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Abstract

We prove that for c ≥ 2.522 a random graph with n vertices and m = cn edges
is not 3-colorable with probability 1− o(1). Similar bounds for non-k-colorability are
given for k > 3.
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1 Introduction

Let N(n,m,A) denote the number of graphs with vertices {1, . . . , n}, m = m(n) edges and
some property A. The term “almost all” in the title has the meaning introduced by Erdős
and Rényi [5]:

lim
n→∞

N(n,m,A)((n
2

)
m

) = 1 . (1)

Equivalently, one can consider a random graph G = G(V,E) where |V | = n and E is a
uniformly random m-subset of all

(
n
2

)
possible edges on V , i.e. the G(n,m) model of random

graphs. If n is an index running over probability spaces, we will say that a sequence of events
En occurs with high probability (w.h.p.) if limn→∞ Pr[En] = 1. In particular, we will say that
“G(n,m(n)) has property A w.h.p.” if m(n) is such that (1) holds for A.

In their seminal paper introducing random graphs [5], Erdős and Rényi pointed out that
a number of interesting properties exhibit a sharp threshold behavior on G(n,m): for each
such property A, there exists a critical number of edges mA(n) such that for m around
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m(n) the probability of G(n,m) having A changes rapidly from near 0 to near 1. Such
properties include having a multicyclic component, having a perfect matching, connectivity,
Hamiltonicity and others.

A central property in this context is the k-colorability of G(n, cn) where k is a fixed
integer. For k = 2, this is very well-understood as bipartiteness is equivalent to containing
no odd cycles. In particular, the probability of non-2-colorability is bounded away from 0
for any c > 0 and keeps increasing gradually with c, reaching 1− o(1) during the emergence
of the giant component at c = 1/2. For k > 2, though, our understanding of k-colorability is
not nearly as good; moreover, the situation is conjectured to be quite different. In particular,
see [5, 3], Erdős asked: for each k > 2, is there a constant ck such that for any ε > 0,

G(n, (ck − ε)n) is w.h.p. k-colorable and G(n, (ck + ε)n) is w.h.p. not k-colorable ? (2)

Recently, Friedgut [6] made great progress in our understanding of threshold phenomena
in random graphs by establishing necessary and sufficient conditions for a property to have
a sharp threshold. Using the main theorem of [6], Friedgut and the first author [1] showed
that for k > 2, there exists a function tk(n) such that (2) holds upon replacing ck with
tk(n), i.e. that indeed k-colorability has a sharp threshold. While it is widely believed that
limn→∞ tk(n) exists, confirming this conjecture and determining the limit ck, even for k = 3,
seems very challenging.

Perhaps the main tool in attacking the question of k-colorability for small values of k > 2
has been the elementary fact that if a graph has no subgraph with minimum degree at least
k, then it is k-colorable. In particular, first  Luczak [11] proved that w.h.p. G(n, cn) remains
3-colorable after the emergence of the giant component by showing that for c ≤ 0.50005,
w.h.p. G(n, cn) has no subgraph of minimum degree 3. Shortly afterwards, Chvátal [4]
improved this greatly by showing that G(n, cn) w.h.p. has no subgraph with minimum degree
3 for c ≤ 1.44 and Reed and the second author [13] improved the bound even further to
c ≤ 1.67. Finally, Pittel, Spencer and Wormald [16], proved that, in fact, for all k > 2 there
exists γk such that for c < γk, G(n, cn) w.h.p. has no subgraph with minimum degree at least
k, while for c > γk it has such a subgraph w.h.p. Moreover, they determined γk exactly for
all k, in particular yielding c3 ≥ γ3 = 1.675... Following that, and in aswering a question of
Bollobás [3], the second author [14] proved ck > γk for all k ≥ 4 and conjectured c3 6= γ3 as
well. This conjecture was verified recently by the authors [2] after analyzing the performance
of a greedy “list-coloring” heuristic on G(n, cn). That argument yielded c3 > 1.923, which
is the best known lower bound for c3.

In this paper, after briefly reviewing the known upper bounds for ck, we show how
a technique of Kirousis et al. [8], developed for random k-SAT, can be used to yield an
improved upper bound for ck for small values of k. For example, we obtain

Theorem 1
c3 < 2.522 .
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2 The first moment method

Grimmett and McDiarmid [7] gave the first lower bound on the chromatic number of random
graphs by determining αk such that G(n,m = αkn2) w.h.p. has no independent set of
size n/k, and thus χ(G) > k (here k → ∞). Moreover, they conjectured that the lower
bound derived by this argument is tight, and as evidence for this they showed that the
expected number of k-colorings of G(n, αn2) tends to infinity for α < αk. Devroye (see [4])
later observed that when k is fixed, letting the expected number of k-colorings go to 0 as
n→∞ yields much better lower bounds for the chromatic number than letting the number
of (suitably large) independent sets go to 0 as n→∞.

Our proof can be viewed as a refinement of Devroye’s argument which we will reproduce
below to introduce some ideas and notation. Before doing so, let us recall that in the G(n,m)
model the edge set is a random m-subset of the set of all

(
n
2

)
possible edges. Equivalently, we

can say that the edges of the graph are selected from the set of all possible edges one-by-one,
uniformly, independently and without replacement. For the calculations in this paper it will
be convenient to consider a slight modification of the G(n,m) model in that the selection
is done with replacement, i.e. multiple edges are allowed. We will denote this model by
Gr(n,m). Intuitively, it is clear that for any monotone increasing property A and any value
of m, the probability of A holding in G(n,m) is no smaller than it is in Gr(n,m) since
“additional occurrences of an edge do not help”. Formally, this is Theorem 5 in [9] and, for
our purposes, it will imply that if for a given m(n), Gr(n,m(n)) is w.h.p. non-k-colorable
then so is G(n,m(n))∗.

We will distinguish between a proper k-coloring of a graph and one in which some adjacent
vertices might have the same color by referring to them as a “k-coloring” and a “k-partition”,
respectively. In fact, it will be helpful to think of a k-coloring of a graph G(V,E) as a
k-partition of V such that every e ∈ E has its endpoints in distinct blocks of the partition,
so that each block is an independent set.

Let P = V1, . . . , Vk be an arbitrary (ordered) k-partition of V and let CP denote the
event that P is a k-coloring of G. For CP to hold, every edge of the random graph has to
connect vertices from two different blocks. Introducing

T (P ) =
∑
i<j

|Vi| · |Vj| , (3)

the total number of pairs of vertices belonging to different blocks, we have

Pr[CP ] =

(
T (P )(
n
2

) )m

. (4)

∗In fact, it turns out that since the expected number of multiple edges in Gr(n, cn) is O(1) the converse
holds as well, i.e. ifG(n, cn) is w.h.p. non-k-colorable then so isGr(n, cn). Thus, by switching to the Gr(n,m)
model we are not giving anything away with respect to bounding ck.
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Now, using the fact
∑

i |Vi| = n and the Cauchy-Schwartz inequality, respectively, we bound

T (P ) =
n2

2
− 1

2

∑
i

|Vi|2

≤ n2

2
− 1

2
· n

2

k

=
k − 1

2k
n2 .

Thus, (4) yields

Pr[CP ] ≤
(
k − 1

k

)m(
n

n− 1

)m
. (5)

Since the number of k-partitions of V is kn, (5) implies that the expected number of
k-colorings of G, for m = cn, is of order[

k

(
k − 1

k

)c]n
.

Hence, if c > ln k
lnk−ln(k−1)

the expected number of k-colorings of Gr(n, cn) tends to 0 as n→∞
implying that Gr(n, cn) is w.h.p. non-k-colorable. For k = 3, this argument yields c3 < 2.71
and in general ck < k ln k.

It is worth noting that this simple argument is asymptotically tight: the upper bound on
χ(G(n,m)) given by  Luczak [10] implies that for any ε > 0 and all k ≥ k0(ε), ck > (1−ε)k ln k.
On the other hand, the following two observations can be used to show that for k > 2 this
argument is not exact: (a) if a k-colorable graph has si vertices of degree i then it has at least∏k−1

i=0 (k − i)si distinct k-colorings and (b) with extremely high probability, for every fixed i,
G(n, cn) has Ω(n) vertices of degree i. If X is the number of k-colorings of G(n, cn), using
(a),(b), one can show that there are values of c such that for some a > b > 1: (i) E[X] ≈ bn

and (ii) w.h.p. if X > 0 then X > an. Hence, for such c, Pr[X > 0] ≤ (a/b)n + o(1) = o(1),
while E[X] is exponentially large. Thus, it is not the case that G(n, cn) is w.h.p. k-colorable
for exactly those values of c for which its expected number of k-colorings is large.

Indeed, Reed and the second author [13] proved that this “naive” first moment argument
is quite a bit off the mark for k = 3. To that end, they first extended the argument to
uniformly random pseudographs on a given degree sequence (for a definition see also [15]).
In particular, they proved that such a pseudograph with ρn edges is w.h.p. non-k-colorable
if ρ > lnk

lnk−ln(k−1)
. Then, in order to improve over the naive bound, they considered the

random pseudograph resulting by repeatedly (20 times) removing all vertices of degree less
than 3 from G(n,m = cn). They proved that this pseudograph (i) is uniformly random with
respect to its degree sequence and (ii) if c ≥ c0 = 2.571..., then w.h.p. it has at least ρn
edges where ρ > ln 3

ln 3−ln 2
. Hence, w.h.p. G(n,m = c0n) contains a non-3-colorable subgraph,

implying c3 < 2.572.
Inspired by the work of Kirousis et al. [8], we will take a less direct but more fruitful

approach towards accounting for the wastefulness of the first moment method. Instead of
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focusing on the low degree vertices explicitly, we will prove the following: if P is a k-coloring
of G ∈ G(n, cn) and we randomly pick a vertex v, then with probability φ = φ(k, c) > 0
we can assign a different color to v and still have a k-coloring of G. This suggests that
when k-colorings exist, they tend to appear in large “clusters” of similar colorings. The
approach of Kirousis et al. [8], when translated to coloring, suggests that instead of counting
all the k-colorings of a random graph (as the first moment does) we should only count
a few “representative” ones. Following this idea we will consider as representatives those
k-colorings satisfying a certain “local maximality” condition and determine their expected
number in Gr(n, cn). Letting that expectation go to 0 as n→∞ will yield c3 < 2.522.

3 A refinement of the first moment method

Recall that for a k-partition P = V1, V2, . . . , Vk of V , CP denotes the event that P is a
k-coloring of G. Let us say that a vertex v ∈ Vi is unmovable in P if for every j > i the
partition resulting by moving v to Vj is not a k-coloring of G. We will say that P is a
rigid k-coloring of G if CP holds and every vertex is unmovable in P . We will denote this
event by RP . Note now that if we consider the k-partitions of V as strings of length n over
{1, . . . , k} then, clearly, the lexicographically last k-coloring of G (if any k-coloring exists)
is rigid by definition. Hence, G has a rigid k-coloring iff it is k-colorable, implying that
the probability that Gr(n, cn) is k-colorable is bounded by the expected number of rigid
k-colorings of Gr(n, cn). With this in mind, we take m = cn and seek c = c(k) for which
this last expectation tends to 0 as n→∞.

Remark: Note that requiring k-colorings to be rigid, immediately eliminates all the re-
dundant counting caused by vertices of degree k−1 or less; only the k-colorings which assign
every such vertex the greatest possible color get counted.

3.1 Probability Calculations

For every k-partition P = V1, V2, . . . , Vk of V we let

αi = αi(P ) =
|Vi|
n

.

Also, recalling (3), we let

τ = τ (P ) =
T (P )

n2
. (6)

It is well-known that for any c > 0, the largest independent set of G(n, cn) w.h.p. contains
only a constant fraction of all vertices. Thus, the probability that G(n, cn) has a k-coloring
where only one color class contains Ω(n) vertices is o(1). Hence, in the following we only
consider partitions P in which at least two blocks have Ω(n) vertices (and bound the expected
number of rigid k-colorings among such partitions).

We will first bound Pr[RP ]. For this, using (5), it suffices to bound Pr[RP | CP ].
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For a given k-coloring P , any i, any vertex v ∈ Vi, and any j > i we let E(v, j) denote
the event “v cannot be moved to Vj”. Thus,

Pr[RP | CP ] = Pr

 ⋂
i<j
v∈Vi

E(v, j)

∣∣∣∣∣∣∣∣CP
 . (7)

Letting E(v, j) = {{v, w} : w ∈ Vj}, we see that E(v, j) occurs iff at least one member of
E(v, j) is an edge of G. Note that since we have conditioned on CP , only two-element sets
{v, w} enumerated by T (P ) can appear in the graph. Thus, since the edges of G were chosen
uniformly, independently and with replacement,

Pr[E(v, j) | CP ] = 1−
(

1− |Vj|
T (P )

)m
(8)

= 1− e−αjc/τ + O(n−1) , (9)

where the passage from (8) to (9) relies on the fact that P has more than one blocks with
Ω(n) vertices and, thus, T (P ) = Ω(n2). (This is our only use of the fact that there are more
than one blocks with Ω(n) vertices.)

To bound Pr[RP | CP ] using (7),(9) we first observe that the setsE(v, j) induce a partition
of the set of two-element sets {v, w} enumerated by T (P ), since each {v, w} where v ∈ Vi,
w ∈ Vj and i < j belongs to exactly one such set, namely E(v, j). Since the total number of
edges is fixed and each event E(v, j) “consumes” at least one edge of E, it is intuitively clear
that the events E(v, j) should be negatively correlated. To prove this assertion, we view the
formation of E (conditional on CP ) as an allocation scheme with m distinguishable balls,
T (P ) boxes, and a partition of the set of boxes into disjoint subsets E(v, j), (v ∈ Vi, i < j).
Thus, the occurrence of E(v, j) simply means that the total occupancy of boxes from E(v, j)
is at least one. Now, the negative correlation of the events E(v, j) follows from a classical
result of McDiarmid [12]. As a result we get

Pr[RP | CP ] ≤
∏
i<j
v∈Vi

Pr[E(v, j)] , (10)

and, thus, using (7),(9) and (10) we get

Pr[RP | CP ] ≤
∏

1≤i<j≤k

(
1− e−αjc/τ + O(n−1)

)αin
=

( ∏
2≤j≤k

(
1− e−αjc/τ

)P
i<j αi

)n

×O(1) . (11)

Having bounded Pr[RP | CP ], we bound the expected number of rigid k-colorings,
E[R(G)], as follows. For k-partitions P1 = V 1

1 , . . . , V
1
k and P2 = V 2

1 , . . . , V
2
k , we say that
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P1 is isomorphic to P2 if |V 1
i | = |V 2

i |, for all i. Clearly, if P1, P2 are isomorphic then
Pr[RP1 ] = Pr[RP2]. Let P be any maximal set of non-isomorphic k-partitions of V . Then

E[R(G)] =
∑
P

Pr[RP ]

=
∑
P∈P

(
n

α1n, . . . , αkn

)
Pr[RP ]

≤ max
P∈P

[(
n

α1n, . . . , αkn

)
Pr[RP ]

]
nk−1 , (12)

as there are at most nk−1 (ordered) partitions of n into k integers. Moreover, if n > 0 and
all αin are integers it is well-known that(

n

α1n, . . . , αkn

)
<

(
1

αα1
1 · · ·αkαk

)n
, where 00 ≡ 1. (13)

Thus, combining (4),(6) and (11)–(13) we have

E[R(G)] ≤
(

max
P∈P

f(P )

)n
×O(nk−1) (14)

where

f(P ) =

(
2
∑

i<j αiαj
)c

αα1
1 · · ·αkαk

∏
2≤j≤k

(
1− e−αjc/τ

)P
i<j αi . (15)

Letting Q = {q/n : q ∈ {0, . . . , n}}, it is clear that maximizing f over P ∈ P amounts
to maximizing the right-hand side of (15) over Qk subject to

∑
i αi = 1. Naturally, we still

get an upper bound on E[R(G)] if we relax each such αi to an arbitrary real number in
[0, 1] and maximize the extended function, g, over D = [0, 1]k subject to

∑
i αi = 1. If for

some c∗ = c∗(k) the resulting maximum of g is strictly less than 1, then (14) implies that
E[R(G)]→ 0 as n→∞ and, thus, that Gr(n, c∗n) is w.h.p. non-k-colorable.

It is straightforward to verify that g is continuous, differentiable and its gradient is
bounded on D. As a result, g can be maximized numerically with arbitrarily good, guar-
anteed precision (we used Maple [18] and the code in [17]). For example, for k = 3 we
have

g(α1, α2, α3) =
(2τ3)c

(
1− e−α2c/τ3

)α1
(
1− e−α3c/τ3

)α1+α2

αα1
1 αα2

2 α
α3
3

where τ3 = α1α2 + α1α3 + α2α3. For c∗ = 2.5217, g is maximized around α1 = 0.30746,
α2 = 0.33527, α3 = 0.35727 and at that vicinity it is strictly less than 0.9999744. Thus,
Gr(n,m = c∗n) is w.h.p. non-k-colorable, implying c3 < 2.522.

Similarly, we get the following new bounds for ck for 3 ≤ k ≤ 7. (The choice of 7 is rather
arbitrary, as the numerical computations remain manageable for substantially larger k.)
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k 3 4 5 6 7
First moment bound 2.710 4.819 7.213 9.828 12.714
New bound 2.522 4.587 6.948 9.539 12.316

The above table gives an idea of how our improvement over the first moment bound scales
with k. Recalling that the first moment bound is asymptotically tight, we see that already
for k = 7 the improvement has dropped to less than 3% from 7% for k = 3.

It seems clear that one could improve the upper bound on ck somewhat further by impos-
ing a stricter local maximality condition. For example, one could consider conditions that
involve “moving” two vertices at a time. Unfortunately, the lack of “independence” between
the outcomes of different moves in that setting seems to complicate matters greatly.
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