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Abstract

Suppose that t ≥ 2 is an integer, and randomly label t graphs with the integers
1 . . . n. We give sufficient conditions for the number of edges common to all t of
the labelings to be asymptotically Poisson as n → ∞. We show by example that
our theorem is, in a sense, best possible. For Gn a sequence of graphs of bounded
degree, each having at most n vertices, Tomescu [7] has shown that the number
of spanning trees of Kn having k edges in common with Gn is asymptotically
e−2s/n(2s/n)k/k!× nn−2, where s = s(n) is the number of edges in Gn. As an
application of our Poisson-intersection theorem, we extend this result to the case in
which maximum degree is only restricted to be O(n log logn/ logn). We give an in-
version theorem for falling moments, which we use to prove our Poisson-intersection
theorem.
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1. Introduction and Statement of Graphical Results

This paper considers random embeddings of an m-vertex graph G into the complete
graph Kn where m ≤ n. With no loss, assume the vertices of G are {1, 2, . . .m}.
The number of injections of an m-set into an n-set is (n)m, the falling factorial

(n)m = n(n− 1) · · · (n−m+ 1).

By a random embedding of G into Kn, we mean that one of the above injections is
chosen from the uniform distribution.

Tomescu [7] showed that the number of edges a randomly embedded graph
Gn has in common with a random spanning tree of Kn is asymptotically Poisson
when the degree of the graph is bounded. (The result had been conjectured in [6],
and proven there for a special case.) This can be interpreted in terms of random
embeddings of pairs of graphs in Kn. Theorem 1, discusses random embeddings of
t-tuples of graphs. In Theorem 2, we use this to extend Tomescu’s result from graphs
of bounded degree to those whose degrees may grow as fast as O(n log logn/ logn).

Theorem 1. Let t ≥ 2 be an integer. Suppose that for each i, 1 ≤ i ≤ t, we have a
sequence Gn(i), of graphs, each having at most n vertices and at least one edge. Let
sn(i) and ∆n(i) be the number of edges and the maximum degree, respectively, for
Gn(i). Let Yn equal the number of edges common to t randomly chosen embeddings
of the Gn(i) into Kn. Let

λn =

∏t
i=1 sn(i)(
n
2

)t−1 (1)

and

ρn =
t∏
i=1

(∆n(i))2

sn(i)
. (2)

If min(λn, ρn)→ 0, then(
Prob

(
Yn = k

)
− e−λn λkn / k!

)
→ 0 for each fixed k. (3)

Theorem 2. Let Gn be a sequence of graphs, each having at most n vertices. Let
sn and ∆n be the number of edges and the maximum degree, respectively, for Gn.
Let T (Gn;n, k) be the number of spanning trees of Kn having k edges in common
with Gn. If

∆n = O(n log logn/ logn), (4)

then(
T (Gn;n, k)/nn−2 − e−2sn/n (2sn/n)k / k!

)
→ 0 for each fixed k. (5)

To what extent are the constraints on the sequences ∆n needed in Theorems 1
and 2? Some condition is needed in Theorem 2 since T (Gn;n, 0) = 0 for the n-
vertex star; however, we do not know if (4) is best possible. For Theorem 1 we have
the following result.
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Theorem 3. We cannot replace the condition min(λn, ρn)→ 0 in Theorem 1 with
min(λn, ρn) = O(1):

(a) If Gn(1) is an n-cycle and Gn(2) is an n-vertex star, then Prob(Yn = 2) = 1.

(b) If Gn(1) and Gn(2) are both caterpillars with b = bn1/2c nonleaf vertices, each
of degree b, then

∞∑
k=0

lim
n→∞

Prob(Yn = k)zk = ez−1 exp
{

(ez−1 − 1)
}
.

The two examples are extreme: in (a) the ratios ∆n(i)2/sn(i) differ greatly; in (b)
they are equal.

2. A Theorem on Convergence to Poisson

The proof of Theorem 1, in the next section, requires an inversion theorem for
falling moments. Inverting estimates for moments into estimates for the underlying
probability distribution is a classical technique. In [2] this is done when the moment
generating function has positive radius of convergence. An inversion theorem more
useful in some circumstances is stated in [3, p. 75]: If there is a λ such that for
every k we have E

(
(Yn)k

)
→ λk, then also we have Prob(Yn = k) → e−λλk/k!.

(Strictly, the theorem is stated in terms of factorial cumulants (see page 50), but is
equivalent to what is stated here.) No proof or reference is given, but this assertion
is a corollary of Theorem 4 below. Similar inversion theorems are found in [1, p. 491]
and [5, p. 22], phrased in inclusion-exclusion terms. Of the above, only [1] does not
require that E(Yn)→ λ. The following theorem is similar to that in [1], but differs
sufficiently that it is inappropriate to refer to that paper for a proof.

Theorem 4. Let Y1, Y2, . . . be a sequence of nonnegative integer valued random
variables, each of which has falling moments of all orders. Let λn be the ex-
pected value E(Yn) of the random variable Yn. For each ε > 0 define the sets
Aε,Bε ⊆ {1, 2, . . .} by

Aε = {n : λn > 1/ε}

Bε = {n : 1/ε > λn > ε}.

Suppose that for each real ε > 0 we have

E
(
(Yn)2

)
∼ λ2

n as n→∞ through Aε, (6)

and that for each real ε > 0 and integer k > 0 we have

E
(
(Yn)k

)
∼ λkn as n→∞ through Bε. (7)

Then it follows that(
Prob

(
Yn = k

)
− e−λn λkn / k!

)
→ 0 for each k.
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To prove this, we require Bonferroni’s inequalities:

Theorem 5. Let Y be a random variable taking on nonnegative integer values.
Suppose E((Y )k) exists for k ≤ K. Then, for 0 ≤ J ≤ K − k

J∑
j=0

(−1)j E((Y )k+j)

k! j!
(8)

is an over-estimate of Prob(Y = k) when J is even and an under-estimate when J
is odd. Furthermore, in absolute value the last term in the sum is a bound on the
difference between the sum over 0 ≤ j < J and Prob(Y = k).

Proof of Theorem 5. The last sentence in the theorem follows immediately
from the over- and under-estimate claim concerning (8). We now prove the over-

and under-estimate claim. Let yk(N) =
∑N
n=k Prob(Y = n) (n)k. Note that

E((Y )k) = limN→∞ yk(N). We have

J∑
j=0

(−1)jyk+j (N)

k! j!
=
∑
j≤J

N∑
n=k

(−1)j Prob(Y = n) (n)k+j

k! j!

=
N∑
n=k

Prob(Y = n) (n)k
k!

(∑
j≤J

(−1)j(n− k)j
j!

)
.

The parenthesized sum is
∑
j≤J

(
n−k
j

)
= (−1)J

(
n−k−1
J

)
when n > k, and it equals

1 when n = k. Letting N →∞ proves the theorem.

Proof of Theorem 4. Let an integer k and an ε > 0 be given. We must exhibit
N such that

n ≥ N ⇒
( ∣∣ Prob(Yn = k)− e−λnλkn/k!

∣∣ < ε
)
. (9)

We separate the proof into three cases, and exhibit four constants N1, N2, N3, and
L such that each of the conditions

n ≥ N1 and λn < ε

n ≥ N2 and λn > L

n ≥ N3 and ε ≤ λn ≤ L

implies the desired conclusion appearing on the right side of (9).
When k ≥ 1 and λ > 0, we easily have

1− λ ≤ e−λ ≤ 1 and 0 ≤ e−λλk/k! ≤ λe−λ(λk−1/(k − 1)!) < λ.

For any random variable Y taking non negative integer values, we have, for k ≥ 1,

0 ≤ Prob(Y = k) ≤ Prob(Y ≥ 1) ≤ E(Y ),
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whence also
1−E(Y ) ≤ Prob(Y = 0) ≤ 1.

Combining these with the previous estimates, we obtain the first part of our proof
simply by taking N1 = 1.

For the second part of the proof, we employ Chebyshev’s inequality. Recall
that k is fixed. Choose L so large that

L ≥ 2k, 1/L < ε/2, and λ > L ⇒ e−λλk/k! < ε.

Let σ2
n be the variance of Yn. Chebyshev’s inequality gives

Prob(Yn = k) ≤
( σn
λn − k

)2

,

and the latter is no greater than 4(σn/λn)2 since L ≥ 2k. However, by hypothesis,
if n becomes infinite through values such that λn ≥ L, we have

σ2
n = E

(
(Yn)2

)
+ λn − λ2

n

= (1 + O(1))λ2
n + λn − λ2

n

= λn + O(λ2
n),

whence
(σn/λn)2 = (λn)−1 + O(1).

The first term on the right is less than ε/2 by our choice of L; hence, choosing N2

so large that the O(1) term is less than ε/2 for n ≥ N2 completes the second part
of the proof.

For the third and final part of the proof, we use Theorem 5. Choose J suffi-
ciently large that

(ε−1)k+J

k! J !
< ε/3 and J > L.

Note that ∣∣∣∣ ∑
0≤j<J

(−1)jλj/j! − e−λ
∣∣∣∣ ≤ λJ/J ! (10)

since, for J > λ, the absolute values of the terms with j ≥ J are decreasing and so
the error is at most the first neglected term. There are three errors, E1, E2, E3, to
bound:

Prob(Yn = k) =
∑

0≤j<J

(−1)jE
(
(Yn)k+j

)
k! j!

+ E1

∑
0≤j<J

(−1)jE
(
(Yn)k+j

)
k! j!

=
∑

0≤j<J

(−1)jλj+kn

k! j!
+ E2

∑
0≤j<J

(−1)jλj+kn

k! j!
=

λkn
k!
e−λn + E3.
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• By Theorem 5, E1 is smaller than E
(
(Yn)k+J

)
/k! J !, which by assumption is

(1+O(1))λJ+k
n /k! J !. By choice of J the latter is less than ε/3 for n sufficiently

large.
• E2 is bounded in absolute value by O(1)

∑
0≤j<J 1/k! j! < O(1)e/k!, the O(1)

term being the maximum of the finitely many differences |
(
(Yn)k+j

)
− λk+j

n |.
For n sufficiently large, O(1)e/k! is smaller than ε/3.
• Finally, by (10), E3 is smaller in absolute value than λk+J

n /k! J !, which as noted
already is less than ε/3 for n sufficiently large.

This concludes the proof.

3. Proof of Theorem 1

Using Theorem 4, we now prove Theorem 1. At times we drop subscripts and
superscripts and refer to a graph G ⊆ Kn with s edges and maximum degree ∆.
Throughout the proof, we speak of the probability of various events, and evaluate
the expected value of some random variables. The underlying probability space for
all this is the set of all t-tuples of embeddings of the graphs G(i) into Kn with the
uniform distribution.

If ω = ω1, . . . , ωt is such an embedding, then (Yn(ω))k is the number of ways
to choose a sequence e of k distinct edges all of which lie in every embedding. Let
χ(S) be 1 if the statement S is true and 0 otherwise. With a sum on ω running
over all embeddings and a sum on e running over all k-tuples of distinct edges,

E((Yn)k) =
∑
ω

Prob(ω)
∑
e

χ(e is in every ω)

=
∑

e

∑
ω

t∏
i=1

(
Prob(ωi)χ(e is in every ω)

)
=
∑

e

fn(e), where fn(e) =
t∏
i=1

pn(Gn(i) ⊃ e), (11)

and pn(G ⊃ e) is the probability that a random embedding of G in Kn contains e.
Partition the k-tuples of distinct edges in Kn into two classes, I and D, where

I contains all k-tuples of independent edges and D contains all other k-tuples (the
dependent sets). Thus

∑
e in (11) can be partitioned into sums over I and D.

Here is a way to compute pn(G ⊃ e). Imagine G as a subgraph of Kn. Now
choose edges of Kn to be relabeled as e, preserving whatever incidences are required
among the ends of the ei by the names of their vertices. The probability that these
k chosen edges lie in G is pn(G ⊃ e).

We now consider
∑

e∈I fn(e), using the method in the previous paragraph to
estimate pn(G ⊃ e). The edges chosen to be e can be any independent set in Kn,
of which there are (n)2k if the edges are directed and so (n)2k/2

k if the edges are
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not directed. Hence |I| = (n)2k/2
k and

pn(G ⊃ e) =
2kI(G, k)

(n)2k
, (12)

where I(G, k) is the number of k-long sequences of independent edges in G. Thus

∑
e∈I

fn(e) =

(
2k

(n)2k

)t−1∑
e∈I

t∏
i=1

I(Gn(i), k). (13)

When k = 1, we have D = ∅ and I(Gn(i), 1) = sn(i). Thus, from (11) and (13),

E(Yn) =
1(
n
2

) t∏
i=1

sn(i)(
n
2

) . (14)

This shows that the λn of Theorem 1 is E(Yn). By the hypotheses of Theorem 4,
we may restrict our attention to n with λn > ε, which we do from now on. By
hypothesis min(ρn, λn)→ 0, and so

ρn → 0 as n→∞ through Aε ∪ Bε. (15)

We detour briefly to prove a bound on the growth of the ∆’s that is needed
later: For each i,

∆n(i)/sn(i)→ 0 as n→∞ through Aε ∪ Bε. (16)

For all i, n∆n(i) ≥ 2sn(i) by a simple counting argument. Hence

ρn
λn

=

∏t
i=1(∆n(i)2/sn(i))(

n
2

)∏t
i=1

(
sn(i)/

(
n
2

))
∼

(
∆n(j)

sn(j)

)2∏
i6=j

(
n∆n(i)/sn(i)

)2
2

≥ 21−t

(
∆n(j)

sn(j)

)2

.

By (15) and λn > ε, (16) follows.
We have

sk ≥ I(G, k) ≥ s(s−∆) · · · (s− (k − 1)∆).

Since

sk

s(s−∆) · · · (s− (k − 1)∆)
<

(
s

s− k∆

)k
=

(
1 +

k∆

s− k∆

)k
< exp

(
k2∆

s− k∆

)
,
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it follows from (16) that I(Gn(i), k) ∼ sn(i)k for each fixed k. Hence
fn(e) ∼ (2λ/n2)k when e ∈ I. Since |I| = (n)2k/2

k ∼ n2k/2k, it follows from
(11) and (12) that∑

e∈I

fn(e) ∼ (n2k/2k)
t∏
i=1

(sn(i)k2k/n2k) ∼ λkn. (17)

We will show that ∑
e∈D

fn(e) = O(λkn). (18)

When (17) and (18) are combined with λn = E(Yn), we obtain (7) with Bε replaced
by Aε∪Bε and hence (6) follows as well. Thus, proving (18) will complete the proof
of Theorem 1.

Suppose that the k edges in e form a graph H with v vertices and c components.
Since e ∈ D,

c < v/2 < k. (19)

Fix a spanning forest F of H. The edges of e are relabeled in the following order:

1. One edge in each tree in the spanning forest. The probability that each such
edge lies in G, conditioned on edges already relabeled is bounded above by
2s/(n− 2k)2.

2. Additional edges that grow each tree in the spanning forest in a connected
fashion. The probability that each such edge lies in G, conditioned on edges
already relabeled is bounded above by ∆/(n− 2k). To see this, note that one
vertex on each such edge has already been embedded.

3. The remaining edges of e. Here we use the trivial bound of 1 for the conditional
probability.

Since the number of edges in a spanning forest on v vertices and c components is
v − c, there are v − 2c edges in Step 2 and so

p n(G ⊃ e) ≤

(
2s

(n− 2k)2

)c (
∆

n− 2k

)v−2c

.

Constructing possible e’s with the given values of k, v, and c in a similar manner,
we see that there are at most

k! (n2/2)c nv−2c = (2c k!)nv.

Hence the contribution of such e to the sum over D is at most

(2c k!)nv
t∏
i=1

(
2sn(i)

(n− 2k)2

)c(
∆n(i)

n− 2k

)v−2c

= O(1)nv
t∏
i=1

(
2sn(i)

n2

)c(
∆n(i)

n

)v−2c

= O(1)

{
n2

t∏
i=1

sn(i)

n2

}v/2( t∏
i=1

∆n(i)2

sn(i)

)v/2−c
.
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It follows from (15) and (19) that all e ∈ D with a given set of values for v and c

contribute O(λ
v/2
n ) to E((Yn)k). Since the number of choices for v and c is bounded,

λn > ε and v/2 < k by (19), we are done.

4. Proof of Theorem 2

Apply Theorem 1 with t = 2, Gn(1) = Gn, and Gn(2) = Tn, a spanning tree of
Kn. In the next paragraph we show that, if k log logn/ logn→∞, then almost all
spanning trees of Kn have ∆ < k. Thus ρn → 0 for almost all spanning trees Tn
provided

∆2
n(logn/ log logn)2

nsn
= o(1).

Averaging Theorem 1 over almost all Tn, eliminating those of high degree, proves
Theorem 2.

The maximum degree bound follows from [4], but we include a simple proof
here for completeness. Consider the Prüfer sequence for a tree. If the maximum
degree is k, no number appears more than k times. An upper bound on sequences
with at least t = k + 1 appearances of some number is obtained by choosing (i) a
number from {1, . . . , n} to appear at least t times, (ii) t locations for it in the Prüfer
sequence, and (iii) the remaining n − t − 2 sequence elements. Hence we have the
upper bound

n

(
n− 2

t

)
nn−t−2 < nn−2(n/t!) < nn−2(n/k!).

Since there are nn−2 trees, the maximum degree is almost surely less than k if
n/k! = O(1). The claim in the previous paragraph follows from Stirling’s formula.

5. Proof of Theorem 3.

For part (a), suppose that the star has been embedded in Kn and let v be the vertex
that is connected to the other n − 1 vertices. When the n-cycle is embedded, one
vertex will map to v. The two edges of the cycle that contain v as an end point also
lie in the star and no other edges do.

Part (b) involves somewhat more calculation. Suppose the first caterpillar,
Gn(1), has been embedded and let V = {v1, . . . , vb} be the vertices of degree b.
There are two sources of common edges: First, when the second caterpillar has
vertices of degree b in V. Second, when vertices of degree 1 in Gn(2) lie in V. In
our computations, we will ignore some dependencies that become insignificant as
n→∞.

We consider the first case. The number of vertices in Gn(2) of degree b that lie
in V is asymptotically Poisson and its expected value is

b× Prob(v1 has degree b in Gn(2)) = b× (b/n) ∼ 1.
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If vk has degree b in Gn(2), the number of common edges between Gn(1) and Gn(2)
that share vk is Poisson and its expected value is

∑
v 6=vk

2∏
i=1

pn

(
Gn(i) ⊃ {vk, v} | deg(vk) = b

)
= (n− 1)× (b/(n− 1))2 ∼ 1.

Hence the generating function for the number of such vertices in common is the
composition of two Poisson distributions of mean 1.

We now consider the second case. Since nearly all vertices have degree 1, the
number of degree 1 vertices of Gn(2) that lie in V is asymptotic to |V| = b. For each
such vertex v, the probability that its edge in Gn(2) is also in Gn(1) is asymptotic
to b/n since v has degree b in Gn(1). Hence the number of such common edges is
asymptotically Poisson with mean b× (b/n) ∼ 1.

Combining the results of the two previous paragraphs, we obtain Theorem 3(b).
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