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Abstract

We find, in the form of a continued fraction, the generating function for the
number of (132)-avoiding permutations that have a given number of (123) patterns,
and show how to extend this to permutations that have exactly one (132) pattern.
We also find some properties of the continued fraction, which is similar to, though
more general than, those that were studied by Ramanujan.
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A (132) pattern (resp. a (123) pattern) in a permutation π of |π| letters is a triple
1 ≤ i < j < k ≤ n of indices for which π(i) < π(k) < π(j) (resp. π(i) < π(j) < π(k)).
Let fr(n) denote the number of permutations π of n letters that have no (132) patterns
and exactly r (123) patterns. Our main result is the following.

Theorem 1 The generating function for the {fr(n)} is

∑
r,n≥0

fr(n)znqr =
1

1−
z

1−
z

1−
zq

1−
zq3

1−
zq6

. . .

(1)

in which the nth numerator is zq(
n−1

2 ).

We think it is remarkable that such a continued fraction encodes information about
(132)-avoiding permutations. We will first prove the theorem, and then study some
consequences and generalizations.

1 The patterns

Let the weight of a permutation π of |π| letters be z|π|q|123(π)|t|12(π)|, in which |123(π)|
is the number of (123) patterns (rising triples) in π, and |12(π)| is the number of rising
pairs in π. Let

P (q, z, t) =
∑′

π
weight(π), (2)

where the sum extends over all (132)-avoiding permutations π.
If π is a (132)-avoiding permutation on {1, 2, . . . , n}, (n > 0) and the largest element,

n, is at the kth position, i.e., π(k) = n, then by letting π1 := {π(i)}k−1
1 and π2 :=

{π(i)}nk+1, we have that every element in π1 must be larger than every element of π2,
or else a (132) would be formed, with the n serving as the ‘3’ of the (132). Hence, π1

is a permutation of the set {n − k + 1, . . . , n − 1}, and π2 is a permutation of the set
{1, . . . , n−k}. Furthermore, π1 and π2 are each (132)-avoiding. Conversely, if π1 and π2

are (132)-avoiding permutations on {n−k+1, . . . , n−1} and {1, . . . , n−k} respectively
(for some k, 1 ≤ k ≤ n), then (π1nπ2) is a nonempty (132)-avoiding permutation.

Thus we have
|123(π)| = |123(π1)|+ |123(π2)|+ |12(π1)|,

since a (123) pattern in π =def (π1nπ2) may either be totally immersed in the π1 part, or
wholly immersed in the π2 part, or may be due to the n serving as the ‘3’ of the (123),
the number of which is the number of (12) patterns in π1.



the electronic journal of combinatorics 6 (1999), #R38 3

We also have
|12(π)| = |12(π1)|+ |12(π2)|+ |π1|,

and, of course
|π| = |π1|+ |π2|+ 1.

Hence,

weight(π)(q, z, t) := q|123(π)|z|π|t|12(π)|

= q|123(π1)|+|123(π2)|+|12(π1)|z|π1|+|π2|+1t|12(π1)|+|12(π2)|+|π1|

= zq|123(π1)|(qt)|12(π1)|(zt)|π1|q|123(π2)|t|12(π2)|z|π2|

= zweight(π1)(q, zt, tq) weight(π2)(q, z, t).

Now sum over all possible (132)-avoiding permutations π, to get the functional equation

P (q, z, t) = 1 + zP (q, zt, tq)P (q, z, t), (3)

in which the 1 corresponds to the empty permutation.
Next let Q(q, z, t) be the sum of all the weights of all permutations with exactly one

(132) pattern. By adapting the argument from Miklós Bóna’s paper [1] we easily see
that Q(q, z, t) satisfies

Q(q, z, t) = zP (q, zt, qt)Q(q, z, t) + zQ(q, zt, qt)P (q, z, t) + t2z2P (q, zt, qt)(P (q, z, t)− 1).
(4)

This holds since our sole (132) pattern can either appear in the elements

(a) before n,

(b) after n, or

(c) with n as the ‘3’ in the (132) pattern.

The term zP (q, zt, qt)Q(q, z, t) corresponds to (a), zQ(q, zt, qt)P (q, z, t) corresponds to
(b), and t2z2P (q, zt, qt)(P (q, z, t) − 1) corresponds to (c). We see that case (c) follows
since π = (π1, n − k, n, π2), where π1 is a permutation of [n − k + 2, . . . , n − 1], π2 is a
permutation of [1, . . . , n− k − 1] ∪ {n− k + 1}, and k 6= n.

2 The fractions

Here we study this generating function P (q, z, t) further, finding that it is a pretty
continued fraction, and deriving a fairly explicit form for its numerator and denominator.

First, from (3) we have that

P (q, z, t) =
1

1− zP (q, zt, tq)
, (5)
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and so by iteration we have the continued fraction,

P (q, z, t) =
1

1−
z

1−
zt

1−
zt2q

1−
zt3q3

1−
zt4q6

. . .

. (6)

Now let

P (q, z, t) =
A(q, z, t)

B(q, z, t)
.

Then substitution in (5) shows that A(q, z, t) = B(q, zt, tq), and therefore

P (q, z, t) =
B(q, zt, tq)

B(q, z, t)
, (7)

where B satisfies the functional equation

B(q, z, t) = B(q, zt, tq)− zB(q, t2qz, tq2). (8)

To find out more about the form of B we write

B(q, z, t) =
∑
m≥0

φm(q, t)zm.

Then φ0 = 1, and

φm(q, t) = tmφm(q, qt)− t2m−2qm−1φm−1(q, tq2),

for m = 1, 2, 3, . . .. It is easy to see by induction that

φm(q, t) = −
∑
j≥2

tjm−2qm(j2)−2j+3φm−1(q, tqj). (m ≥ 1;φ0 = 1)

For example, we have

φ1(q, t) = −
∑
j≥0

tjq(
j
2),

and
φ2(q, t) =

∑
j,`≥2

t`+2j−4q
1
2
`2+j2+`j− 5

2
`−5j+6.

In general, the exponent of t in φm(q, t) will be a linear form in the m summation
indices, plus a constant, and the exponent of q will be an affine form in these indices,
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i.e., a quadratic form plus a linear form plus a constant. Let’s find all of these forms
explicitly.

Hence suppose in general that

φm(t) = (−1)m
∑
j≥0

tam·j+bmq(j,Qmj)+cm·j+dm,

in which j is the m-vector of summation indices, Qm is a real symmetric m×m matrix
to be determined, am, cm are m-vectors, and bm, dm are scalars. Inductively we find that

am = {r}mr=1,

bm = −2m,

cm = {−5r/2}mr=1 ,

dm = 3m.

The m×m matrix Qm is {min (r, s)/2}mr,s=1. Thus we have the following formula for B.

Theorem 2 The denominator B(q, z, t) of the grand generating function P (q, z, t) is
explicitly given by

B(q, z, t) = 1 +
∞∑
m=1

(−zq3t−2)m
∑

j1,...,jm≥2

t
∑m

r=1
rjrq

1
2

{∑m

r,s=1
min (r,s)jrjs−5

∑m

r=1
rjr

}
. (9)

3 The series computations

If fr(n) denotes the number of permutations of n letters that contain no pattern (132)
and have exactly r (123)’s, we write A1(r, z) :=

∑
n fr(n)zn. Then A1(r, z) is the coeffi-

cient of qr in the series development of P (q, z, 1) of (2). That is, we have

1

1−
z

1−
z

1−
zq

1−
zq3

1−
zq6

. . .

=
∑
r≥0

A1(r, z)qr. (10)

From (10) we see that if we terminate the fraction P (q, z, 1) at the numerator qN , say,
then we’ll know all of the {A1(r, z)}Nr=0 exactly.

Further, if we know the denominator B(q, z, t) in (7) exactly through terms of order
qN , then by carrying out the division in (7) and keeping the same accuracy, we will,
after setting t = 1, again obtain all of the generating functions {A1(r, z)}Nr=0 exactly.
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Finally, to find the denominator B(q, z, t) in (7) exactly through terms of order qN ,
it is sufficient to carry out the iteration that is implicit in (8) N times, since further
iteration will affect only the terms involving powers of q higher than the Nth.

In that way we computed the A1(r, z)’s for 0 ≤ r ≤ 15 in a few seconds, as is shown
below in the initial section of the series (10):

1−z
1−2 z

+ z3

(1−2 z)2 q + (1−z) z4

(1−2 z)3 q2 + (1−z)2 z5

(1−2 z)4 q3 +
z4 (−1+6 z−13 z2+11 z3−3 z4+z5)

(−1+2 z)5 q4

+
z5 (2−14 z+37 z2−44 z3+22 z4−4 z5+z6)

(1−2 z)6 q5 +
(1−z)2 z6 (−3+18 z−37 z2+27 z3−3 z4+z5)

(−1+2 z)7 q6

+
z5 (1−12 z+64 z2−196 z3+373 z4−450 z5+343 z6−164 z7+47 z8−6 z9+z10)

(1−2 z)8 q7 + . . .

If gr(n) denotes the number of permutations of n letters that contain one (132)
pattern and have exactly r (123)’s, we write A2(r, z) :=

∑
n gr(n)zn. Then A2(r, z) is the

coefficient of qr in the series development of Q(q, z, 1) of (4). Since we have a very quick
method to compute P (q, z, 1), we can iterate equation (4) to compute the A2(r, z)’s.
Shown below are the A2(r, z)’s for 0 ≤ r ≤ 6, that were computed in a few minutes.

z3

(1−2z)2 + 2z5

(1−2z)3 q + z4(z3−6z2+4z−1)
(1−2z)4 q2 + 2z5(z−1)(5z2−4z+1)

(1−2z)5 q3

+ z6(z5+12z4−55z3+65z2−30z+5)
(1−2z)6 q4 + −2z7(z6+6z5−40z4+80z3−69z2+27z−4)

(1−2z)7 q5

+ −z6(z−1)(3z8+13z7−77z6+240z5−329z4+231z3−91z2+20z−2)
(1−2z)8 q6 + . . . .
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