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Abstract

We prove the following best possible result. Let k ≥ 2 be an integer and G

be a graph of order n with minimum degree at least k. Assume n ≥ 8k− 16 for
even n and n ≥ 6k−13 for odd n. If the degree sum of each pair of nonadjacent
vertices of G is at least n, then for any given Hamiltonian cycle C of G, G has
a [k, k + 1]-factor containing C.
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1 Introduction

All graphs under consideration are undirected, finite and simple. A graph G consists
of a non-empty set V (G) of vertices and a set E(G) of edges. For two vertices x and
y of G, let xy and yx denote an edge joining x to y. Let X be a subset of V (G).
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We write G[X] for the subgraph of G induced by X, and define X := V (G) \ X.
The subset X is said to be independent if no two vertices of X are adjacent in G.
Sometimes x is used for a singleton {x}. For a vertex x of G, we denote by dG(x) the
degree of x in G, that is, the number of edges of G incident with x. We denote by
δ(G) the minimum degree of G. For integers a and b, 0 ≤ a ≤ b, an [a, b]-factor of
G is defined to be a spanning subgraph F of G such that

a ≤ dF (x) ≤ b for all x ∈ V (G),

and an [a, a]-factor is abbreviated to an a-factor. A subset M of E(G) is called a
matching if no two edges of M are adjacent in G. For two graphs H and K, the union
H ∪K is the graph with vertex set V (H)∪V (K) and edge set E(H)∪E(K), and the
join H +K is the graph with vertex set V (H)∪ V (K) and edge set E(H)∪E(K) ∪
{xy | x ∈ V (H) and y ∈ V (K)}. Other notation and definitions not defined here
can be found in [1].

We first mention some known results concerning our theorem.

Theorem A ([9]) Let G be a graph of order n ≥ 3. If the degree sum of each pair
of nonadjacent vertices is at least n, then G has a Hamilton cycle.

Theorem B ([3]) Let k be a positive integer and G be a graph of order n with
n ≥ 4k − 5, kn even, and δ(G) ≥ k. If the degree sum of each pair of nonadjacent
vertices is at least n, then G has a k-factor.

Combining the above two theorems, we can say that if a graph G satisfies the
conditions in Theorem B, then G has a Hamilton cycle C together with a connected
[k, k + 2]-factor containing C, which is the union of C and a k-factor of G [4].

Theorem C ([8]) Let k ≥ 3 be an integer and G be a connected graph of order
n with n ≥ 4k − 3, kn even, and δ(G) ≥ k. If for each pair (x, y) of nonadjacent
vertices of V (G),

max{dG(x), dG(y)} ≥
n

2
,

then G has a k-factor.

Theorem D ([2]) Let k ≥ 3 be an odd integer and G be a connected graph of odd
order n with n ≥ 4k−3, and δ(G) ≥ k. If for each pair (x, y) of nonadjacent vertices
of G,

max{dG(x), dG(y)} ≥
n

2
,

then G has a connected [k, k + 1]-factor.

Theorem E ([5]) Let G be a connected graph of order n, let f and g be two positive
integer functions defined on V (G) which satisfy 2 ≤ f(v) ≤ g(v) for each vertex
v ∈ V (G). Let G have an [f, g]-factor F and put µ = min{f(v) : v ∈ V (G)}. Suppose
that among any three independent vertices of G there are (at least) two vertices with
degree sum at least n − µ. Then G has a matching M such that M and F are edge-
disjoint and M + F is a connected [f, g + 1]-factor of G.
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The purpose of this paper is to extend “connected [k, k+1]-factor” in some of the
above theorems to “[k, k + 1]-factor containing a given Hamiltonian cycle”, which is
obviously a 2-connected [k, k + 1]-factor.

Our main result is the following

Theorem 1 Let k ≥ 2 be an integer and G be a graph of order n ≥ 3 with δ(G) ≥ k.
Assume n ≥ 8k − 16 for even n and n ≥ 6k − 13 for odd n. If for each pair (x, y) of
nonadjacent vertices of G,

dG(x) + dG(y) ≥ n, (1)

then for any given Hamiltonian cycle C, G has a [k, k + 1]-factor containing C.

Now we conclude this section with a new result concerning our theorem.

Theorem F [11] Let k ≥ 2 be an integer and G be a connected graph of order n
such that n ≥ 8k− 4, kn is even and δ(G) ≥ n/2. Then G has a k-factor containing
a Hamiltonian cycle.

For a graph G of order n, the condition δ(G) ≥ n/2 does not guarantee the
existence of a k-factor which contains a given Hamiltonian cycle of G. Let n ≥ 5 and
k ≥ 3 be integers, and set

m =

{
n
2

+ 2 for even n,
n+3

2
for odd n.

Let Cm = (v1v2 . . . vm) be a cycle of order m and Pn−m = (vm+1vm+2 . . . vn) a path
of order n − m. Then the join G := Cm + Pn−m has no k-factor containing the
Hamiltonian cycle (v1v2 . . . vn) but satisfies δ(G) ≥ n/2.

2 Proof

Our proof depends on the following theorem, which is a special case of Lovász’s
(g, f)-factor theorem [7]([10]).

Theorem 2 Let G be a graph and a and b be integers such that 1 ≤ a < b. Then G
has an [a, b]-factor if and only if

γ(S, T ) := b|S| − a|T |+
∑
x∈T

dG−S(x) ≥ 0

for all disjoint subsets S, T ⊆ V (G).

Proof of Theorem 1 We may assume k ≥ 3 since G has C for k = 2. Let

H := G−E(C), U := {x ∈ V (G) | dG(x) ≥
n

2
}, W := V (G) \ U, ρ := k − 2.
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Then V (H) = V (G), ρ ≥ 1,

dH(x) = dG(x)− 2 ≥ ρ for all x ∈ V (H),

n ≥ 8ρ for even n and n ≥ 6ρ − 1 for odd n. Moreover the induced subgraph G[W ]
is a complete graph since dG(x) + dG(y) < n for any two vertices x and y of W .

Obviously, G has a required factor if and only if H has a [ρ, ρ+1]-factor. Suppose,
to the contrary, that H has no such factor. Then, by Theorem 2, there exist disjoint
subsets S and T of V (H) such that

γ(S, T ) = (ρ+ 1)s− ρt+
∑
x∈T

dH−S(x) < 0. (2)

where t = |T | and s = |S|.
If dH−S(v) ≥ ρ for some v ∈ T , then γ(S, T ) ≥ γ(S, T \ {v}), and thus (2) is still

holds for S and T \ {v}. Thus we may assume that

dH−S(x) ≤ ρ− 1 for all x ∈ T. (3)

If S = ∅, then γ(∅, T ) = −ρt +
∑
x∈T dH(x) ≥ 0 as dH(x) ≥ ρ for all x ∈ V (H).

Thus
s ≥ 1. (4)

If t ≤ ρ+ 1, then we have

γ(S, T ) ≥ (ρ+ 1)s− ρt+
∑
x∈T

(dH(x)− s)

≥ (ρ+ 1)s− ρt+ t(ρ− s)

= s(ρ+ 1− t) ≥ 0.

This contradicts (2). Hence
t ≥ ρ+ 2. (5)

We now prove the next Claim:

Claim 1. s ≤ n
2
− 3 if n is even, and s ≤ n−5

2
if n is odd.

Assume that n is even and s ≥ (n/2) − 2. Let q := s − (n/2) + 2 ≥ 0 and
r := n− s− t ≥ 0. Then it follows from ρ ≥ 1 and n ≥ 8ρ that

γ(S, T ) = (ρ+ 1)q + ρ(r + q) +
∑
x∈T

dH−S(x) +
n

2
− 4ρ− 2

≥ 2q + r + q +
∑
x∈T

dH−S(x)− 2.

Hence we may assume q = 0 and r ≤ 1 since otherwise γ(S, T ) ≥ 0. If r = 1
and

∑
x∈T dH−S(x) ≥ 1, then γ(S, T ) ≥ 0. If r = 0 and

∑
x∈T dH−S(x) ≥ 1, then

V (H) = S ∪ T and∑
x∈T

dH−S(x) =
∑
x∈T

dH[T ](x) = 2|E(H[T ])| ≡ 0 (mod 2),
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and so γ(S, T ) ≥ 0. Therefore it suffices to show that
∑
x∈T dH−S(x) ≥ 1 under the

assumption that q = 0 and 0 ≤ r ≤ 1.
Suppose that

∑
x∈T dH−S(x) = 0, q = 0 and 0 ≤ r ≤ 1. Let S := V (G) \ S ⊇ T ,

X := {x ∈ S | dG(x) ≥ n/2} and Y := S \ X. Then a complete graph G[Y ] is
contained in C, and it follows from s = (n/2)− 2 that for each vertex x ∈ X, there
exist two edges of C which join x to two vertices in S. Hence we have

|X|+|Y |−1 = |S|−1 ≥ |E(G[S])∩E(C)| ≥ |X|+1+|E(G[Y ])| = |X|+1+
|Y |(|Y | − 1)

2
,

which implies |Y | ≥ 2 + |Y |(|Y | − 1)/2. Now we get a contradiction, because it
is obvious that there is no nonnegative integral solution of |Y | to this quadratic
inequality. Therefore Claim 1 holds for even n.

We next assume that n is odd and s ≥ (n− 3)/2. Let q := s− (n− 3)/2 ≥ 0 and
r := n− s− t ≥ 0. Then it follows from ρ ≥ 1 and n ≥ 6ρ− 1 that

γ(S, T ) = (ρ+ 1)q + ρ(r + q) +
∑
x∈T

dH−S(x) +
n

2
− 3ρ−

3

2

≥ 2q + r + q +
∑
x∈T

dH−S(x)− 2.

Hence, by the same argument as above, we may assume that q = 0, 0 ≤ r ≤ 1 and∑
x∈T dH−S(x) = 0. Let X := {x ∈ S | dG(x) ≥ (n+ 1)/2} and Y := S \X. Then we

similarly obtain |Y | ≥ 2 + |Y |(|Y | − 1)/2, and derive a contradiction. Consequently
Claim 1 also holds for odd n.

Claim 2. T ∩ U 6= ∅.

Indeed, assume T ⊆W . ThenG[T ] is a complete graph and |E(G[T ])| = t(t−1)/2.
Since C is a Hamiltonian cycle, |E(G[T ]) ∩ E(C)| ≤ t− 1. Hence∑

x∈T

dH−S(x) ≥ 2|E(G[T ]) \ E(C)| ≥ t(t− 1)− 2(t− 1) = (t− 1)(t− 2).

Thus

γ(S, T ) ≥ (ρ+ 1)s− ρt+ (t− 1)(t− 2)

≥ (ρ+ 1)s− ρt+ (t− 1)ρ (by (5))

= (ρ+ 1)s− ρ > 0. (by (4))

This contradicts (2).

Claim 3. T ∩W 6= ∅.

Suppose T ⊆ U and n is even. Then for every x ∈ T , we have by (3)

n

2
≤ dG(x) ≤ dH−S(x) + s+ 2 ≤ ρ+ s+ 1,
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which implies dH−S(x) ≥ (n/2)− s− 2 and ρ+ s+ 2− n/2 ≥ 1. Hence

γ(S, T ) ≥ (ρ+ 1)s− ρt+ t(
n

2
− s− 2)

= (ρ+ 1)s− t(ρ+ s+ 2−
n

2
)

≥ (ρ+ 1)s− (n− s)(ρ+ s + 2−
n

2
)

= (ρ+ 1)s+ (
n

2
− s− 3 +

n

2
+ 3)(

n

2
− s− 3− 2ρ+ ρ+ 1)

= (
n

2
− s− 3)2 + (

n

2
− s− 3)(

n

2
+ 3− 2ρ) + n− 6ρ

≥ 0. (by n ≥ 8ρ and Claim 1)

This contradicts (2).
Next assume T ⊆ U and n is odd. Then for every x ∈ T , we have

n+ 1

2
≤ dG(x) ≤ dH−S(x) + s+ 2 ≤ ρ+ s + 1,

which implies dH−S(x) ≥ (n/2)− s− (3/2) and ρ+ s+ (3/2)− (n/2) ≥ 1. Hence

γ(S, T ) ≥ (ρ+ 1)s− ρt+ t(
n

2
− s−

3

2
)

= (ρ+ 1)s− t(ρ+ s+
3

2
−
n

2
)

≥ (ρ+ 1)s− (n− s)(ρ+ s+
3

2
−
n

2
)

= (
n

2
− s−

5

2
)2 + (

n

2
− s−

5

2
)(
n

2
+

5

2
− 2ρ) + n− 5ρ

≥ 0. (by n ≥ 6ρ− 1 and Claim 1)

This contradicts (2). Therefore Claim 2 is proved.

Now put
T1 := T ∩ U, T2 := T ∩W, t1 = |T1|, t2 := |T2|.

By Claims 2 and 3, we have t1 ≥ 1 and t2 ≥ 1. It is clear that dH−S(x) ≥ dG(x)−s−2
for all x ∈ T , in particular, for every y ∈ T1,

dH−S(y) ≥

{
n
2
− s− 2 if n is even

n
2
− s− 3

2
if n is odd.

(6)

It follows from (3) that

n

2
− ρ− s− 2 ≤ −1 if n is even, and

n

2
− ρ− s−

3

2
≤ −1 if n is odd. (7)

By Claim 1 and by the above inequalities, we have

ρ ≥ 2. (8)
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For every x ∈ T2, we have dH−S(x) ≥ t2 − 3 by the fact that G[W ] is a complete
graph, and obtain the following inequality from (3).

t2 ≤ ρ+ 2. (9)

In order to complete the proof, we consider two cases. Assume first n is even. By
making use of n ≥ 8ρ, (6), (7), (8), (9) and Claim 1, we have

γ(S, T ) ≥ (ρ+ 1)s− ρ(t1 + t2) + t1(
n

2
− s− 2)

= (ρ+ 1)s− ρt2 + t1(
n

2
− s− 2− ρ)

≥ (ρ+ 1)s− ρt2 + (n− s− t2)(
n

2
− ρ− s− 2)

= (
n

2
− s− 3)2 + (

n

2
− s− 3)(

n

2
+ 3− 2ρ− t2)

+ n− 6ρ− t2
≥ 2ρ− t2 ≥ ρ+ 2− t2 ≥ 0.

This contradicts (2).
We next assume n is odd. Let r := n− s− t. It is easy to see that∑

x∈T2

dH−S(x) ≥ 2|E(G[T2]) \ E(C)| ≥ t2(t2 − 1)− 2(t2 − 1) = (t2 − 1)(t2 − 2). (10)

By using n ≥ 6ρ− 1, (6), (7), (8) (9) and (10), we have

γ(S, T ) ≥ (ρ+ 1)s− ρ(t1 + t2) + t1(
n

2
− s−

3

2
) + (t2 − 1)(t2 − 2)

= (ρ+ 1)s+ t1(
n

2
− ρ− s−

3

2
)− ρt2 + (t2 − 1)(t2 − 2)

≥ (ρ+ 1)s+ (n− s− t2 − r)(
n

2
− ρ− s−

3

2
)− ρt2 + (t2 − 1)(t2 − 2)

= (
n

2
− s−

5

2
)2 + (

n

2
− s−

5

2
)(
n

2
+

5

2
− t2 − 2ρ)

+ n− 5ρ+ (t2 − 1)(t2 − 2)− t2 + r(ρ+ s+
3

2
−
n

2
)

= (
n

2
− s−

5

2
)2 + ρ− 1 + (t2 − 1)(t2 − 2)− t2 + r.

Since (t2− 1)(t2− 2)− t2 ≥ −2 with equality only when t2 = 2, we have ρ− 1 + (t2−
1)(t2− 2)− t2 + r ≥ ρ− 1− 2 + r = ρ− 2 + r− 1 ≥ r− 1 and thus γ(S, T ) ≥ 0 unless
s = (n − 5)/2, t2 = 2 r = 0, ρ = 2 and (10) holds with equality. Since t2 = 2 and
(10) holds with equality,

|E(G[T2])| = |E(G[T2]) ∩E(C)| = 1.

Since s = (n+ 1)/2− 3 and ρ = 2, it follows from (3) and (6) that

dH−S(x) = 1 and dG(x) =
n+ 1

2
for all x ∈ T1.
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This implies that all the edges of C incident with vertices in T1 are contained in
E(G[T ]) \ E(G[T2]), and thus the number of such edges is at least t1 + 1. Therefore
|E(G[T ]) ∩ C| ≥ t1 + 1 + 1 = t, contradicting the fact that C is a Hamiltonian cycle
of G. Consequently the theorem is proved.

Remark. The condition that n ≥ 8k − 16 for even n and n ≥ 6k − 13 for odd n
in Theorem 1 are best possible. To see this, either let n be an even integer such
that 2k ≤ n < 8k − 16 and put m = (n/2) + 2, or let n be an odd integer such
that 2k − 1 ≤ n < 6k − 13 and put m = (n + 3)/2. Let Cm = (v1v2 . . . vm) be a
cycle of order m and Pn−m = (vm+1vm+2 . . . vn) a path of order n−m. Then the join
G := Cm + Pn−m has no [k, k + 1]-factor containing Hamiltonian cycle (v1v2 . . . vn)
but satisfies δ(G) ≥ k and dG(x) + dG(y) ≥ n for all nonadjacent vertices x and y of
G.

We explain whyG has no such factor when n is even. By setting S = {vm+1, . . . , vn}
and T = {v1, . . . , vm} in (2), we obtain γ(S, T ) = (k−1)(n/2−2)−(k−2)(n/2+2)+2 <
0, which implies G has no such factor.
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