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Abstract

For integers d and k satisfying 0 ≤ d ≤ k, a binary sequence is said to
satisfy a one-dimensional (d, k) run length constraint if there are never more
than k zeros in a row, and if between any two ones there are at least d zeros.
For n ≥ 1, the n-dimensional (d, k)-constrained capacity is defined as

C
(n)
d,k = lim

m1,m2,...,mn→∞
log2N

(n;d,k)
m1,m2,...,mn

m1m2 · · ·mn

where N (n;d,k)
m1,m2,...,mn denotes the number of m1 ×m2 × · · · ×mn n-dimensional

binary rectangular patterns that satisfy the one-dimensional (d, k) run length
constraint in the direction of every coordinate axis. It is proven for all n ≥ 2,
d ≥ 1, and k > d that C(n)

d,k = 0 if and only if k = d+ 1. Also, it is proven for

every d ≥ 0 and k ≥ d that limn→∞C
(n)
d,k = 0 if and only if k ≤ 2d.
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1 Introduction

A binary sequence is (d, k)-constrained (or “runlength constrained”) if there are at
most k consecutive zeros and between every two ones there are at least d consecutive
zeros. An n-dimensional pattern of zeros and ones arranged in an m1×m2×· · ·×mn

hyper-rectangle is (d, k)-constrained if it is (1-dimensional) (d, k)-constrained in each
of the n coordinate axis directions. The n-dimensional (d, k)-capacity is defined as

C(n)
d,k = lim

m1,m2,...,mn→∞

log2N
(n;d,k)
m1,m2,...,mn

m1m2 · · ·mn

,

where N (n;d,k)
m1,m2,...,mn

denotes the number of (d, k)-constrained patterns on an m1×m2×
· · · ×mn hyper-rectangle. A simple proof was given in [5] that shows the existence of
two-dimensional (d, k)-capacities, and a slight modification of the proof can show that

the n-dimensional (d, k)-capacities exist. The capacity C(n)
d,k represents the maximum

number of bits of information that can be stored asymptotically per unit volume in
n-dimensional space without violating the (d, k) constraint.

The study of 1-dimensional (d, k)-capacities was originally motivated by applica-
tions in magnetic storage. Interest in 2-dimensional (d, k)-capacities has recently in-
creased due to emerging 2-dimensional optical recording devices, and the 3-dimensional
(d, k)-capacities may play a role in future applications as well. A tutorial on these
topics is given in [4]. Capacities in four and higher dimensions yield natural general-
izations of interesting mathematical questions in lower dimensions.

In general, the exact values of the various n-dimensional (d, k)-capacities are not
known except in a few cases [6]. For example, in all dimensions, if k = d the capacity
is zero, and if d = 0 the capacity is positive for all k ≥ 1. In one dimension the
capacity is positive whenever k > d ≥ 0. The capacity is known to be a monotonically
nonincreasing function of n and d and a monotonically nondecreasing function of k.
It was recently shown [5] that whenever k > d ≥ 1, the 2-dimensional capacity is zero
if and only if k = d+ 1. These facts are summarized in our Lemma 1.

Some interesting facts are known about the capacities for d = 0 and k = 1 in three
and lower dimensions. In one dimension, N (1;0,1)

m is known [6] to be a Fibonacci se-

quence with initial conditions N (1;0,1)
1 = 2 and N (1;0,1)

2 = 3, and thus the 1-dimensional

(0, 1)-capacity is the logarithm of the golden mean, namely C
(1)
0,1 = log2

1+
√

5
2
≈ 0.694.

Very tight upper and lower bounds on the (0, 1)-capacity were given for two di-
mensions in [2] and for three dimensions in [7]. These two and three dimensional

(0, 1)-capacities are C(2)
0,1 ≈ 0.58789116 and C(3)

0,1 ≈ 0.52, given here to their known
accuracies.

In this paper we present two main results that characterize the zero capacity region
for finite dimensions and in the limit of large dimensions. The first result generalizes
the zero capacity characterization in [5] to all dimensions greater than one. Namely
it gives a necessary and sufficient condition on d and k for the capacity to equal
zero. This condition turns out to be exactly the same as in dimension 2. The second
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result gives a necessary and sufficient condition on d and k, such that the capacity
approaches zero in the limit as the dimension n grows to infinity. These results are
summarized in the following two theorems.

Theorem 1 For every n ≥ 2, d ≥ 1, and k > d,

C
(n)
d,k = 0⇔ k = d+ 1.

Theorem 2 For every d ≥ 0 and k ≥ d,

lim
n→∞

C(n)
d,k = 0⇔ k ≤ 2d.

The following lemma contains useful facts about capacities for various constraints
and is used to establish Theorems 1 and 2.

Lemma 1

(a) C
(n)
d,k+1 ≥ C(n)

d,k ; whenever n ≥ 1, 0 ≤ d ≤ k

(b) C
(n)
d,k ≥ C

(n)
d+1,k; whenever n ≥ 1, 0 ≤ d < k

(c) C(n+1)
d,k ≤ C(n)

d,k ; whenever n ≥ 1, 0 ≤ d < k

(d) C(n)
d,d = 0; whenever n ≥ 1, d ≥ 0

(e) C
(n)
d,2d+1 ≥ 1

2(d+1)
; whenever n ≥ 1, d ≥ 0

(f) C
(n)
0,k > 0; whenever n ≥ 1, k ≥ 1

(g) C
(1)
d,k > 0; whenever 0 ≤ d < k

(h) C(2)
d,k = 0 if and only if k = d + 1; whenever 1 ≤ d < k .

Proof.
(a) Follows from the fact that N (n;d,k+1)

m1,m2,...,mn
≥ N (n;d,k)

m1,m2,...,mn
since any pattern that

satisfies the (d, k) constraint also satisfies the (d, k + 1) constraint.
(b) Follows from N (n;d,k)

m1,m2,...,mn
≥ N (n;d+1,k)

m1,m2,...,mn
.

(c)

C(n+1)
d,k = lim

m1,m2,...,mn+1→∞

log2N
(n+1;d,k)
m1,m2,...,mn+1

m1m2 . . .mn+1

≤ lim
m1,m2,...,mn+1→∞

log2(N
(n;d,k)
m1,m2,...,mn

)mn+1

m1m2 . . .mn+1
= lim

m1,m2,...,mn→∞

log2N
(n;d,k)
m1,m2,...,mn

m1m2 . . .mn

= C(n)
d,k .
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(d) C
(1)
d,d = 0 since N (1;d,d)

m ≤ d+ 1. The result then follows by induction and from
the monotonicity in part (c).

(e) Let T = {1, 2, . . . ,m}, where m is a multiple of 2(d + 1). Any mapping
f : T n → {0, 1} satisfying f(x1, x2, . . . , xn) = 1 when 2(d + 1) divides

∑n
i=1 xi,

and f(x1, x2, . . . , xn) = 0 when d + 1 does not divide
∑n
i=1 xi, induces a (d, 2d +

1)-constrained pattern on T n. Since the value of f(x1, x2, . . . , xn) can be chosen
arbitrarily when

∑n
i=1 xi ≡ (d+1) mod 2(d+1), the number of (d, 2d+1)-constrained

patterns on T n is at least 2m
n/(2(d+1)) and hence N (n;d,2d+1)

m,m,...,m ≥ 2m
n/(2(d+1)). Thus

C
(n)
d,2d+1 ≥ lim

m→∞
mn/(2(d + 1))

mn
=

1

2(d + 1)
.

(f) Follows from (a) and (e).

(g) It is known [1] that C
(1)
d,∞ = C

(1)
d−1,2d−1 for d ≥ 1, and also that for 0 ≤ d < k <

∞, the 1-dimensional capacity is the logarithm (base 2) of the largest real root of the
equation Xk+1 −Xk−d −Xk−d−1 − · · · −X − 1 = 0. The equation clearly has a root
greater than 1, and thus the result follows.

(h) This was proven in [5].
2

2 Proof of Theorem 1

Proof. Lemma 1(c),(h) shows that C
(n)
d,d+1 = 0 for all d ≥ 1 and all n ≥ 2. To prove

C(n)
d,k > 0 for k ≥ d+2, it suffices by Lemma 1(a),(h) to prove C(n)

d,d+2 > 0 for all d ≥ 1
and n ≥ 3. This is shown below in Proposition 1 for even d ≥ 0, and in Proposition
2 for odd d ≥ 3. A special case of Lemma 1(e) shows the result for d = 1 and for all
n ≥ 3. This completes the proof of Theorem 1.

2

The following definitions are useful for proving Propositions 1 and 2. Let S={0,1,. . . ,
d+ 1}. The set Sn is an n-cube, and any mapping g : Sn → {0, 1} is a binary n-cube.
A row of an n-cube is any set of the form {(c1, . . . , cl−1, x, cl+1, . . . , cn) : x ∈ S} for
some fixed l, and some fixed cj ∈ S for j = 1, . . . , l− 1, l+ 1, . . . , n. A binary n-cube
g is a permutation n-cube if g equals 1 once per row of Sn.

A binary n-cube g is (d, d + 2)-constrained unless g takes the value one twice on
some consecutive d points in some row of Sn. It is clear that permutation n-cubes
are (d, d + 2)-constrained. A set of permutation n-cubes is (d, d + 2)-compatible if
the concatenation of any two of the cubes along a face (i.e. with translation but
without rotation) is also (d, d + 2)-constrained. If S1, . . . , Sn are subsets of S, each
consisting of two consecutive integers, the smaller of which is even, then S1×· · ·×Sn
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is a bi-subcube of Sn. If a permutation n-cube g equals 1 exactly once per row in
a bi-subcube, then the restriction of g to the bi-subcube is said to be a permutation
bi-subcube.

A binary n-cube h is a reversal of a permutation n-cube g if h equals 1− g on the
members of a (possibly empty) subset of all the bi-subcubes in Sn, on each of which g is
a permutation bi-subcube, and h equals g elsewhere. A reversal h of any permutation
cube g is also a permutation cube, and g and h together form a (d, d+ 2)-compatible
set. More generally, any collection of reversals of a given permutation n-cube forms
a (d, d + 2)-compatible set (see Lemma 2). In Propositions 1 and 2, we construct a
(d, d + 2)-compatible family of reversals of a certain permutation n-cube, and then
obtain a lower bound on the (d, d+ 2)-capacity from the cardinality of the family.

A mapping f̄ : Sn → S is a latin n-cube if on every row of Sn, f̄ is a permu-
tation of S. This definition is a generalization of a latin square, although alternate
definitions have been given in [3]. For any permutation n-cube g, any l < n, and
any cj ∈ S (for j = 1, . . . , l − 1, l + 1, . . . , n − 1), the relation x 7→ y determined
by g(c1, . . . , cl−1, x, cl+1, . . . , cn−1, y) = 1 is a permutation. This leads us to define a
correspondence between permutation n-cubes and latin (n− 1)-cubes as follows. Let
g : Sn → {0, 1} be a permutation n-cube and for each (x1, x2, . . . , xn−1) ∈ Sn−1, let
y(x1, . . . , xn−1) be the unique element of S such that g(x1, x2, . . . , xn−1, y(x1, . . . , xn−1)) =
1. Then the mapping ḡ : Sn−1 → S defined by ḡ(x1, x2, . . . , xn−1) = y(x1, . . . , xn−1)
is a latin (n − 1)-cube, and the correspondence g 7→ ḡ is bijective (see Lemma 2).
The bar notation will be exclusively used for latin cubes. For any integers a ≥ 0 and
b > 0, we use the notation “a mod b” to mean the unique integer a− ba

b
cb.

Lemma 2 Let ēn : Sn → S be a sequence of mappings defined recursively for n ≥ 3
by

ēn(x1, . . . , xn) = ē2(ēn−1(x1, . . . , xn−1), xn) (1)

where ē2 is a latin square. Then ēn is a latin n-cube for all n ≥ 2, and the set of all
reversals of the corresponding permutation (n+ 1)-cube en is (d, d+ 2)-compatible.

Proof. Use induction on n. Assume ē2, . . . , ēn−1 are latin cubes (for n ≥ 3)
and fix all but one of the arguments x1, . . . , xn of ēn. If x1, . . . , xn−1 are fixed then
ēn is a permutation of S since fixing the first argument of ē2 yields a permutation
of S. Likewise, if xn and all but one of x1, . . . , xn−1 are fixed, then by the induction
hypothesis ēn−1(x1, . . . , xn−1) is a permutation of S and ē2 is a permutation of S since
its second argument xn is fixed. Thus ēn is a latin n-cube.

Let h be a binary (n+ 1)-cube h : Sn+1 → {0, 1} satisfying

h(x1, . . . , xn+1) =

{
1 if xn+1 = ēn(x1, . . . , xn)
0 otherwise.
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Then h is a permutation (n + 1)-cube since ēn is a latin n-cube, and h̄ = ēn from
the definition of the bar notation. This shows that there exists a unique permutation
(n+ 1)-cube h (i.e. en) corresponding to the latin n-cube ēn.

The permutation (n + 1)-cube en has rows of length d + 2, each containing a
single one. For any collection of bi-subcubes, on each of which en is a permutation
bi-subcube, any row of Sn+1 can intersect at most one of these bi-subcubes. This
implies that any facewise concatenation of any two reversals of en will only have pairs
of ones at distances d, d + 1, or d + 2 apart, and thus any set of reversals of en is
(d, d+ 2)-compatible.

2

Proposition 1 For every n ≥ 2 and every even d ≥ 0,

C(n)
d,d+2 ≥

1

2n−1(d+ 2)
.

Proof. Define a mapping ē2 : S2 → S such that

ē2(x1, x2) =

{
(x1 + x2 − 2) mod (d+ 2) if x1 and x2 are odd

(x1 + x2) mod (d+ 2) otherwise
(2)

as in Figure 1. The mapping ē2 is a latin square since ē2 is a permutation of the set
S when either the first or second component is held fixed. For each n ≥ 3, use (1) to
recursively define the latin n-cube ēn : Sn → S.

For each n ≥ 2, let x1, . . . , xn be any set of even integers from S. We claim that
for any y1, . . . , yn ∈ {0, 1},

ēn(x1 + y1, . . . , xn + yn) =

{
(x1 + · · ·+ xn) mod (d + 2) if

∑n
i=1 yi is even

(1 + x1 + · · ·+ xn) mod (d + 2) if
∑n
i=1 yi is odd.

To prove this claim, use induction on n. It is easy to see from (2) that the claim is
true for n = 2. By (1) and the induction hypothesis,

ēn(x1 + y1, . . . , xn + yn) ={
ē2((x1 + · · ·+ xn−1) mod (d + 2), xn + yn) if

∑n−1
i=1 yi is even

ē2((1 + x1 + · · ·+ xn−1) mod (d + 2), xn + yn) if
∑n−1
i=1 yi is odd.

Equivalently, when
∑n
i=1 yi is even

ēn(x1 + y1, . . . , xn + yn) =

{
ē2((x1 + · · ·+ xn−1) mod (d+ 2), xn) if yn = 0

ē2((1 + x1 + · · ·+ xn−1) mod (d+ 2), xn + 1) if yn = 1

= (x1 + · · ·+ xn) mod (d + 2),
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and when
∑n
i=1 yi is odd

ēn(x1 + y1, . . . , xn + yn) =

{
ē2((x1 + · · ·+ xn−1) mod (d+ 2), xn + 1) if yn = 1

ē2((1 + x1 + · · ·+ xn−1) mod (d+ 2), xn) if yn = 0

= (1 + x1 + · · ·+ xn) mod (d+ 2),

thus proving the claim.
The claim just proved implies that the corresponding permutation (n + 1)-cube

en satisfies

en(x1 + y1, . . . , xn+1 + yn+1) =

{
1 if

∑n+1
i=1 yi is even

0 if
∑n+1
i=1 yi is odd

for any even integers x1, . . . , xn+1 ∈ S such that xn+1 =
∑n
i=1 xi mod (d + 2), and

for any y1, . . . , yn+1 ∈ {0, 1}. Thus the restriction of en to each bi-subcube {(x1 +
y1, . . . , xn+1 + yn+1) : y1, . . . , yn+1 ∈ {0, 1}} is a permutation bi-subcube. Then the

cardinality of the set of all reversals of en is 2( d+2
2

)n , and Lemma 2 gives the lower
bound

C(n)
d,d+2 ≥

log2 2(
d+2

2 )
n−1

(d+ 2)n
=

1

2n−1(d+ 2)
.

2

Proposition 2 For every n ≥ 2 and every odd d ≥ 3,

C(n)
d,d+2 ≥

1

(d+ 2)n

(
n− 1 + d−3

2

n− 1

)
.

Proof.
Define a mapping ē2 : S2 → S such that

ē2(x1, x2) =

{
x1 + x2 − 2 if x1 and x2 are odd

x1 + x2 otherwise
(3)

for 2bx1

2
c + 2bx2

2
c ≤ d − 3. The values of ē2 for 2bx1

2
c + 2bx2

2
c > d − 3 (i.e. below

the bold 2-step staircase line in Figures 2 and 3) are defined as follows. The points
on the diagonal line above the main diagonal have value d, as does the bottom right
corner of the square. Thus, d appears once in each row and in each column in the
square. The portion of the next higher diagonal that lies below the 2-step staircase
line has value d− 1. The area below and including the main diagonal of the square,
except the bottom row and the rightmost column, is partitioned into diagonal strips
of width 4. Each diagonal strip is formed by repeating the staircase pattern shape of

.



the electronic journal of combinatorics 6 (1999), #R33 9

The bottom row is formed by repeating the pattern

and the rightmost column is formed by repeating the pattern

.

(For the case d ≡ 1 mod 4 the bottom-rightmost diagonal strip is truncated at width
3, and the above patterns are cut off accordingly, as illustrated in Figure 2.) Within
any given diagonal strip, all labels containing a particular symbol represent the same
integer. In particular, in the jth diagonal, (for j = 1, 2, . . . , bd

4
c + 1), the square

labels + , f, v, , and – represent 4j − 2, 4j − 3, 4j − 4, 4j − 5, and 4j − 6

respectively (for j = 1, – and represent d− 1 and d + 1, respectively). For any
i ∈ {0, 1, . . . , d − 2} it can be seen that the value i appears once in every row and
column of the top left 2b i

2
c + 2 rows and columns, and the value i appears once in

every row and column of the bottom right d − 2b i
2
c rows and columns. Also, the

main diagonal of S2 contains only the value d+1, and the value d− 1 appears in the
rightmost column at (x1, x2) = (1, d+2), in the bottom row at (x1, x2) = (d+2, 1), and
in alternating positions on the diagonals that lie two above and two below the main
diagonal of S2. The value d−1 appears in the rightmost column at (x1, x2) = (1, d+2)
and in the bottom row at (x1, x2) = (d + 2, 1), and these points do not lie on the
diagonals two below nor two above the main diagonal. Consequently, every number
0, 1, . . . , d + 1 appears exactly once in each row and in each column in the original
(d+ 2) × (d+ 2) square S2, showing that ē2 is a latin square.

Using (1) and the definition of ē2 just given, recursively define for each integer
n ≥ 3, the latin n-cube ēn : Sn → S. For any n ≥ 2, if x1, . . . , xn are even integers
from S such that

∑n
i=1 xi ≤ d− 3, then for any y1, . . . , yn ∈ {0, 1},

ēn(x1 + y1, . . . , xn + yn) =

{
x1 + · · ·+ xn if

∑n
i=1 yi is even

1 + x1 + · · ·+ xn if
∑n
i=1 yi is odd

from the same proof as in Proposition 1, but with the added constraint
∑n
i=1 xi ≤ d−3.

As in Proposition 1, the set of reversals of the permutation (n + 1)-cube en is

(d, d + 2)-compatible. There are
(
n+d−3

2
n

)
permutation bi-subcubes in this case and

the volume of the (n + 1)-cube Sn+1 (i.e. the domain of en) is (d + 2)n+1. Hence

C
(n)
d,d+2 ≥

1

(d+ 2)n

(
n− 1 + d−3

2

n− 1

)
.

2
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3 Proof of Theorem 2

Proof. Lemma 1(e) gives limn→∞ C
(n)
d,2d+1 > 0 for every d ≥ 0, and thus limn→∞ C

(n)
d,k >

0 for every k ≥ 2d + 1 by Lemma 1(a). Lemma 3 below implies that C(n)
d,k ≤(

k−d
k−d+1

)n−1
C(1)
d,k whenever d < k ≤ 2d, and hence limn→∞ C

(n)
d,k = 0. This together

with Lemma 1(d) completes the proof of Theorem 2.
2

Lemma 3 If n ≥ 2 and 1 ≤ d < k ≤ 2d then

C
(n)
d,k ≤

k − d
k − d+ 1

C
(n−1)
d,k .

Proof. Let l and m be positive integers and let V = {1, 2, . . . ,m}. Define the
following n-dimensional hyper-rectangles (for j = 1, 2, . . . , l):

T = {(x1, . . . , xn−1, xn) : x1, . . . , xn−1 ∈ V, −d ≤ xn < (k − d + 1)l}
U0 = {(x1, . . . , xn−1, xn) : x1, . . . , xn−1 ∈ V, −d ≤ xn < 0}
Uj = {(x1, . . . , xn−1, xn) : x1, . . . , xn−1 ∈ V, (k − d+ 1)(j − 1) < xn < (k − d+ 1)j}

and let U =
⋃l
j=0 Uj . Note that there is a gap of width one between consecutive

sets Uj and Uj+1 (To help visualize the proof, the case of n = 3 is illustrated in
Figure 4). A binary mapping on U is said to be (d, k)-constrained if it induces a
(d, k)-constrained pattern on each Uj. Let NT and NUj be the numbers of distinct
(d, k)-constrained mappings on T and Uj (for j = 0, 1, . . . , l), respectively. We show
that NT ≤

∏l
j=0NUj .

To this end, it suffices to exhibit an injection from the set of all (d, k)-constrained
mappings on T to those on U . Thus we demonstrate that every (d, k)-constrained
mapping on T is completely determined by its restriction to U .

Assume the contrary. Then there exist two (d, k)-constrained mappings f0 : T →
{0, 1} and f1 : T → {0, 1} that agree on U but differ on T . Let (c1, . . . , cn−1, cn) ∈ T
be such that f0(c1, . . . , cn−1, cn) 6= f1(c1, . . . , cn−1, cn).

Since f0 and f1 agree on U , cn must be a multiple of k−d+1. Let J be the smallest
nonnegative integer j such that f0(c1, . . . , cn−1, (k − d + 1)j) 6= f1(c1, . . . , cn−1, (k −
d + 1)j). Without loss of generality assume f0(c1, . . . , cn−1, (k − d + 1)J) = 0 and
f1(c1, . . . , cn−1, (k−d+1)J) = 1. Note that (k−d+1)(J+1)−1 ≤ (k−d+1)J+d since
k ≤ 2d. Also, since f1(c1, . . . , cn−1, (k−d+1)J) = 1, f1 must equal zero for at least d
consecutive positions next to this point. Thus f1(c1, . . . , cn−1, x) = 0 for all x in the
range (k−d+1)J −d ≤ x < (k−d+1)(J +1), excluding x = (k−d+1)J . Therefore
f0(c1, . . . , cn−1, x) = 0 for this same set of x’s, since either (c1, . . . , cn−1, x) is in U or
else because of the choice of J . But by assumption f0(c1, . . . , cn−1, (k− d+ 1)J) = 0,
so a string of k + 1 zeros in a row occurs for f0 (from x = (k − d + 1)J − d to
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x = (k− d+1)(J+1)− 1) contradicting the (d, k) constraint. This proves that every
(d, k)-constrained mapping on T is uniquely determined by its restriction to U . This
establishes that NT ≤

∏l
j=0NUj .

Now, let M denote the number of distinct (d, k)-constrained mappings on an
(n−1)-dimensional hypercube of side length m. Clearly,

∏l
j=0 NUj ≤M (k−d)l+d, since

NU0 ≤Md and NUj ≤Mk−d for j = 1, 2, . . . , l. Thus,

C(n)
d,k = lim

l,m→∞

log2NT(
(k − d + 1)l + d

)
mn−1

≤ lim
l,m→∞

log2

∏l
j=0 NUj(

(k − d + 1)l + d
)
mn−1

≤ lim
l,m→∞

log2M
(k−d)l+d(

(k − d + 1)l + d
)
mn−1

= lim
l→∞

(k − d)l + d

(k − d+ 1)l + d
· lim
m→∞

log2M

mn−1
=

k − d
k − d + 1

C
(n−1)
d,k .

2

4 Comments

For d = 1, Lemma 1(e) implies that C(n)
1,3 ≥ 1/4 for n ≥ 3. A more complicated proof

can show that C(n)
1,3 ≥ C(n)

0,1 /2 for all n ≥ 2 (note that C(n)
0,1 ≥ 1/2 by Lemma 1(e)).

For odd d ≥ 3 Proposition 2 gives C
(2)
d,d+2 ≥ d−1

2(d+2)2 whereas a slightly better lower

bound C
(2)
d,d+2 ≥ d+1

2(d+2)2 was given in [5, Theorem 2]. Propositions 1 and 2 establish

that C
(n)
d,d+2 > 0. Alternatively it is possible to prove C

(n)
d,d+2 > 0 in a simpler manner,

but with weaker lower bounds on C(n)
d,d+2 than those given in these propositions.
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Figure 1: Latin square ē2 for d = 16 (even d).
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Figure 3: Latin square ē2 for d = 19 (d ≡ 3 mod 4).
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Figure 4: Illustration of the sets T and Uj for three dimensions in the proof of Lemma
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