhole Principle there
exist two vertices of the same degree adjacent to every vertex in CJ1. Let w ∈ CJ1.
Then there are two vertices xJ1 and yJ1 of degree aJ1 adjacent to w. Construct a
sequence of pairs of vertices {(xk, yk)}, where xk+1 is generated by xk as described in
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Lemma 20 and similarly for yk+1. Thus, the degree ak+1 of xk+1 and yk+1 is given by
ak+1 = ak + rk − 2. Both vertices in each pair (xk, yk) are adjacent to one another
for k > J1, since xk−1 and yk−1 are adjacent to a common vertex in Ck−1. Since, for
k ≥ J1, Ck does not contain an edge, rk+1 − ak+1 < rk − ak. Thus, there must exist
an integer P where rP −aP = 0. This implies that CP contains two vertices and thus
must contain an edge, which is a contradiction.

Lemma 23. If there does not exist an integer P such that Ck contains an edge for all
k ≥ P , then there exists an integer J3 such that there are three vertices in NLJ3 (G)(CJ3)
where all three vertices have the same degree and are adjacent to the same vertex in
CJ3.

Proof. Assume that there does not exist an integer P such that Ck contains an edge
for all k ≥ P . By Lemma 22, there exists an integer J2 such that CJ2 contains an edge.
Let J3 be the smallest integer greater than J2 such that CJ3 does not contain an edge.
Then CJ3−1 contains exactly one edge and two vertices. Let bk denote the minimum
degree of vertices in NLk(G)(Ck). The component CJ3−1 generates CJ3, where CJ3

consists of the single vertex w of degree rJ3 = 2rJ3−1 − 2. The minimum degree of
vertices in NLJ3(G)(w) is bJ3 = rJ3−1 + bJ3−1 − 2. By Lemma 21, the minimum degree
δk can be made arbitrarily large by iterating long enough, and thus bJ3−1 ≥ δJ3−1 > 2
can be assumed. Then

bJ3−1 > 2

⇒ rJ3−1 − 1 > rJ3−1 − bJ3−1 + 1

⇒ 2rJ3−1 − 2 > 2 ((2rJ3−1 − 2)− (rJ3−1 + bJ3−1 − 2) + 1)

⇒ rJ3 > 2(rJ3 − bJ3 + 1). (∗)

Since rJ3−bJ3 +1 represents the maximum number of degrees a vertex in NLJ3 (G)(CJ3)
can have, by the Pigeonhole Principle and inequality (∗), w has at least three adjacent
vertices that have the same degree.

Lemma 24. There exists an integer J4 such that Ck contains an edge for all k ≥ J4.

Proof. Assume that there does not exist an integer P such that Ck contains an edge
for all k ≥ P . Then by Lemma 23 there exists an integer J3 such that there are three
vertices xJ3 , yJ3, and zJ3 in NLJ3 (G)(CJ3) where all three vertices have the same degree
aJ3 and are adjacent to the same vertex w in CJ3. Construct a sequence of triples of
vertices {(xk, yk, zk)}, where xk+1 is generated by xk as described in Lemma 20 and
similarly for yk+1 and zk+1. Thus, the degree ak+1 of xk+1, yk+1, and zk+1 is given by
ak+1 = ak + rk− 2. The vertices in each triple (xk, yk, zk) are adjacent to one another
for k > J3, since xk−1, yk−1, and zk−1 are adjacent to a common vertex in Ck−1. Since
Ck does not contain an edge for all k ≥ J3, there exists an infinite number of integers
k ≥ J3 where Ck does not contain an edge and where rk+1 − ak+1 < rk − ak. Thus,
there must exist an integer Q where rQ−aQ = 0. This implies that (xQ, yQ, zQ) forms
a triangle in CQ, and thus Ck will contain an edge for all k ≥ Q.
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We now have all the necessary lemmas to prove the conjecture.

Theorem 25. For all connected graphs G that are not paths, there exists an integer
K such that the MDGP will hold for Lk(G) for all k ≥ K.

Proof. By Lemma 24 and since LMk has a finite number of components, there exists
a K such that every component of LMk contains an edge for all k ≥ K. By Lemma
14, Mk is a subset of the components in LMk. Thus, Mk contains an edge for all
k ≥ K, and, by Lemma 5, the MDGP will hold for all k ≥ K.

4 Conclusion

Theorem 25 proves the existence of an integer K such that the MDGP will hold for
all k ≥ K. From this result, we can conclude that the formula ∆k = 2k−K(∆K−2)+2
holds for all k ≥ K. However, this formula is not particularly useful unless the least
integer K such that the MDGP will hold for all k ≥ K can be determined. The
calculation of this tight bound for a given graph remains an open question.

Niepel, Knor, and Šoltés in [3] also posed a corresponding conjecture for the
minimum degree δk: There exists an integer P such that δk+1 = 2δk − 2 for k ≥
P . Even though analogous minimum degree induced subgraphs and local minimum
induced subgraphs can be defined, the authors have been unable to prove lemmas
corresponding to Lemmas 22 and 23 for the minimum degree case. This conjecture
also remains an open question.
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