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Abstract

We prove that the threshold for a random graph to have a k-core is equal to
the threshold for having a subgraph which meets a necessary condition of Gallai
for being k-critical.
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1 Introduction

In this paper, we examine the random graph Gn,M formed by taking n vertices and

choosing M edges where each of the
(
(n2)
M

)
possible edgesets is equally likely to be chosen.

In particular, we will be concerned with the chromatic number of such a graph when
M = O(n).

Equivalently, we often discuss the random graph process in which we start with the
graph with n vertices and no edges, and repeatedly add an edge chosen uniformly at
random from amongst all edges not currently present. Note that Gn,M is equivalent to
the state of the random graph process after exactly M iterations.

One of the most tantalizing open problems in random graph theory (see for example
[11]) is that of determining

dk = sup{d| a.s.1χ(Gn,M=dn) ≤ k},

where χ(G) is the chromatic number of G. As is the trend in the study of k-chromatic
graphs, the case k = 2 is well-understood - d2 = 0 - while the case k ≥ 3 seems much

1We say that Gn,p almost surely (a.s.) has a property P if limn→∞{Pr(Gn,p has P} = 1.
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more difficult. In fact, it was only recently shown that for k ≥ 3 the threshold for
k-colourability is sharp (see [1] and [14]).

If G is not k-colourable, then it must have a (k+1)-critical subgraph, i.e. a subgraph
H ⊆ G such that χ(H) = k + 1, but χ(H − e) = k for any edge e ∈ E(G). The most
well known necessary conditions for a graph to be (k + 1)-critical are (see [9]):

(a) it must have minimum degree at most k;

(b) it must be 2-connected.

Often a property P will a.s. occur for the first time during the random graph process
at the exact step in which a weaker property P

′
first occurs. For example, a.s. the first

graph to have a perfect matching will be the first graph to have minimum degree one
[13], and a.s. the first graph to be Hamiltonian will be the first graph to have minimum
degree two [17] (see also [8]). Given the nature of these two examples, it is natural to
wonder if a.s. the first graph to be (k + 1)-chromatic will be the first graph to have a
subgraph with minimum degree k.

Bollobás was the first to consider this approach to the problem of determining dk. He
defined the k-core of a graph to be its unique maximal subgraph with minimum degree
at least k, if such a subgraph exists. Until recently, all lower bounds on dk have been
achieved by bounding the relaxation:

ck = sup{c| a.s. Gn,M=cn has no k-core}.

Bollobás [6] proved that a.s. the first k-core to appear is k-connected, thus showing
that there would be little benefit to incorporating condition (b) in our search for dk. It
was here that he first asked the much repeated question of whether ck = dk for all k ≥ 3.

In [10], Chvátal showed that for c < c∗ = 1.442 . . ., the expected number of subgraphs
of Gn,M=cn with minimum degree 3 is subexponentially small, while for c > c∗, the
expected number of such subgraphs is exponentially large. An immediate corollary is
that c3 ≥ c∗.

In [19], Molloy and Reed showed that 1.67 ≤ c3 ≤ 1.78, and that d3 ≤ 2.571. Shortly
thereafter, Pittel, Spencer and Wormald [22] successfully determined

ck = min
y>0

y/2πk(y)

=
1

2
k +

1

2

√
k log k + O(log k),

with πk(y) = Pr{Poisson(y) ≥ k − 1}. For example, c3 = 1.67 . . .. Furthermore, the
appearance of a k-core has a very sharp threshold.

Molloy [20] observed that this result can be used to show dk > ck for k ≥ 4. More
recently, Achlioptas and Molloy[2] showed that d3 > 1.94... > c3, and so there is a
significant gap between these two thresholds. Among other things, this indicates that
the quest to determine dk may require consideration of other properties of critical graphs.
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This paper marks the first time that a nontrivial criticality condition is incorporated in
the study of the chromatic number of a random graph.

Given a graphH with minimum degree at least k, we define the low graph of H, L(H),
to be the subgraph induced by the vertices of degree k. In [16] Gallai characterized the
set of graphs which are the low graphs of (k + 1)-critical graphs:

Theorem L is the low graph of some (k + 1)-critical graph H, k ≥ 2, iff

(a) L has maximum degree at most k;

(b) each block of L is either a clique or a chordless odd cycle.

We say that a graph is k-Gallai if it has minimum degree k and it contains no even
cycles whose vertices are all of degree k and do not induce a clique. Thus a graph with
minimum degree k is k-Gallai iff its low graph satisfies the conditions of this theorem,
and so it implies that any (k + 1)-critical graph must be k-Gallai.

A natural question to ask, particularly in light of the now known gap between ck and
dk, is whether ck is also the threshold for the appearance of a k-Gallai subgraph. In this
paper we answer this question in the affirmative:

Theorem 1.1 For k ≥ 3 and any ε > 0, a.s. Gn,M=(ck+ε)n has a k-Gallai subgraph.

One implication of this theorem is that in order to compute dk, we may need to study
even further properties of k-critical graphs.

We define the edge-density of a graph to be the ratio of the number of edges to the
number of vertices in the graph. Let Ωk

n,M be the set of all simple graphs with n vertices
and M edges and with minimum degree k, and define Gk

n,M to be a uniformly random
member of Ωk

n,M . It is well-known (see, for example, [19] or [22]) that every member of

Ωk
n,M is equally likely to occur as the k-core of the random graph Gn

′
,M
′ , for any n

′
,M

′
,

and so upon exposing the number of vertices and edges of the k-core of Gn,M ′, we can
then choose the k-core from the Gk

n,M model.
Define tk to be the solution to

tk−1
k

(k − 2)!
= etk −

k−2∑
i=0

tik
i!

(1)

and set

`k =

∑
i≥k

itik
i!

2
∑
i≥k

ti
k

i!

.

For example, `3 = 1.7932..., `4 = 2.5377..., `5 = 3.2541....
The main step towards proving Theorem 1.1 is the following:
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Theorem 1.2

(a) For ` < `k, Gk

n,M=d`ne is k-Gallai with probability at least 1−zn for some constant

z < 1.

(b) For ` > `k, the probability that Gk

n,M=d`ne is k-Gallai tends to a constant 0 <

pk(`) < 1.

It is straightforward, using the results of [22] to determine the edge-density of the
k-core when it first appears. Perhaps surprisingly, it is asymptotic to precisely `k:

Fact 1.3 For k ≥ 3, a.s. the first k-core to appear during the random graph process has
edge-density `k + o(1).

Theorem 1.1 will follow from Fact 1.3 and Theorem 1.2(b), along with a little more
work. We will present this proof in the final section of the paper.

The crux of the proof of Theorem 1.2 lies in showing that `k is a threshold for Gk
n,M

in the sense of the celebrated Double Jump Threshold discovered by Erdős and Rényi.
In [12] they show that the component structure of Gn,M=cn undergoes a dramatic change
at the point c = 1

2
. For c < 1

2
a.s. all components of Gn,M=cn are quite small, very few

of them are cyclic, and none have more than one cycle. For c > 1
2
, a.s. Gn,M=cn has a

giant component on Θ(n) vertices and containing at least Θ(n) cycles.
In [21], Molloy and Reed showed that a similar phenomenon occurs for random

graphs with a given degree sequence. This work was originally developed specifically to
be applied to the results in this paper, and plays an important role here. Thus, before
proceeding further, it is necessary to summarize the main theorem.

Definition 1.4 An asymptotic degree sequence is a sequence of integer-valued func-
tions D = d0(n), d1(n), . . . such that

1. di(n) = 0 for i ≥ n;

2.
∑
i≥0 di(n) = n.

Given an asymptotic degree sequence D, we set Dn to be the degree sequence
{c1, c2, . . . , cn}, where cj ≥ cj+1 and |{j : cj = i}| = di(n) for each i ≥ 0. We say
that Dn is an incident of D. We define ΩDn to be the set of all graphs with vertex set
[n] with degree sequence Dn. A random graph on n vertices with degree sequence D is
a uniformly random member of ΩDn .

Definition 1.5 An asymptotic degree sequence D is feasible if ΩDn 6= ∅ for all n ≥ 1.

Definition 1.6 An asymptotic degree sequence D is smooth if there exist constants λi
such that limn→∞ di(n)/n = λi.
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Definition 1.7 Given a smooth asymptotic degree sequence, D, Q(D) =
∑
i≥1 i(i−2)λi.

Definition 1.8 An asymptotic degree sequence D is sparse if
∑
i≥0 idi(n)/n = K+o(1)

for some constant K.

We omit the definition of well-behaved, but suffice it to say that if for all n, di(n) = 0
whenever i > ∆ for some fixed ∆ then D is well-behaved. This will be the case for any
degree sequence considered in this paper (although the definition of well-behaved allows
for more general situations and so the statement of this theorem is more general than is
needed for this paper).

Theorem 1.9 Let D = d0(n), d1(n), . . . be a well-behaved sparse asymptotic degree se-

quence for which there exists ε > 0 such that for all n and i > n
1
4
−ε, di(n) = 0. Let G be

a graph with n vertices, di(n) of which have degree i, chosen uniformly at random from
amongst all such graphs. Then:

(a) If Q(D) > 0 then there exist constants ζ1, ζ2 > 0 dependent on D such that G a.s.
has a component with at least ζ1n vertices and ζ2n cycles. Furthermore, if Q(D) is
finite then G a.s. has exactly one component of size greater than γ logn for some
constant γ dependent on D.

(b) If Q(D) < 0 and for some function 0 ≤ ω(n) ≤ n
1
8
−ε, di(n) = 0 for all i ≥ ω(n),

then for some constant R dependent on Q(D), G a.s. has no component with at
least Rω(n)2 log n vertices, and a.s. has fewer than 2Rω(n)2 logn cycles. Also,
a.s. no component of G has more than one cycle.

Consistent with the model Gn,M , we call the component refered to in Theorem 1.9(a)
the giant component.

As the reader has no doubt guessed, it is a simple matter to use Theorem 1.9 to
show that for ` < `k, a.s. L(Gk

n,M=d`ne) has a giant component, while for ` > `k,

a.s. all components of L(Gk

n,M=d`ne) are small. In the next section we do this and

show that if L(Gk

n,M=d`ne) has a giant component then with subexponentially high

probability L(Gk

n,M=d`ne) has an even cycle whose vertices do not induce a clique, and

if all components of L(Gk

n,M=d`ne) are small then the probability that no such cycle

exists tends to pk(`), thus proving Theorem 1.2. The reader who is willing to accept
these facts on faith may wish to skip Section 2. The reader whose faith is shaken because
it seems counterintuitive that L(Gk

n,M=d`ne) a.s. has a giant component when ` is below

the threshold should note that when ` is small more vertices of Gk

n,M=d`ne will have

degree k, and so the low graph will tend to have higher edge-density.
In the final section, we prove Fact 1.3 and complete the proof of Theorem 1.1.
Throughout this paper, all asymptotics are taken as n → ∞ and we only claim

statements to hold for sufficiently large n. By A ∼ B, we mean that limn→∞A/B = 1.
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2 A Gallai Threshold

In this section we will prove Theorem 1.2. As is common in the study of random graphs
with restricted degree sequences, we will work with the configuration model, introduced
in this form by Bollobás[5] and motivated in part by the work of Bender and Canfield[4].
This model arose in a somewhat different form in the work of Bekessy, Bekessy and
Komlos[3] and Wormald[23, 24]. Given the degree sequence of a graph, we construct
a random configuration with the same degree sequence by taking deg(v) copies of each
vertex v, and then choosing a uniformly random pairing of the vertex-copies. Note
that every configuration has an underlying multigraph with the desired degree sequence.
Note further that every simple graph with that degree sequence occurs as the underlying
multigraph with the same probability. As we shall see in the proof of Theorem 1.2(b), if
the degree sequence has bounded maximum degree then the underlying multigraph of a
random configuration is simple with probability asymptotic to e−µ1−µ2 where µ1, µ2 are
constants dependent on the degree sequence. An immediate and very useful consequence
is the following:

Lemma 2.1 If a random configuration, F , on a particular degree sequence with constant
maximum degree a.s. has a property P , then a random (simple) graph, G, on the same
degree sequence a.s. has P . Moreover, the probability that G does not have P is at most
a constant multiple of the probability that F does not have P .

We will use this lemma to allow us to work with the configuration model a number
of times in this section.

Note that choosing a random configuration amounts to nothing more than selecting
a uniformly random pairing of its vertices, and that we are free to choose this pairing
any way we like so long as the distribution remains uniform. It is frequently useful to
repeatedly take any unpaired vertex-copy we please and pair it with another randomly
selected unexposed vertex-copy. In the proof of Theorem 1.9 in [21], we did this, each
time being precise about the vertex-copy that we chose to pair. Essentially, we would
expose the components of the underlying multigraph one at a time. If any vertices
already known to be in the component had some unpaired copies, then we would choose
one such copy (arbitrarily) to be the next one paired. At each step, we refer to such
vertices as partially exposed, and we refer to the subgraph induced by the exposed edges
of the component currently being exposed as a partial component. If there were no
partially exposed vertices, then we would arbitrarily choose a vertex-copy, effectively
starting a new component. We mention this here, because during the proof of Theorem
1(a) we will refer to a lemma from [21] regarding the evolution of the configuration
during this exposure.

Now we begin our proof of Theorem 1.2. The first step is to show that λk is the
threshold for L(Gk

n,M=λn) to a.s. have a giant component.
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Lemma 2.2 For ` < `k, a.s. L(Gk

n,M=d`ne) has a giant component on θ(n) vertices,

while for ` > `k, a.s. all components of L(Gk

n,M=d`ne) have size at most O(logn).

Proof First we expose the degree sequence of Gk

n,M=d`ne, letting di denote the

number of vertices of degree i for each i ≥ k. Using the results of [18] one can show
(see [15] or [22]) that a.s. this degree sequence has an asymptotic truncated Poisson

distribution with sharp concentration. More precisely, with νi = ti

i!
e−t where t is chosen

so that ∑
i≥k iνi∑
i≥k νi

= 2`,

a.s. di = (νi/
∑
i≥kνi)n + o(n), for each i ≥ k. Furthermore, for any ε1 > 0 there exists

ζ1 < 1 such that with probability at least 1− ζn1 , |dk − µkn| < ε1n.
Consider a random configuration, F , on this degree sequence. First we expose the

degree sequence of L(F ), the low graph of the underlying multigraph of F . Each vertex-
copy is paired to a copy of a vertex of degree k with probability kdk/2`n = α. Therefore
a.s. a vertex of degree k in F has degree i in L(F ) with probability approximately

βi =
(
k
i

)
αi(1− α)k−i. In fact it is straightforward to show that for each 0 ≤ i ≤ k, the

number of vertices of degree i in L(F ), bi, is sharply concentrated around βin in the
sense that di is sharply concentrated, i.e. for any ε2 > 0 there exists ζ2 < 1 such that
with probability at least 1− ζn2 , |bi − βin| < ε2n. Therefore, if Dn is the degree sequence
of L(F ), then a.s. Dn is an incident of an asymptotic degree sequence D with

Q(D) =
k∑
i=1

i(i− 2)

(
k

i

)
αi(1− α)k−i

= kα((k − 1)α− 1)

Solving α = 1/(k−1) for ` yields ` = `k, showing that for ` < `k (` > `k), there exist
ε = ε(`) > 0, ζ3 = ζ3(`) < 1 such that Q(D) > ε (Q(D) < −ε) with probability at least
1− ζn3 , and apply Theorem 1.9.

And now we prove that the threshold for L(Gk

n,M=d`ne) to a.s. have a giant compo-

nent is the threshold for Gk

n,M=d`ne to a.s. not be Gallai, as described in the statement

of Theorem 1.2.
Proof of Theorem 1.2(a): First we consider the case ` < `k. We will first expose

the degree sequence D = Dn of L(Gk

n,M=d`ne). As shown in the preceding proof, there

is some ε > 0, ζ3 < 1 such that Dn is an incident of an asymptotic degree sequence
D, where Q(D) > ε, with probability at least 1 − ζn3 . Let E1 be the event that this
happens. Note that, conditioning on E1, L(Gk

n,M=d`ne) a.s. has a giant component and

so, intuitively, it is not surprising that it is a.s. not k-Gallai.
Given the degree sequence of L(Gk

n,M=d`ne), we expose a random configuration, F , on

that degree sequence, in the manner used in [21] as described above. It is straightforward
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to check that every simple graph with degree sequence D is equally likely to occur as
L(Gk

n,M=d`ne), and so we are justified in using the configuration model here. After i

pairs have been exposed, we let Xi denote the number of unexposed copies of partially
exposed vertices. If E1 holds, then by Lemma 9 of [21] there exists I, γ > 0, ζ4 < 1 such
that with probability at least 1− ζn4 , XI ≥ γn. Let E2 be the event that this happens.

If E2 holds, consider any spanning tree T of the partial component currently being
exposed. Because the maximum degree in T is at most k, it is easy to show that T has a
vertex v such that, considering T to be rooted at v, v has a child v1 such that the subtree
rooted at v1 has at least γn

2k
but not more than 2γn

k
open vertex-copies. Furthermore, we

can repeatedly choose a child vi+1 of vi such that the subtree rooted at vi+1 has at least
γn
2ki

open vertex-copies. Setting u = vk+1, and letting P be the unique uv-path in T , we
have that P has length k+ 1, and upon deleting the edges of P from T , the components
containing u and v, Tu, Tv, each have at least (γ/2kk+1)n open vertex-copies. Similarly,
Tu contains a path Pu of length k + 1 such that the components of Tu − Pu containing
the endpoints of Pu, T

1
u , T

2
u each have at least (γ/4k2k+2)n open vertex-copies.

Therefore, there exists ζ5 < 1 such that at least one pair of the configuration will
contain a point from each of T 1

u , Tv, and at least one pair will contain a point from each
of T 2

u , Tv, with probability at least 1− ζn5 . The two cycles induced in T by these edges
intersect in P , and so their union must contain an even cycle of length at least k + 2.
Since F has maximum degree k, it contains no (k + 2)−clique, and so it cannot be
k-Gallai.

Therefore, applying Lemma 2.1 the probability that L(Gk

n,M=d`ne) is k-Gallai is at

most

Pr{L(Gk

n,M=d`ne) is k-Gallai | E1 ∧E2}+ Pr{Ē2 | E1}+ Pr{Ē1} < ζn,

for some ζ > 0.
To prove Theorem 1.2(b), we will essentially show that the number of even cycles

in L(Gk

n,M=d`ne) is asymptotically equivalent to a Poisson variable with mean µ. The

result then follows by setting pk(`) = e−µ.
Proof of Theorem 1.2(b): First we expose the degree sequence of L(Gk

n,M=d`ne),

and then we choose L(Gk

n,M=d`ne) by taking a random graph on that degree sequence.

Again, we work with the configuration model, taking a random configuration F on the
same degree sequence.

As in Lemma 2.2, a.s. the number of vertices of degree i is λin + o(n) for some
λ0, . . . , λk > 0 such that

∑k
i=1 i(i− 2)λi < ε = ε(`), and we let E3 be the event that this

holds.
For constant r ≥ 1, let Cr denote the number of cycles of length r in F . We will show

that C1, C2, . . . are asymptotic to independent Poisson variables with means µ1, µ2, . . ..
The first step is to compute µr. Define K =

∑
i≥1 iλi.
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µr ≈
r!

(Kn)r
∑

a2+...+ak=r

k∏
i=2

(
λin

ai

)
(i(i− 1))ai

≈
r!

Kr

∑
a2+...+ak=r

k∏
i=2

(i(i− 1)λi)
ai

ai!

=
r!

Kr
[xr]

k∏
i=2

ei(i−1)λi

=

(∑k
i=2 i(i− 1)λi

K

)r
.

Note that if E3 holds, then µr tends to zero as r grows, since
∑
i≥1 i(i − 2)λi < 0

implies that ρ =
∑k
i=2 i(i− 1)λi < K. Note further that for any r = r(n), the expected

number of cycles of length r in F is at most ρr.
The next step is to compute the second moment of Cr. To do this we will compute

∆r1,r2, the sum over all pairs of intersecting cycles in Kn of length r1, r2 of the probability
that they both appear in L(Gk

n,M=d`ne).

To compute ∆, we sum first over all cycles, H1, of length r1, and then over all
intersecting cycles H2 of length r2. Noting that H2 − E(H1) is a collection of a paths
for some a ≥ 1, we sum over the number of choices for these paths, setting l1, . . . , la to
be their lengths.

∆r1,r2 ≤
∑

a2+...+ak=r2

k∏
i=2

(
λin

ai

)
(i(i− 1))ai

×
r2∑
a=1

∑
l1,...,la≥1

l1+...+lk<r2

a∏
j=1

∑
b2+b3+...=lj−1

(
r1

2

)
k2(k − 1)2 (lj − 1)!

(Kn)lj

×
k∏
i=2

(
λin

bi

)
(i(i− 1))bi

≤ ρr
r2∑
a=1

(
r1

2

)
k2(k − 1)2n−1

(
r2−1∑
l=1

ρl
)a

= O(n−1)

Therefore, Exp(C2
r ) is asymptotic to the expected number of pairs of non-intersecting

cycles of length r in F which is easily calculated to be µ2
r

2
+ o(1). Similarly, for r1 6= r2,

Exp(Cr1Cr2) ≈ µr1µr2.
Similar calculations show that the expected number of t-tuples of non-edge-disjoint

cycles of lengths r1, . . . , rt is o(1) for any t ≥ 2, and so for any x1, . . . , xs,
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Exp(Cx1
r1
, . . . , Cxs

rs
) ≈

∏s
i=1

µ
xi
ri

xi!
, and so C0, C1, . . . are asymptotically independent Poisson

variables as claimed.
Note that for any δ > 0, there exists R = R(δ) such that the expected number of

cycles of length at least R is less than δ and so, by Markov’s Inequality, the probability
that F contains a cycle of length at least R is less than δ. Therefore, the probability
that F contains no even cycle of length at least 4 is asymptotic to

pk(`) = e−
∑

r≥2
ρ2r

.

Furthermore, this event is asymptotically independent of the event that F contains no
cycles of length 1 or 2, and so the probability that a random graph on the same degree
sequence has no even cycle is asymptotic to pk(`).

Define E4 to be the event that Gk

n,M=d`ne has no 4-clique. It is straightforward to

compute that Pr(E4) > 1− n−1. Therefore, again applying Lemma 2.1,

|Pr{Gk

n,M=d`ne is k-Gallai} − pk(`)| ≤ Pr(Ē3) + Pr(Ē4)

= o(1).

3 The first k-core to appear

Here, we see that a.s. the first k-core to appear has edge density precisely `k.
Proof of Fact 1.3: It is implicit in [22] that a.s. the edge-density of the first k-core

to appear is: ∑
i≥k

iτ ik
i!

2
∑
i≥k

τ i
k

i!

+ o(1),

where τk minimizes
τ

1− e−τ
∑k−2
i=0

τ i

i!

.

Thus, it is our goal to show that τk = tk. To solve for τk, we set f(τ) = (1 −
e−τ

∑k−2
i=0

τ i

i!
)/τ , yielding

f
′
(τ) = −

1

τ2
−

(
−e−τ

(
k−2∑
i=0

τ i−1

i!

)
+ e−τ

(
−

1

τ2
+

k−4∑
i=0

τ i

(i+ 2)i!

))

= −
e−τ

τ2

(
eτ −

(
1 + τ +

k−2∑
i=2

τ i
(

1

(i− 1)!
−

1

i(i− 2)!

)
+

τk−1

(k − 2)!

))

= −
e−τ

τ2

(
eτ −

k−2∑
i=0

τ i

i!
−

τk−1

(k − 2)!

)
,
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and so τk = tk.
And this yields our main theorem:
Proof of Theorem 1.1: Consider any ε > 0 and set M = (ck + ε)n. By the main

result of [22], Gn,M a.s. has a k-core, and by Fact 1.3, the edge-density of the k-core is
at least tk + δ for some δ > 0. Let T denote this k-core.

Once we have exposed n
′
, the number of vertices, and M

′
, the number of edges in

T , it is a uniformly random member of Ωk
n
′
,M
′ as each member of Ωk

n
′
,M
′ is the k-core

of the same number of graphs with n vertices and M edges. Therefore Theorem 1.2(b)
can be applied to T .

Define T1 ⊂ T to be the subgraph of T induced by the components of L(T ) which
contain even cycles. Recall that in the proof of Theorem 1.2(b) we show that the number
of even cycles in a random configuration with the same degree sequence as L(T ) has an
asymptotically Poisson distribution. In the same manner, it is straightforward to show
that (a) a.s. |T1| < |T |, (b) a.s. no vertex v ∈ T of degree at least k + 1 has more
than 1 neighbour in T1, and finally (c) a.s. the subgraph induced by (T ∪ N(T1))\T1

contains no even cycles. This follows from a straightforward first-moment analysis; we
omit the details. Intutition towards the truth of this statement comes from the fact that
the expected size of T1 is O(1).

Therefore, a.s. T\T1 is k-Gallai.
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