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ABSTRACT. We compute the number of rhombus tilings of a hexagon with sides n,
n, N, n, n, N, where two triangles on the symmetry axis touching in one vertex are
removed. The case of the common vertex being the center of the hexagon solves a
problem posed by Propp.

1. INTRODUCTION

The interest in rhombus tilings has emerged from the enumeration of plane parti-
tions in a given box. The connection comes from looking at the stacks of cubes of
a plane partition and projecting the picture to the plane. Then the box becomes a
hexagon, where opposite sides are equal, and the cubes become a rhombus tiling of
the hexagon where the rhombi consist of two equilateral triangles (cf. [2]). The num-
ber of plane partitions in a given box was first computed by MacMahon [7, Sec. 429,
q — 1, proof in Sec. 494]. Therefore:

The number of all rhombus tilings of a hexagon with sides a,b,c,a,b, c equals

) k—1 T
Ty =TT 0

i=1 j=1 k=1

(The symmetric first expression is due to Macdonald.)

In [8], Propp proposed several problems regarding “incomplete” hexagons, i.e.,
hexagons, where certain triangles are missing. In particular, Problem 4 of [8] asks for
a formula for the number of rhombus tilings of a regular hexagon, where two of the
six central triangles are missing. We treat the case of the two triangles lying on the
symmetry axis and touching in one vertex (see Figure 1). The other case has been
solved in [3]. We prove the following two theorems.
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Theorem 1. The number of rhombus tilings of a hexagon with sides n,n,2m,n,n,2m
and two missing triangles on the horizontal symmetry axis sharing the (s+1)-th vertex
on the azis (counted from the left, see Figure 1) equals

@m - D) ) () H (2m + i),
2m+2n . .
( m—+n ) i=1 (2)77«
Theorem 2. The number of rhombus tilings of a hexagon with sides n,n,2m + 1,

n,n,2m 4+ 1 and two missing triangles on the symmetry axis sharing the s—th vertex
on the axis equals

(2 + () () ) T @i+ 1),
i) SO

m+n
The following corollary is easily derived using Stirling’s approximation formula.

1=

Corollary. The proportion of rhombus tilings of a hexagon with sides at, at, Bt, at,
at, Bt and two missing triangles on the horizontal symmetry axis touching the (yt)-th
vertex on the axis in the number of all rhombus tilings of the hexagon with sidelengths
at,at, Bt, at, at, 5t (given in (1)) is asymptotically equal to

1 /B2a+pP)
Ar \| y(a—7)

This expression can attain arbitrary large values if v is close to « or 0, i.e. the
missing triangles lie near the border of the hexagon. The expression equals 2@ (which
is approximately 0.28) for a« = # = 27, which corresponds to the case of a regular
hexagon with two missing triangles touching the center. In comparison, in the other
case of Problem 4 of [8], the case of a fixed rhombus on the symmetry axis, the
analogous proportion must always be smaller than 1 and equals approximately % if
the central rhombus is missing (see [3]).

The rest of the paper is devoted to the proof of Theorems 1 and 2. The main
ingredients are the matchings factorization theorem by M. Ciucu [1], nonintersecting
lattice paths, and two determinant evaluations, the latter constituting the most dif-
ficult part of the proof. An outline of the proof is given in the next section. The
details are filled in in the subsequent sections.

2. OUTLINE OF THE PROOFS OF THEOREMS 1 AND 2

Outline of the proof of Theorem 1:
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FIGURE 1. A hexagon with sides n,n, 2m,n,n, 2m and missing triangles
in position s + 1, where m = 2, n = 3, s = 2, and a rhombus tiling.
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FIGURE 2. We place a dot in every bounded region and connect dots cor-
responding to adjacent regions. The dual graph of the six triangles on the
left is the hexagon on the right.
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Step 1: It suffices to compute the number of rhombus tilings of two regions Rt
and R~ which are roughly the upper and the lower half of the original hexagon (see
Section 3).

We use the fact that there is a bijection between rhombus tilings of the hexagon and
perfect matchings of the hexagon’s ‘dual’ graph G (see Figure 2 for the construction of
the dual graph and Figure 3a for the correspondence between tilings and matchings).

The graph G has reflective symmetry, so the matchings factorization theorem by
M. Ciucu [1] is applicable (see Lemma 3). This theorem expresses the number of
perfect matchings of a graph as a power of two times the numbers of perfect matchings
of two smaller graphs G™ and G~ (see Lemma 4 and Figure 3b), which are roughly
the two halves of the original graph G. The remaining task is to count the numbers
of perfect matchings of G* and G~.

We use again the correspondence between the rhombus tilings of a region of trian-
gles and the perfect matchings of the dual graph and reduce the problem to counting
the rhombus tilings of two regions RT and R~ (see Figure 4).
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Step 2: The numbers of rhombus tilings of Rt and R~ are certain determinants
(see Sections 4 and 5).

The rhombus tilings are in bijection with certain families of nonintersecting lattice
paths (see Figures 5 and 6). Application of the main result of nonintersecting lattice
paths expresses the desired numbers as determinants (see equations (2) and (4)).

Step 3: Ewaluation of the determinant corresponding to R* (see Section /).
The determinant corresponding to R is evaluated using a lemma by Krattenthaler
(see equation (3) and Lemma 5).

Step 4: Evaluation of the determinant corresponding to R~ (see Section 5).

We take factors out of the determinant, so that we obtain a determinant whose
entries are polynomials in m (see the proof of Lemma 6). This determinant is evalu-
ated by using the “identification of factors” method, as explained in [5, Sec. 2]. The
corresponding details are the subject of Sections 6 — 8.

Step 5: A combination of the previous steps proves Theorem 1.

We substitute the results of Lemmas 5 and 6 in Lemma 4 and obtain the following
expression for the number of rhombus tilings of our original hexagon,

5(3)-1 (H(n))? (2n — 25 — 1)!1(2s — 1)!!
H(2n)(n — s)!s!
n—2 min(k,n—1—-k) n
_ - mm(k—l—ln k+1)
x H (2m + 2j 2)H(m+k+2) [T m+k)
2<i<j<n k=1 k=0

Here, H(n) stands for []', "4l This can easily be transformed to the expression in
Theorem 1, so the proof of Theorem 1 is complete.

The proof of Theorem 2 is given in Section 9. Analogously to the proof of The-
orem 1, it is enough to count the rhombus tilings of two regions Rt and R~ (see
Figure 7) which are roughly the halves of the original hexagon. This can then be
reduced to the determinants already evaluated in the proof of Theorem 1.

3. BREAKING THE HEXAGON IN TWO PARTS

We start the proof of Theorem 1 by forming the inner dual of the given hexagon
(see Figure 2). L.e., we replace every triangle by a vertex and connect vertices cor-
responding to adjacent triangles (see Figure 2). Thus, we get a hexagonal graph,
whose perfect matchings correspond to rhombus tilings of the original hexagon (see
Figure 3a).

Now we use a theorem by M. Ciucu (see [1]) to, roughly speaking, break the
hexagonal graph into two halves. Before we can state it we need a few definitions.
First, let H be a graph and assign to each of its edges a number, the weight of the
edge. Then the weight of a perfect matching of H is the product of all weights of
edges contained in the perfect matching. The weighted enumeration M (H) is just
the sum of the weights of all possible perfect matchings. If every edge has weight 1
then M (H) reduces to the number of perfect matchings.
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a. The perfect matching corresponding b. Gt and G—.
to the rhombus tiling of Figure 1.

FI1GURE 3.

a. RT, the upper half of the hexagon. b. R, the lower half of the hexagon.
FIGURE 4.

Now we describe how to get the two halves Gt and G~ from G (see Figure 3b).
Let G be a planar bipartite graph with reflective symmetry, which splits into two
parts after removal of the vertices of the symmetry axis. We can clearly assume
that the symmetry axis is the x-axis. Label the vertices of G on the symmetry axis
ai, by, ag, by, ... ag, bey from left to right. Since G is bipartite, we can colour the
vertices of the graph black and white subject to the conditions that a; is white and
no two adjacent vertices are of the same colour.

Then we delete all edges connecting white a—vertices and black b—vertices to the
upper half and all edges connecting black a—vertices and white b—vertices to the lower
half and we divide by two all weights of edges lying on the symmetry axis. The graph
G splits into two parts Gt and G~. Now we can state the matchings factorization
theorem from [1].
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Lemma 3. Let G be a planar bipartite weighted, symmetric graph, which splits into
two parts after removal of the vertices of the symmetry axis. Then

M(G) = 2"IM(GT)M(GT),

where M (H) denotes the weighted count of perfect matchings of the graph H and G*
denote the upper and lower half of G as described above. 21(G) is the number of
vertices on the symmetry axis.

We apply Lemma 3 to our hexagonal graph, exemplified in Figure 3a, with respect
to the horizontal symmetry axis. In our case I(G) =n— 1. GT and G~ are shown in
Figure 3b.

Thus we get the following lemma.

Lemma 4. The number of rhombus tilings of a hexagon with sides n,n,2m,n,n,2m
and two missing triangles on the symmetry azis sharing the (s + 1)-th vertez on the
axis equals

2" I M(GHYM(G),
where Gt and G~ are formed by the above procedure, as exemplified in Figure 3b.

M(G*') and M(G™) are computed in the following sections.

4. THE ENUMERATION OF MATCHINGS FOR THE UPPER HALF
In this section we evaluate M(G™). The result is stated in the following lemma.

Lemma 5.
H(n) H2§i§j§n (2m +2j — i)

[1j= (25 = 2)!

Proof. We start by expressing M (G™") as the following determinant.

e s (7))

To this end, we convert G back to the corresponding region of triangles, Rt say
(see Figure 4a), so that perfect matchings of G* correspond bijectively to the rhom-
bus tilings of R*. Thus, we have to count rhombus tilings of RT. The next step is
converting rhombus tilings to families of nonintersecting lattice paths, where nonin-
tersecting means that different lattice paths have no common vertices. The reader
should consult Figure 5, while reading the following passage. Given a rhombus tiling
of RT, the lattice paths start on the centers of upper left diagonal edges (lying on one
of the sides of length n). They end on the lower right edges parallel to the starting
edges. The paths are generated by connecting the center of the respective edge with
the center of the edge lying opposite in the rhombus. This process is iterated using
the new edge and the second rhombus it bounds. It terminates on the lower right
boundary edges. It is obvious that paths starting at different points have no common

M(GT) =
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vertices, i.e., are nonintersecting. Furthermore, an arbitrary family of nonintersect-
ing paths from the set of the upper left edges to the set of the lower right edges lies
completely inside R and can be converted back to a tiling (see Figure 5a).

Then we transform the picture to “orthogonal” paths with positive horizontal and
negative vertical steps of unit length (see Figure 5b,c). Let the starting points of the
paths be denoted by P, P, ..., P, and the end points by Q1,Q>,...,Q,. We can
easily write down the coordinates of the starting points and the end points:

P=@G-1i4+m-—1) fori=1,...,n,
Qj=(2j—-2,7—-1) forj=1,...,n.

Next we apply the main result for nonintersecting lattice paths [4, Cor.2] (see also [10,
Theorem 1.2]). We state it for the enumeration of weighted nonintersecting lattice
paths which we will use in later sections. The weight of a family of paths is the
product of the weights of all occurring edges. If each edge is assigned a weight of 1
we have a result for the ordinary enumeration.

The theorem says that the weighted count of families of nonintersecting lattice
paths, with path ¢ running from P; to @), is the determinant of the matrix with (i, j)-
entry the weight P(P, — ;) of lattice paths running from P; to ();, provided that
every two paths P, — ); and P, — Q; have a common vertexif i < j and £ > [. It is
easily checked that our sets of starting and end points meet the required conditions.

The number of lattice paths with positive horizontal and negative vertical steps
from (a,b) to (c,d) equals (“"4*>%). Therefore, the number of families of noninter-
secting lattice paths (equivalently, the number of rhombus tilings of R™) is equal to
the following determinant:

det (P(P,—Q,)) = det ((m”“l)).

1<i,j<n 1<i,j<n

This proves equation (2).
This determinant can be evaluated with the help of the following determinant
identity ([6], Lemma 2.2).

det ((.f] + an)(xj + (Ln_l) cee (xj + ai+1)(3:j + bz)(x] + bi—l) . (.Tj + bg))

= H (x; — xj) H (b — aj). (3)

1<i<j<n 2<i<j<n
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a. A tiling of the upper half of the hexagon b. The paths isolated.
and the corresponding lattice path family.
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c. The corresponding lattice path family.

FIGURE 5.

Before we can apply identity (3), we have to transform the expression of equation (2)
in the following way.

M(G*) = det m+‘7._1.
1<i,5<n m—7+1

n n

_ i1 (m+j—1)!
=112 11 (n+m—j)(2j —2)!

i=1 j=1

i
X det ((m+z‘+1—j)(m+z‘+2—j)...(m+n—j)

1<i,7<n .(—j—k%) (_jJr%'_%)...(—jJrl))'
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a. A tiling of the lower half of the hexagon b. The paths isolated.
and the corresponding lattice path family.
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c. The corresponding lattice path family.

FIGURE 6.

Now we apply the identity (3) with xy = —k, ax = m+k, by = g and simplify to get
the claimed result. O

5. THE ENUMERATION OF MATCHINGS FOR THE LOWER HALF
In this section we evaluate M(G~). The result is stated in the following lemma.
Lemma 6.

n—1

2("2") H(n)(2n — 25 — 1)l1(2s — 1)1
(2n—2s) T, 2n+1—20)l(n — s —1)ls!

M(GT) =

n

n—2 1 min(k,n—1—k)
- min(k+1,n—k+1)
x]}_[l(m+k+2) H(m—i—k) .

Proof. We start analogously to Section 4 and convert G~ (exemplified in Figure 3b)
back to a region R~ of triangles (see Figure 4b), so that the perfect matchings of
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G~ correspond bijectively to the rhombus tilings of R~. However, since G~ contains
edges on the symmetry axis of G, which, by Lemma 3, has the consequence that they
count with weight % in G, we are dealing with a weighted count of the rhombus
tilings of R~, where rhombi such as the top-left rhombus in Figure 6a count with
weight % Again, we count the rhombus tilings of R~ by counting the number of
nonintersecting lattice path families leading from upper left to lower right edges. The
starting and end points can be easily read off Figure 6.

The starting points are (see Figure 6 and note that the missing triangles at the
(s 4 1)~th point of the former symmetry axis make the (s+ 1)-th starting point shift
a step to the South-West):

R (2i —2,m+1i—1) fori#s+1
"l (@2s—1,m+s—1) fori=s+1.

The end points are:
Si=Mn+j—-1,7—1) forj=1,...,n.

Now we apply again the main result for nonintersecting lattice paths. The matrix
entries are P(R;, — ;). We note that a positive horizontal step starting at R;,
1 # s + 1 corresponds to a rhombus of weight % in R~, so paths starting with a
horizontal step at R;, i # s+ 1 are counted with weight % Therefore, we count paths

starting with a horizontal step and paths starting with a vertical step separately.
We get M(G_) = detlgi’jgn (Aij), where

1/m+m—1 n+m—1 ,
iz i) T o1 fori#s+1
m+1i— m+i—1—
Aij = ,P(Rz — Sj) = n+m— Sj J . (4)
. for i = s+ 1.
m-+s—j
Since this expression also makes sense for s = 0, we can include this case in the

following calculations. We take factors out of the rows of det(4;;), so that the
remaining entries B;; are polynomials in m and get the following equation

(n+m—s)(s+m)

dt Az = , dth, :O,..., —1,
et (4y) 2n—25) [y 2n+ 1 —20) et(By), s "
where
B (R+2+47=2)nj(i+m+1—j)a(m+24+3-1) i#s+1 )
Y (n+1+4+j—28), j(s+m+1-—75);. i=s+ 1.

Here (a), := a(a +1)(a+2)...(a +n — 1) is the usual shifted factorial. The entry
for i # s+ 1 can also be written as

Bi; = 5(n+ 147 —=20)p—jp(i+m+1—=7)0+n+2+7— 2@ +m—j),

It remains to prove the following identity
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2("2") H(n)(2n — 25 — 1)l1(2s — 1)!!

det (Bi) = < =5 - D islom s+ 5)m 11 =)

n

n—2 1 min(k,n—1—k) ( )
min(k+1,n—k+1
x]!_[l(m—irk—iri) kl_[O(m—l—k) . (7

Outline of the proof of equation (7):

In Section 6 we prove that [ (m+k+3 divides det (B;;) as a poly-
nomial in m. In Section 7 we prove that [[_, (m + k)™2¢+1n=k+D) divides det (B;)
as a polynomial in m.

We show this with the help of linear combinations of rows and columns, which
vanish, if one of the linear factors is set equal to zero.

In Section 8 we compute the degree of the determinant as a polynomial in m. It
is exactly equal to the number of linear factors we have already found to divide the
determinant. So we know the determinant up to a constant factor. We compute this
constant in equation (16) by replacing each entry by its leading coefficient and using
Vandermonde’s determinant formula.

Equation (7) follows immediately from (8), (10) and (16). O

) min(k,n—1—k)

6. THE “HALF-INTEGRAL” FACTORS OF det (B;;)

In this section we prove the following (see equation (5) for the definition of B;;).

n—2 min(k,n—1—k)
H (m +k+ 5) divides det (B;;) as a polynomial in m. (8)
k=1

We find linear combinations of columns which give zero for m = — (k} + %) First,

we show that the following linear combination of columns equals zero for ¢ # s + 1,
0<I<Ek, 1>2k—n+1:

~0. 9)

— L1
m=—k—3

l
Z ( ) B nto1-2k—;
J

l
J=0

In order to establish this, we break the sum in two parts according to the two
summands of B;; in equation (6) and convert them to hypergeometric form. The
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left-hand side of (9) becomes

1
(k—20+i—1-— 5 N)n—okror(2 — 2k + 21 — 2i + 2n)op_o
XQF{_L_1+2k—2k+m—2nl}

2%k —2+i—k—1-n"’

. 1 .
+(1+2k—20+i—k— 3~ n)—1—2k4214n (2 = 2k + 20 — 20 4 2n) 952

XﬂGPJpJ+2k—%+Qw—%L4.

1+2k—204+i—k—5—n

Now, Vandermonde’s summation formula

is applicable to both o Fj—series, since [ > 0. It is directly verifiable that the two
resulting expressions sum to zero.

It is easily seen that the conditions on [ in (9) allow min(k+ 1, n— k) possible values
for I. Thus, we have min(k 4+ 1,n — k) independent linear combinations of columns
which vanish in all coordinates except possibly in the (s + 1)-th coordinate. (Recall
that (9) is valid only for i # s+ 1). It is clear that an appropriate combination of two
of these linear combinations vanishes in every coordinate. So we have min(k,n—k—1)
independent linear combinations vanishing at m = —k — % fork=1,...,n—2, which
proves (8).

7. THE “INTEGRAL” FACTORS OF det (B;;)

In this section we prove the following result (see (5) for the definition of B;;).

1 - .
(ntm =5t m) ,H) (m + k)mint+Ln=k+1) Qivides det (B;;) as a polynomial in m.
(10)
We use linear combinations of the rows of B;; that vanish for m = —k. Without loss

of generality, we can assume that s < % because both the final result (see Theorem 1)
and the number of rhombus tilings of the original graph are invariant under the
transformation s — n — s.

Most of the factors (m + k) can be taken out directly from the rows of B;;. In
fact, it is easily seen that row ¢ is divisible by (m + 1 — i + n)g;_,—1 for 20 > n + 2.
The product of these terms equals [[}—; (m + k)™®* 7% The matrix (Cj;) which
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remains after taking out these factors from B;; looks as follows:

(n4+7+1—=28)n (s +m+1—j),

1 =541,
(M+2+7—20)p;Gi+m+1—j)j24nm+n+1—7)

i#s+1,20 >n+2,
m+24+7—20)p;(i+m+1—-73);-12m+n+1—7)

1# s+ 1,2t <n+ 2.

\

To finish the proof of (10) we have to find for each value k = 0,...,n, k # s and
k # (n — s) one vanishing linear combination of the rows of Cj;.
We start with the case £ < s. We claim that

: i (S—k—=1\ (n+3—9ika(n—i+1)ir
> (= : T : Cz‘j)
i—k—1 (S +3— z)i_k_l(n —k—1+ 1)i—k—1 m=—k

i=k+1

2(n+ 3 —s—1)sk(n—s+ 1)k
(3)sb1(n—k — s+ 1)k

+ (_1)s—k+2

Cairj —=0. (11)

If =k +s—j <0 then the terms (i —k+1—j);—1 and (s —k+1— j);—1 (which are

factors of Cj; and Cyy1 , respectively) are zero for all occurring indices.
m=—k

m=—k

If —k+ s —j > 0, we reverse the order of summation in the sum and write (11) in
hypergeometric form,

(n4+3—8)sh1(I—j—k+s)j
(3)s—h1(n—k—s+ 1), 124+ j+n—28)j(n—5+ 1)
sn—k+1—sj+k—s _1]
14142 -534142_y
2n+3 —s—1)k(n—s+ 1)1
(3)sb1(n—k —s+1)sp

(_1)—k+s

+ (_1)s—k+2 —0.

m=—k

Cs—i—l,j

Now we can apply the Pfaff-Saalschiitz summation formula ([9], (2.3.1.3); Appendix
(I11.2)),

a,b, —n (—a+¢)p (=b+)n
F T 1| = 12
e l4a+b—c—n (n(—a—b+c)y 12

where n is a nonnegative integer.
It is easily verified that the resulting sum of two terms equals zero.
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The case k > n — s is quite similar. We claim that

O VI | = = v = o e

: : . Cij
A i—n+k—1)(s+1 -0k —i+1)ipin1 =~ lm=r
2n+3 — s — D)gpnan(n — s+ 1) s_pin
(§)s—n+k—1 (k — S5+ 1)s—n+k—1 “lm=—k

Converting the reversed sum to hypergeometric form gives
(=) (14 +2k—n)2+7+n =280 (1+1—8) 11k nis
(5+n—=8)tiknis(1 =5 =k +5)-14
(3)-14hnts(L+ k= 8) 11k nts
jt+k—s31—k+n—s
j n 3 ] n )
1+%+§—S,§+%+§—S
Again, the Pfaff-Saalschiitz summation formula (12) is applicable because —(1 —k +
n — s) is a nonnegative integer. It is easily checked that the resulting terms sum to 0.

So our remaining task is the case s <k < n —s. For s < k < 7 we consider the
following linear combination,

X

X 3k

Z (_4)n—i (S — 1+ 1)i—k—1(3 -n+ §)n—k—1 (2

— k)nt1-2:C;
(271—22'—1-1)!(8—1-%—i)i_k_1(n+1—3)—k 12

m=—k

i=k+1
| =5 1
2 A s—i+Dipa(s—n+1),_p
ety 2n—=2i+D!(s+ 35 —1)ik—1(n+1—=5)p “lIm=t
- CS-FLj _ == 0 (14)
Now, both the term (i — k),+1-2:Ci; which is part of the first sum in (14) and

the term Cij) . which is part of the second sum in (14) are equal to (n +2+ j —

—
2i)p—j(i —k+1—j)j—2i4n(—2k +n+1—j), so we can combine the two sums into
one sum of a hypergeometric term.

We distinguish two cases according to the parity of n — j. In both cases we reverse

the sum and convert it to hypergeometric form. The resulting two hypergeometric
series are

1—|—l—|—m,—l—m,%—|—l—n—|—s. .

3F2{ S14l—n+s ,1] for n — 5 =2I,
l+l+m,—1—l—m,i4+l—n+s .

3F2{ %,l—i—l—n—i—s ,1] forn—j5 =20+ 1.
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So we can use the Pfaff-Saalschiitz summation formula (12) again. It is easily verified

that in both cases the resulting terms add to zero.
The case § < k < n — s is handled similarly. We claim that the following sum

equals zero,

Z (—ayri (s =i+ 1)icnib-1(s —n4+ )10l — k)ny1-2
(2n =20+ DI(s+ 2 — )ik (N + 1 — 8) i

ij
m=—k

i=n—k+1
Ln+21+1J . 1
+ ), (= (s =i+ Dicnpr (s =1+ 5)i e
ey (2n —2i+ (s + 2 —)ipprr1(n+1—8)npn  lm=r
=12

= (=1)"Copr,

=0, (15)

Again, we write the two sums as one single sum, distinguish two cases according to
the parity of n— 7, and reverse the order of summation. Conversion to hypergeometric
form of the resulting sums gives

l4+l—k,—l4+ki+l—n+s .
3F2{ %,l—l—l—n—i—s ,1] forn — 5 =21,
1+l—k—-1-1l+ki+l—n+s o
3F2{ %,1+l—n+s ,1] forn—j5=20+1.
The Pfaff-Saalschiitz summation formula (12) can be applied in both cases. It is
easily seen that the results vanish after subtraction of (—1)"Ciyyq ; . Thus (10)
=k
is proved.

8. THE DEGREE AND THE LEADING COEFFICIENT

We have to find the degree and the leading coefficient of the determinant det (B;;)
as a polynomial in m. The degree of B;; is j — 1 for ¢ = s + 1 and j else. Therefore,
the degree of det (B;;) is at most (”;1) — 1, which is easily seen to be the number of
linear factors we have found to divide det (B;;). Therefore det (B;;) is the product of
the linear factors and the leading coefficient.

To compute the leading coefficient we look at the leading coefficient of each entry.
The leading coefficients of the entries give the matrix D, with

B ‘ (292 i#s+1
D;; = (x; + n+ j)n—;, where x; = {1—23 ilsal

This matrix can be transformed by column reduction to (x?_j ), but this is just the

Vandermonde determinant [],;_;., (z; — ;). Plugging in the values of the x; gives
the following result.
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2m + 1

m + 1

FIGURE 7. The hexagon in the case of odd sidelength and the two halves
R+ and R~ m=2,n=3,s=2.

The leading coefficient of det (B;;) is
2("2") H(n)(2n — 25 — 1)11(2s — 1)1

16

(n—s—1)ls! (16)

(8), (10) and (16) immediately give equation (7). Thus the proof of Lemma 6 is
complete. 0

9. PROOF OF THEOREM 2

If the side divided by the symmetry axis has odd length, the position s of the
missing triangles ranges from 1 to n (see Figure 7). We can form the inner dual

graph and denote it by G. Now we can proceed analogously to Section 3, break the
graph in two parts G+ and G with the help of the matchings factorization theorem
(see Lemma 3). We convert G+ and G~ back to regions R+ and R~ of triangles and

have to count rhombus tilings again. Rt and R~ are shown in an example in Figure 7.
Thus, we have

M(G) = 2""'"M(RT)M(R"). (17)

Now we reduce the evaluation of M (Zf%:) to the evaluation of M (R"), which we have

already done in Lemma 5. M(R*') and M (R™) are related in the following way. The
tiles of the upper half R of the hexagon with sides n, n,2m,n, n,2m (as exemplified
in Figure 1) sharing an edge with the border of length m are enforced as shown in
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FIGURE 8. M(R*(3,2)) equals M(R*(2,2)).

[/

A

[/ [/
AV SN

X

FIGURE 9. A tiling and lattice paths for R

Figure 8 (the forced tiles are shaded). After removal of these tiles we are left with
the upper half Rt of the hexagon with sidesn—1,n—1,2m+1,n—1,n—1,2m+ 1.
Thus, we have M(R*(n,m)) = M(R*(n —1,m)) and Lemma 5 implies directly the
following result:

H(n +1) H2§i§j§n+1 (2m +2j — 1)

T2 (25 —2)!
The lower half R~ can be turned into a determinant in a manner analogous to Sec-

tion 5 (see Figure 9).
The starting and end points and the resulting determinant equal

7 {(22’—1,2’+m) fori # s

M(R+) = (18)

T (2s —2,s+m—1) fori=s
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Since the original problem and the claimed final result are invariant under n+1—s —
s, we can assume § # n. (The case n = s = 1 is trivial to check.) Then

o) (o)
Yo2\m+n—j5+1 m-+n—j
_J1 for j=mn,
_{0 else,

since m is a nonnegative integer. It is easily seen that
lej(n,m,s) =Ajjin—1,m+1,s—1) fori,j<n,

where A;; is defined in equation (4). We expand detlgi’jgn(;l\;j(n, m, s)) with respect
to row n and get

det (lej(n,m, s))= det (Ajj(n—1,m+1s—1)),

1<i,j<n 1<i,j<n—1
Hence,
M(R~(n,m,s)) = M(R™(n —1,m+ 1,5 — 1)).
Thus, Lemma 6 yields

n—2

M — 2("2" ) H(n — 1)(2n — 25 — 1)11(25 — 3)!!
(B)= (n—s)l(s — D TT0E (20 + 1)!

n—3 min(k,n—2—k) n—1

1 :
X H (m +1+k+ 5) H (m+1+ k)mln(k—i—l,n—k) (19)

k=1 k=0

Now we substitute the results of equations (18) and (19) in (17). We get
M(G) = 2"""M(RT)M(R") (20)
2("2" ) H(n — 1) H(n + 1)(2n — 25 — 1)11(25 — 3)1!
(1 — )5 — DT (2) T (26 + 1)

n—2

min(k—1,n—k—1) n
1 .
X H (m +k+ 5) H (m - k)mintkn=ktl) H (2m + 25 — i),
k=2 k=1 2<i<j<n+1
which can easily be transformed to the expression in Theorem 2. O
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