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Abstract

We present two symmetric function operators Hqt
3 and H

qt
4 that have the

property Hqt
mH(2a1b)(X; q, t) = H(m2a1b)(X; q, t). These operators are general-

izations of the analogous operator Hqt
2 and also have expressions in terms of

Hall-Littlewood vertex operators. We also discuss statistics, aµ(T ) and bµ(T ),
on standard tableaux such that the q, t Kostka polynomials are given by the
sum over standard tableaux of shape λ, Kλµ(q, t) =

∑
T t

aµ(T )qbµ(T ) for the
case when when µ is two columns or of the form (32a1b) or (42a1b). This pro-
vides proof of the positivity of the (q, t)-Kostka coefficients in the previously
unknown cases of Kλ(32a1b)(q, t) and Kλ(42a1b)(q, t). The vertex operator for-
mulas are used to give formulas for generating functions for classes of standard
tableaux that generalize the case when µ is two columns.

1 Introduction and Notation

A partition λ is a weakly decreasing sequence of non-negative integers with λ1 ≥
λ2 ≥ . . . ≥ λk ≥ 0. The length l(λ) of the partition is the largest i such that λi > 0.
The partition λ is a partition of n if λ1 + λ2 + · · ·+ λl(λ) = n. Young diagrams will
be drawn using the French notation with the longest row on the bottom and will be
identified with the partition itself by referring to a partition as a collection of cells.



the electronic journal of combinatorics 6 (1999), #R41 2

For every partition λ there is a corresponding conjugate partition denoted by λ′

where λ′i = the number of cells in the ith column of λ. The arm of a cell s in µ will
be denoted by aµ(s) and is the number of cells that lie to the east of s in µ. The leg,
lµ(s), is the number of cells in µ that are strictly north.

A skew partition is denoted by λ/µ, where it is assumed that µ ⊆ λ, and represents
the cells that are in λ but are not in µ. A skew partition λ/µ is said to be a horizontal
strip if there is at most one cell in each column. Denote the class of horizontal strips
of size k by Hk so that the notation λ/µ ∈ Hk means that λ/µ is a horizontal strip
with k cells. Similarly, the class of vertical strips (skew partitions with at most one
cell in each row) will be denoted by Vk.

If λ is a partition, then let λr denote the partition with the first row removed, that
is λr = (λ2, λ3, . . . , λl(λ)). Let λc denote the partition with the first column removed,
so that λc = (λ1 − 1, λ2 − 1, . . . , λl(λ) − 1). This allows us to define the border of
a partition µ to be the skew partition µ/µrc. Define the k-snake of a partition µ to
be the k bottom most right hand cells of the border of µ (the choice of the word
“snake” is supposed to suggest the cells that slink from the bottom of the partition
up along the right hand edge). We use the symbol htk(µ) to denote the numbers of
rows that k-snake occupies. The symbol µck will be used to represent a partition
with the k-snake removed with the understanding that if removing the k-snake does
not leave a partition then this symbol is undefined. Other authors sometimes refer
to the k-snake as a ‘special rim hook’ or ‘ribbon.’

Examples

λ = (5, 4, 2, 2, 1) λr = (4, 2, 2, 1) λc = (4, 3, 1, 1) λrc = (3, 1, 1)

· ·
· ·

· · ·
· ·

border(λ) = λ/λrc λc4 = (3, 2, 2, 2, 1) λc5 = undefined

If the shape of ρ = λck is given and the height of the k-snake is specified then λ

can be recovered (λ is determined from ρ by adding a k-snake of height h). This is
because λ = (ρh + k − h + 1, ρ1 + 1, ρ2 + 1, . . . , ρh−1 + 1, ρh+1, ρh+2, . . . , ρl(ρ)). This
will be a partition as long as k is sufficiently large.

We will consider the ring of symmetric functions in an infinite number of variables
as a subring of Q [x1 , x2, . . . ]. A more precise construction of this ring can be found
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in [19] section I.2 (and roughly, the notation of this reference will be followed).
The Macdonald integral basis [19] for the symmetric functions is defined by the

following two conditions

a) Jλ =
∏
s∈λ

(1− qaλ(s)tlλ(s)+1)sλ +
∑
µ<λ

sµcµλ(q, t)

(s ∈ λ means run over all cells s in λ)

b) 〈Jλ, Jµ〉qt = 0 for λ 6= µ

where 〈, 〉qt denotes the scalar product of symmetric functions defined on the power

symmetric functions by 〈pλ, pµ〉qt = δλµzλ
∏

k
1−qλk

1−tλk
(zλ is the size of the stablizer of

the permutations of cycle structure λ and δxy = 1 if x = y and 0 otherwise). The
coefficients cµλ(q, t) are determined by these two conditions and are rational functions
in q and t.

Also define an additional scalar product 〈pλ, pµ〉t = δλµzλ
∏

k
1

1−tλk
. The (q, t)-

Kostka coefficients are then given by the expression Kλµ(q, t) = 〈Jµ(X; q, t), sλ (X)〉t.
We will also refer to the basis Hµ(X; q, t) =

∑
λKλµ(q, t)sλ(X) that is of inter-

est in this paper as Macdonald symmetric functions. Define the basis Hµ(X; t) =
Hµ(X; 0, t) as Hall-Littlewood symmetric functions. The Hµ(X; t) are a transformed
version of the Hall-Littlewood polynomials defined in [19] and are analogous to the
Hµ(X; q, t).

We will use the notation of f⊥ to denote the adjoint to multiplication for a sym-
metric function f with respect to the standard inner product. Therefore

〈
f⊥g, h

〉
=

〈g, fh〉. Note that h⊥k and e⊥k act on the Schur function basis with the formulas

e⊥k sµ =
∑

µ/λ∈Vk

sλ h⊥k sµ =
∑

µ/λ∈Hk

sλ

A Schur symmetric function vertex operator is due to Bernstein [19, pp. 95-6]
and is given by the formula

Sm =
∑
k≥0

(−1)khm+k(X)e⊥k (1.1)

It has the property that for m ≥ µ1, Smsµ(X) = s(m,µ)(X).
Jing ([9], [5], [19])introduced a symmetric function vertex operator

H t
m =

∑
i,j≥0

tj(−1)ihm+i+j(X)e⊥i h
⊥
j =

∑
k≥0

tkSm+kh
⊥
k (1.2)

with the property that H t
mHµ(X; t) = H(m,µ)(X; t) for m ≥ µ1. This symmetric

function operator can be used to prove the existence of statistics on column strict
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tableaux such that Hµ(X; t) =
∑

T t
c(T )sλ(T )(X). The action of this operator on the

Schur function basis can be expressed as follows [23].

Proposition 1.1 Let λ be a partition of n, let m be a non-negative integer and let
k be any non-negative integer such that m+ k ≥ λ1.

Hmsλ(X) =
∑

µ/λ∈Hm+k

(−1)htk(µ)−1t|λ/µ
r |sµck(X) (1.3)

with the understanding that if µck is not defined then there is no contribution from
that term.

The object of this research is to find an analogous operator to H t
m for the Mac-

donald symmetric functions Hµ(X; q, t) and use it to derive statistics on standard
tableaux that count the terms in Hµ(X; q, t).

Introduce the notation for the operator that acts on symmetric functions of ho-
mogeneous degree n with the formula

H̄ t
m = ωH

1
t
mωR

t =
∑
i,j≥0

tn−j(−1)iem+i+j(X)h⊥i e
⊥
j (1.4)

where Rt is an operator with the property that RtP (X) = tnP (X) for P (X) a
homogeneous polynomial of degree n. In [22] we show that

Theorem 1.2 The operator
Hqt

2 = H t
2 + qH̄ t

2

has the property that Hqt
2 H(2a1b)(X; q, t) = H(2a+11b)(X; q, t).

In addition, we used this operator to show that there exists statistics aµ(T ) and
bµ(T ) on standard tableaux such that

Hµ(X; q, t) =
∑
T

qbµ(T )taµ(T )sλ(T )(X) (1.5)

where µ = (2a1b) and the sum is over standard tableaux of size 2a+ b.
This case was already considered by Susanna Fischel in [3] where it was shown

that the q, t-Kostka coefficients are a sum over a subclass of rigged configurations [11],
[12]. There exists a bijection between rigged configurations and standard tableaux,
but the isomorphism between the two sets of objects is not trivial [8], [13], [14]. This
case was also considered in [16] using a similar approach but with a different vertex
operator for the Macdonald polynomials.

The problem becomes more difficult when m = 3 and we will present here a
formula for the vertex operator that adds a row of size 3, but only works when it acts
on the Macdonald polynomials indexed by less than or equal two columns.
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Theorem 1.3 The operator

Hqt
3 = H t

3 + (e1(X)H t
2 −H

t
3)q + (e1(X)H̄ t

2 − H̄
t
3)q2 + H̄ t

3q
3

= (1− q)(H t
3 − q

2H̄ t
3) + qe1(X)Hqt

2

has the property that Hqt
3 H(2a1b)(X; q, t) = H(32a1b)(X; q, t).

We will also present an operator that adds a row of size 4 but again has the
property that it only works when it acts on Macdonald polynomials indexed by less
than or equal two columns.

Theorem 1.4 The operator

Hqt
4 = H t

4 + (h1H
t
3 −H

t
4)q + (h2H

t
2 −H

t
4)q2 + (e2H

t
2 − e1H

t
3 +H t

4)q3

+ (h2H̄
t
2 − h1H̄

t
3 + H̄ t

4)q3 + (e2H̄
t
2 − H̄

t
4)q4 + (e1H̄

t
3 − H̄

t
4)q5 + H̄ t

4q
6

= (1− q)(1− q2)(H t
4 + q3H̄ t

4)− q(1− q2)e1(H t
3 − q

2H̄ t
3)

+ q2(h2 + qe2)(H t
2 + qH̄ t

2)

= (1− q)(1− q2)(H t
4 + q3H̄ t

4) + q(1 + q)e1H
qt
3 − q

2(e2 + qh2)Hqt
2

has the property that Hqt
4 H(2a1b)(X; q, t) = H(42a1b)(X; q, t).

With the three operators Hqt
2 , Hqt

3 and Hqt
4 acting on H1b(X; q, t) all of the Mac-

donald polynomials up to n = 8 except (3, 3, 2) are quickly computable with a
computer algebra package such as Maple with John Stembridge’s ‘SF’ package or
Sébastien Veigneau’s package ‘ACE.’

These two formulas were arrived at by mix of chance, educated guessing, and
computer experimentation. The proofs of these operators are not very elegant, but
are also not very difficult to follow and only involve repeated applications of the
Macdonald Pieri formula [19]. They are nice because they are expressed in terms
of the Hall-Littlewood vertex operators and the action of these operators is well
understood [23]. If a formula for the general Macdonald vertex operator of this sort
exists, it will be of the same flavor as these but it will generalize the Hall-Littlewood
vertex rather than have an expression in terms of it.

In this paper, we will present statistics on standard tableaux that will show that
the Macdonald polynomials of the form H(32a1b)(X; q, t) and H(42a1b)(X; q, t), when
expanded in terms of Schur symmetric functions, have coefficients that are polyno-
mials in q and t with non-negative integer coefficients (symmetric functions with this
property will be called Schur positive).
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2 Formulas for H(32a1b)(X ; q, t) and H(42a1b)(X ; q, t)

An expansion for the Macdonald polynomials H(2a1b)(X; q, t) in terms of the Hall-
Littlewood symmetric functions was given in [20]. The coefficients there are factorable
and of a nice form. Theorem 1.1 in [20] is the following result

H(2a1b)(X; q, t) =
a∑
i=0

qa−i(qta+b−i+1; t)i
(t; t)a

(t; t)i(t; t)a−i
H(2i1b+2a−2i)(X; t) (2.1)

=
a∑
i=0

c
(a,b)
i H(2i1b+2a−2i)(X; t)

where (a; x)k = (1− a)(1− ax) · · · (1− axk−1).
Using a translation of the Pieri formula for Macdonald polynomials [19, p. 340,

eq. 6.24(iv)] onto the Hµ(X; q, t) basis and that µ is two columns wide, we can say
that

e1(X)H(2a+11b)(X; q, t) = AH(32a1b)(X; q, t) +BH(2a+21b−1)(X; q, t) (2.2)

+ CH(2a+11b+1)(X; q, t)

where

A =
(1− ta+1)(1− qta+b+1)

(1− q2ta+b+1)(1− qta+1)
(2.3)

B =
(1− tb)(1− q)

(1− qtb)(1− qta+1)
(2.4)

C =
(1− q)(1− q2tb)

(1− qtb)(1− q2ta+b+1)
(2.5)

Rearranging this formula to solve for H(32a1b)(X; q, t) gives

H(32a1b)(X; q, t) = A′e1(X)H(2a1b)(X; q, t)−B′H(2a+21b−1)(X; q, t) (2.6)

− C ′H(2a+11b+1)(X; q, t)

where

A′ =
(1− q2ta+b+1)(1− qta+1)

(1− ta+1)(1− qta+b+1)
(2.7)

B′ =
(1− q2ta+b+1)(1− tb)(1− q)

(1− ta+1)(1− qtb)(1− qta+b+1)
(2.8)

C ′ =
(1− q2tb)(1− qta+1)(1− q)

(1− ta+1)(1− qtb)(1− qta+b+1)
(2.9)
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The last two terms on the right hand side of equation (2.6) can be expanded in
terms of Hall-Littlewood symmetric functions using (2.1). The first term on the right
hand side of the equation can be expanded in terms of Hall-Littlewood symmetric
functions; by using (2.1), followed by formula (2.2) with q = 0, we have

e1(X)H(2x1y)(X; t) = H(2x1y+1)(X; t) + (1− ty)H(2x+11y−1)(X; t) (2.10)

+ (1− tx)H(32x−11y)(X; t)

Therefore, arriving at a formula for H(32a1b)(X; q, t) is a matter of applying for-
mulas (2.1) and (2.10) to (2.6). Unfortunately, the result is not nearly as nice as it
was in the case of (2.1).

Proposition 2.1

H(32a1b)(X; q, t) =
a∑
i=0

c
(a,b)
i (1− q2ta+b+1)(1− qta+1)H(32i12a+b−2i)(X; t)

+ qa+3H(12a+b+3)(X; t)

+
a+2∑
i=1

c
(a,b)
i q

(
(1− q2ta+b+1)(1− qta+1)

(1− ta+1−i)(1− qta+b+1−i)
(2.11)

+ q
(1− q2ta+b+1)(1− qta+1)(1− ti)(1− t2a+b+4−2i)

(1− qta+1+b−i)(1− ta+1−i)(1− ta+2−i)(1− qta+2+b−i)

− q
(1− q2ta+b+1)(1− tb)(1− q)(1− ta+2)

(1− ta+2−i)(1− qta+1+b−i)(1− ta+1−i)(1− qtb)

−
(1− q2tb)(1− qta+1)(1− q)(1− qta+b+2)

(1− qta+b+2−i)(1− qta+1+b−i)(1− ta+1−i)(1− qtb)

)
H(2i12a+b+3−2i)(X; t)

A slightly simpler expression for this result can be given after the vertex operator
is introduced, but it is not obvious when the coefficients of Proposition 2.1 are in a
reduced form.

The proof of Proposition 2.1 uses the following lemma that follows from standard
manipulations of the definition of

c
(a,b)
i = qa−i(qta+b−i+1; t)i

(t; t)a
(t; t)i(t; t)a−i

.
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Lemma 2.2 For 0 ≤ z < x

c(x,y)
z = c(x,y−1)

z

(1− qtx+y)

(1− qtx+y−z)
(2.12)

c(x,y)
z = c

(x,y)
z+1 q

(1− tz+1)

(1− tx−z)(1− qtx+y−z)
(2.13)

c(x,y)
z = c(x−1,y)

z q
(1− qtx+y)(1− tx)

(1− qtx+y−z)(1− tx−z)
(2.14)

There are no tricks involved in the reduction of (2.6) to Proposition 2.1, just
algebraic manipulation. Hence we leave the details of the proof to the reader who
may be able to discover a better expression. This proposition is necessary only for
comparison to a similar expression for Hqt

3 H(2a1b)(X; q, t). ◦

To derive a formula for H(42a1b)(X; q, t) we will use the same brute force method
for finding equations for the coefficients of the Hall-Littlewood symmetric functions.
If we add a horizontal strip of size 2 on a two column Macdonald symmetric function
by multiplying by g2(X; q, 0) where gr(X; q, t) is defined in [19, eq. 2.8, p. 311] then
we have the following terms

g2(X; q, 0)H(2a+11b)(X; q, t) =AH(2a+21b)(X; q, t) +BH(32a+11b−1)(X; q, t) +

CH(32a1b+1)(X; q, t) +DH(42a1b)(X; q, t) (2.15)

where A,B,C, and D are given as

A =
1

(1− q2ta+b+1)(1− qta+1)
(2.16)

B =
(1− tb)(1− qta+b+1)

(1− q)(1− q2ta+1)(1− qtb)(1− q2ta+b+1)
(2.17)

C =
(1− ta+1)(1− q2tb)

(1− q)(1− qtb)(1− q3ta+b+1)(1− qta+1)
(2.18)

D =
(1− ta+1)(1− qta+b+1)

(1− q)(1− q2)(1− q3ta+b+1)(1− q2ta+1)
(2.19)

Rearranging terms, we have

H(42a1b)(X; q, t) =A′H(2a+21b)(X; q, t) +B′H(32a+11b−1)(X; q, t) + (2.20)

C ′H(32a1b+1)(X; q, t) +D′g2(X; q, 0)H(2a+11b)(X; q, t)
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where A′, B′, C ′, and D′ are given as

A′ = −
(1− q)(1− q2)(1− q3ta+b+1)(1− q2ta+1)

(1− q2ta+b+1)(1− qta+1)(1− ta+1)(1− qta+b+1)
(2.21)

B′ = −
(1− tb)(1− q2)(1− q3ta+b+1)

(1− qtb)(1− q2ta+b+1)(1− ta+1)
(2.22)

C ′ = −
(1− q2tb)(1− q2)(1− q2ta+1)

(1− qtb)(1− qta+1)(1− qta+b+1)
(2.23)

D′ =
(1− q)(1− q2)(1− q3ta+b+1)(1− q2ta+1)

(1− ta+1)(1− qta+b+1)
(2.24)

Only the last term in this expression does not have an expression in terms of Hall-
Littlewood symmetric functions yet. As in the (32a1b) case, this can be computed by
translating [19, p. 340, eq. 6.24(i)] and setting q = 0. We have

h2(X)H(2x1y)(X; t) = H(2x+11y) + (1− ty)H(32x1y−1)(X; t) + (2.25)

(1− tx)H(32x−11y+1)(X; t) + (1− tx)H(42x−11y)(X; t)

and

h1(X)2H(2x1y)(X; t) =H(2x1y+2)(X; t)

+ (2− ty+1 − ty)H(2x+11y)(X; t)

+ (1− ty)(1− ty−1)H(2x+21y−2)(X; t)

+ 2(1− tx)H(32x−11y+1)(X; t)

+ (1− ty)(2− tx+1 − tx)H(32x1y−1)(X; t)

+ (1− tx)(1− tx−1)H(332x−21y)(X; t)

+ (1− tx)(1− t)H(42x−11y)(X; t) (2.26)

and

g2(X; q, 0) =
q

(1− q)(1− q2)
h2

1(X) +
1

1− q2
h2(X) (2.27)

The next proposition follows by taking coefficients in the formulas above.

Proposition 2.3 Let E′ = D′

(1−q)(1−q2)
and denote the coefficient of

H(32i12a+b−2i)(X; t) in H(32a1b)(X; q, t) (as given in Proposition 2.1) by d
(a,b)
i and the

coefficient of H(2i13+2a+b−2i)(X; t) in H(32a1b)(X; q, t) by e
(a,b)
i . The coefficients for the

symmetric function Hµ(X; t) in the Macdonald symmetric function H(42a1b)(X; q, t)
are given by the following table of expressions.
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µ = (2i14+2a+b−2i) A′c
(a+2,b)
i +B′e

(a+1,b−1)
i + C ′e

(a,b+1)
i + E′(1− q)c(a+1,b)

i−1 +

qE′
(
c

(a+1,b)
i + (2− t2a+b−2i+5 − t2a+b−2i+4)c

(a+1,b)
i−1

+(1− t2a+b−2i+6)(1− t2a+b−2i+5)c
(a+1,b)
i−2

)
(2.28)

µ = (32i11+2a+b−2i) B′d
(a+1,b−1)
i + C ′d

(a,b+1)
i + qE′

(
2(1− ti+1)c

(a+1,b)
i+1

+(1− t2a+b+2−2i)(2− ti+1 − ti)c(a+1,b)
i

)
(2.29)

+ E′(1− q)
(

(1− t2a+b+2−2i)c
(a+1,b)
i + (1− ti+1)c

(a+1,b)
i+1

)
µ = (332i12a+b−2i−2) qE′(1− ti+2)(1− ti+1)c

(a+1,b)
i+2 (2.30)

µ = (42i12a+b−2i) E′(1− ti+1)(1− qt)c(a+1,b)
i+1 (2.31)

where if j < 0 then c
(a,b)
j = 0 and the coefficients c

(a,b)
i , A′, B′, C ′ and D′ are all given

in the text above. For all µ that do not follow a pattern in this table, the coefficient
of Hµ(X; t) in H(42a1b)(X; q, t) is zero.

Although using this technique for computing expansions of Macdonald polyno-
mials might be used with other bases, here it seems that a general formula for the
expansion of Hµ(X; q, t) in terms of Hµ(X; t) will not be useful since patterns in the
coefficients do not seem to exist as they did in the case when µ = (2a1b). We will
show that these two particular expansions do have a use to make the computation of
Macdonald polynomials in these special cases much easier.

3 The Vertex operator Hqt
3

Our purpose in giving an expression for H(32a1b)(X; q, t) and H(42a1b)(X; q, t), is to
show that the operators given in Theorems 1.3 and 1.4 add a row of size 3 and 4
(respectively) to the Macdonald polynomials indexed by partitions with at most two
columns.

The vertex operators Hqt
3 and Hqt

4 are given as expressions using the H t
m and H̄ t

m

operators and so we will need the action of these operators on the Hall-Littlewood
basis.

Lemma 3.1

H̄ t
3H(2x1y)(X; t) = txH(2x1y+3)(X; t)− tx+y+1(1 + t)H(2x+11y+1)(X; t)

− tx+y+1(1− ty)H(2x+21y−1)(X; t) + t2x+y+1H(32x1y)(X; t)
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Proof: We note the following three commutation relations:

H̄ t
nH

t
m = tm−1H t

mH̄
t
n (3.1)

H t
m−1H

t
n = tH t

mH
t
n−1 + tH t

nH
t
m−1 −H

t
n−1H

t
m (3.2)

H t
mH

t
m+1 = tH t

m+1H
t
m (3.3)

A proof of (3.2) is in [19, p. 238] and (3.3) is a specialization of that. The proof
of equation (3.1) is the same as [22, Lemma 2.4].

For (3.2), in particular we have

H t
1H

t
3 = tH t

3H
t
1 − (1− t)H t

2H
t
2

And H̄3H(2x1y)(X; t) can be computed by calculating commutation relations.

H̄3H(2x1y)(X; t)

= tx
(
H t

2

)x
H̄ t

3H(1y)(X; t)

= tx
(
H t

2

)x (
H t

1

)y
H̄ t

31

= tx
(
H t

2

)x (
H t

1

)y (
H(13)(X; t)− (t+ t2)H(21)(X; t) + t2H(3)(X; t)

)
= txH(2x1y+3)(X; t)− tx(t+ t2)ty+1H(2x+11y+1)(X; t)

− tx+2ty−1(1− ty)H(2x+21y−1)(X; t) + tx+2tx+y−1H(32x1y)(X; t)

◦

We now give an outline of the proof of Theorem 1.3.

Proof: We use equation (2.1) and Lemma 3.1 and show that the expression is
equivalent to Proposition 2.1.

Hqt
3 H(2a1b)(X; q, t) =(1− q)H t

3H(2a1b)(X; q, t) + qe1(X)H(2a+11b)(X; q, t)

+ q2(q − 1)H̄ t
3H(2a1b)(X; q, t)

=(1− q)
a∑
i=0

c
(a,b)
i H(32i12a+b−2i)(X; t)

+ q

a+1∑
i=0

c
(a+1,b)
i e1(X)H(2i12a+2+b−2i)(X; t)

+ q2(q − 1)
a∑
i=0

c
(a,b)
i

(
tiH(2i12a+b−2i+3)(X; t)

− t2a+b−i+1(1 + t)H(2i+112a+b−2i+1)(X; t)

− t2a+b−i+1(1− t2a+b−2i)H(2i+212a+b−2i−1)(X; t)

+t2a+b+2H(32i12a+b−2i)(X; t))
)
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From here it is only algebraic manipulation to reduce the expression to one like

=
a∑
i=0

c
(a,b)
i (1− q2ta+b+1)(1− qta+1)H(32i12a+b−2i)(X; t) + qa+3H(12a+b+3)(X; t)

+
a+2∑
i=1

(
qc

(a+1,b)
i + (1− t2a+b+4−2i)qc

(a+1,b)
i−1 (3.4)

+ q2(q − 1)c
(a,b)
i ti − q2(q − 1)c

(a,b)
i−1 t

2a+b+2−i(1 + t)

−q2(q − 1)c
(a,b)
i−2 t

2a+b+3−i(1− t2a+b+4−2i)
)
H(2i12a+b+3−2i)(X; t).

By converting all coefficients in terms of c
(a,b)
i using equations (2.12), (2.13) and (2.14)

we derive the following expression

=
a∑
i=0

c
(a,b)
i (1− q2ta+b+1)(1− qta+1)H(32i12a+b−2i)(X; t) + qa+3H(12a+b+3)(X; t)

+
a+2∑
i=1

qc
(a,b)
i H(2i12a+b+3−2i)(X; t)

(
q

(1− qta+1+b)(1− ta+1)

(1− qta+1+b−i)(1− ta+1−i)

+ q2 (1− t2a+b+4−2i)(1− qta+1+b)(1− ta+1)(1− ti)

(1− qta+1+b−i)(1− ta+1−i)(1− ta+2−i)(1− qta+2+b−i)
(3.5)

+ q(q − 1)ti − q2(q − 1)
(1− ti)

(1− qta+b+1−i)(1− ta+1−i)
t2a+b+2−i(1 + t)

−q3(q − 1)
(1− ti)(1− ti−1)t2a+b+3−i(1− t2a+b+4−2i)

(1− qta+b+2−i)(1− ta+2−i)(1− qta+b+1−i)(1− ta+1−i)

)
which can be shown to be equivalent to Proposition 2.1 by more algebraic manipula-
tion or by appealing to a computer algebra package such as Mathematica. ◦

As a corollary, (3.4) is an expression for the expansion of H(32a1b)(X; q, t) in terms
of the basis Hµ(X; t) since it seems to be a slightly nicer expression for the Macdonald
polynomials than either (2.11) or (3.5).

We make the following substitution of notation to indicate what the pieces of this
operator represent. Define the following operators

H 1 2 3 = H t
3 H

2
1 3 = e1H

t
2 −H

t
3

H
3
1 2 = e1H̄

t
2 − H̄

t
3 H

3
2
1 = H̄ t

3

(3.6)
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Then notice that Hqt
3 has the expression

Hqt
3 = H

1 2 3 + qH
2
1 3 + q2H

3
1 2 + q3H

3
2
1 (3.7)

Suddenly the operator that has so far been very inelegant, looks like it is shap-
ing up. In the following sections we will show that not only is Hqt

3 H(2a1b)(X; q, t)

Schur positive, but so are all of the pieces of this expression (H 1 2 3H(2a1b)(X; q, t),

H
2
1 3H(2a1b)(X; q, t), H

3
1 2H(2a1b)(X; q, t), and

H

3
2
1H(2a1b)(X; q, t)) and that each is a generating function for a subclass of standard

tableaux.

4 The Vertex operator Hqt
4

As with the vertex operator Hqt
3 , we will use what we know about the action of H t

m

and H̄ t
m on the Hall-Littlewood basis to compute the action of (1 − q)(1− q2)(H t

4 +
q3H̄ t

4) + q(1 + q)e1H
qt
3 − q

2(e2 + qh2)Hqt
2 on equation (2.1). The only piece of this

equation that we have not already given an expression for is the action of H̄ t
4 on the

Hall-Littlewood symmetric functions.

Lemma 4.1 For a, b ≥ 0 we have

H̄ t
4H(2a1b)(X; t) =taH(2a1b+4)(X; t)− ta+b+1(1 + t+ t2)H(2a+11b+2)(X; t)

− ta+b+1(1 + t− tb − tb+1 − tb+2)H(2a+21b)(X; t)

− ta+b+1(1− tb−1)(1− tb)H(2a+31b−2)(X; t) (4.1)

+ t2a+b+2(1 + t)H(32a1b+1)(X; t)

+ t2a+b+2(1 + t)(1− tb)H(32a+11b−1)(X; t)

+ t2a+b+2(1− ta)H(332a−11b(X; t)− t2a+b+3H(42a1b)

Proof: First set a = 0, and prove that for all b greater than or equal to zero
we have that the theorem is true by induction using the identities (3.1), (3.3), and
(3.2) in the special cases of H̄ t

4H
t
1 = tH t

1H̄
t
4, H t

1H
t
4 = tH t

4H
t
1 + (t2− 1)H t

3H
t
2, H t

1H
t
3 =

tH t
3H

t
1 + (t− 1)H t

2H
t
2, and H t

1H
t
2 = tH t

2H
t
1. The base case is a calculation of

H̄ t
4(1) = H(14)(X; t)− t(1 + t+ t2)H(211)(X; t) + t3H(22)(X; t)

+ t2(1 + t)H(31)(X; t)− t3H(4)(X; t)

Now for a > 0 we have

H̄ t
4H(2a1b)(X; t) = tH t

2H̄
t
4H(2a−11b)(X; t)
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Using the relations H t
2H

t
3 = tH t

3H
t
2 and H t

2H
t
4 = H t

4H
t
2 + (t − 1)H t

3H
t
3, the result

follows. ◦

We are now ready to prove the vertex operator property.

Proof: (of Theorem 1.4)
For each µ that appears in Proposition 2.3 we take the coefficient of Hµ(X; t) in

the expression

Hqt
4 H(2a1b)(X; q, t) =(1− q)(1− q2)(H t

4 + q3H̄ t
4)H(2a1b)(X; q, t)

+ q(1 + q)e1(X)H(32a1b)(X; q, t)

− q2(h2
1(X) + (q − 1)h2(X))H(2a+11b)(X; q, t) (4.2)

We need Proposition 2.1, equations (2.1), (2.10), (2.25) , (2.26) and (4.1), and one
more translation of the Macdonald-Pieri rule.

e1(X)H(32a1b)(X; t) =H(32a1b+1)(X; t) + (1− tb)H(32a+11b−1)(X; t) (4.3)

+ (1− ta)H(332a−11b)(X; t) + (1− t)H(42a1b)(X; t)

As in Proposition 2.3, denote the coefficient ofH(32i12a+b−2i)(X; t) inH(32a1b)(X; q, t)

(as given in Proposition 2.1) by d
(a,b)
i and the coefficient of H(2i13+2a+b−2i)(X; t) in

H(32a1b)(X; q, t) by e
(a,b)
i .

If µ = (42i12a+b−2i), the coefficient is

(1−q)(1− q2)(1− t2a+b+3q3)c
(a,b)
i + q(1 + q)(1− t)d(a,b)

i

+ q2(1− ti+1)(t− q)c(a+1,b)
i+i (4.4)

If µ = (332i12a+b−2−2i), then the coefficient is

(1−q)(1− q2)q3t2a+b+2(1− ti+1)c
(a,b)
i+1 + q(1 + q)(1− ti+1)d

(a,b)
i+1

− q2(1− ti+2)(1− ti+1)c
(a+1,b)
i+2 (4.5)

If µ = (32i12a+b+1−2i), then the coefficient is

(1− q)(1− q2)q3t2a+b+2(1 + t)
(
c

(a,b)
i + (1− t2a+b+2−2i)c

(a,b)
i−1

)
+ q(1 + q)

(
(1− ti+1)e

(a,b)
i+1 + d

(a,b)
i + (1− t2a+b+2−2i)d

(a,b)
i−1

)
(4.6)

− q2
(

2(1− ti+1)c
(a+1,b)
i+1 + (1− t2a+b+2−2i)(2− ti+1 − ti)c(a+1,b)

i

+ (q − 1)
(

(1− t2a+b+2−2i)c(a+1,b)
i + (1− ti+1)c(a+1,b)

i+1

))
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Finally, if µ = (2i12a+b+4−2i), then the coefficient is

(1− q)(1− q2)q3
(
tic

(a,b)
i − t2a+b+2−i(1 + t+ t2)c

(a,b)
i−1

− t2a+b+3−i(1 + t− t2a+b+4−2i − t2a+b+5−2i − t2a+b+6−2i)c
(a,b)
i−2

− t2a+b+4−i(1− t2a+b+5−2i)(1− t2a+b+6−2i)c
(a,b)
i−3

)
+ q(1 + q)

(
e

(a,b)
i + (1− t2a+b+5−2i)e(a,b)

i−1

)
(4.7)

− q2
(
c

(a+1,b)
i + (2− t2a+b+5−2i − t2a+b+4−2i)c

(a+1,b)
i−1

+ (1− t2a+b+6−2i)(1− t2a+b+5−2i)c
(a+1,b)
i−2

+ (q − 1)c
(a+1,b)
i−1

)
These can be shown to be equivalent to Proposition 2.3 by hand (with an enormous

amount of patience) or by reducing these expressions on computer using a computer
algebra package such as Mathematica. ◦

We introduce the following notation as we did in the case of Hqt
3 to better demon-

strate the structure of this operator. Define the operators

H 1 2 3 4 = H t
4 H

2
1 3 4 = e1H

t
3 −H

t
4

H
3 4
1 2 +H

3
1 2 4 = h2H

t
2 −H

t
4 H

4
1 2 3 = h2H̄

t
2 − h1H̄

t
3 + H̄ t

4

H

3
2
1 4 = e2H

t
2 − e1H

t
3 +H t

4 H
2 4
1 3 +H

4
2
1 3 = e2H̄

t
2 − H̄

t
4

H

4
3
1 2 = e1H̄

t
3 − H̄

t
4 H

4
3
2
1 = H̄ t

4

(4.8)

I am unaware of how to separate the operators H
3 4
1 2 + H

3
1 2 4 and H

2 4
1 3 +H

4
2
1 3 ,

but proofs will work nearly as expected as long as we consider these as two single
entities. Notice that Hqt

4 has the expression

Hqt
4 =H 1 2 3 4 + qH

2
1 3 4 + q2

(
H

3 4
1 2 +H

3
1 2 4

)
+ q3

(
H

4
1 2 3 +H

3
2
1 4

)
(4.9)

+ q4

(
H

2 4
1 3 +H

4
2
1 3

)
+ q5H

4
3
1 2 + q6H

4
3
2
1
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These operators (and the ones for Hqt
3 ) were all defined so that they have the

relation ωHTω
∣∣∣
t→1/t

Rt = HωT (where ωT represents the diagram flipped about its

diagonal).

Using the relation Hµ′(X; q, t) = ωHµ(X; t, q), we note that ωH tq
2 ω, ωH tq

3 ω and
ωH tq

4 ω add a column of size 2, 3 and 4 respectively to a Macdonald polynomial
indexed by a two row partition.

These vertex operator formulas provide a fast method of computation on a com-
puter algebra package (such as Maple) of the Macdonald polynomials for partitions
with two rows, two columns, or of the form (32a1b), (ab1), (42a1b) or (ab12). Theorem
1.2, 1.3 and 1.4 are therefore enough to calculate all of the Macdonald polynomials
and the (q, t)-Kostka coefficients through n = 7 and all but one partition at n = 8,
(3, 3, 2).

The operators Hqt
2 , Hqt

3 and Hqt
4 can be modified so that they work on the

other Macdonald bases. Let V be the operator with the property V Jµ(X; q, t) =
Hµ(X; q, t). Define Jqtm = V −1Hqt

mV ; then Jqtm has the corresponding property on the
Jµ(X; q, t) basis. The formulas seem to take on an interesting form when expressed
in this way.

The methods presented here might be used to handle a few additional cases of
deriving formulas for vertex operators for Macdonald polynomials, but experimental
computations indicate that using the Hall-Littlewood vertex operators will not give
nice expressions in general. There seems to be another family of vertex operators
that has the Hall-Littlewood vertex operators as a special case that might be used
to show that the (q, t)-Kostka coefficients are polynomials with non-negative integer
coefficients.

5 Tableaux, charge, and two column Macdonald

polynomials

A column strict tableau is a diagram of a partition (or skew partition) with each cell
labeled with a positive integer such that the labels increase weakly traveling from left
to right in the rows and the labels increase strictly traveling from bottom to top in
the columns. A standard tableau is a column strict tableau with the numbers 1 to n
where n is the size of the partition.

Let T be a column strict tableau. Denote the shape of the tableau by λ(T ), the
total number of cells in the diagram by |T |, and the number of cells labeled with an i
by the symbol Ti. The content of the tableau will be the tuple µ(T ) = (T1, T2, . . . , Th)
(where h is the highest label that appears in the tableau). T is said to be of partition
content if the content vector µ(T ) is a partition. The content of a word is defined
similarly (the tuple consisting of (the number of 1’s in the word, the number of 2’s



the electronic journal of combinatorics 6 (1999), #R41 17

in the word, etc.)).

We begin by defining an algorithm for calculating the statistic called charge on
column strict tableaux of partition weight. This statistic was introduced by Lascoux
and Schützenberger.

First, charge is defined for words of content weight µ = 1n. An index is given to
each letter in the word. The index 0 is assigned to 1. If the letter i has index k then
the index of the letter i+ 1 is k if i + 1 lies to the left of i and the index is k + 1 if
i + 1 lies to the right of i. The charge of the word is defined to be the sum of the
indices.

If w is a word with content of partition weight then it is first broken up into
standard subwords by the following procedure. Place an x under the first 1 in the
word traveling from right to left. Next place an x under the first 2 traveling to the left
from there. Continue placing an x underneath each of the letters 1 through l(µ(w))
traveling from right to left and beginning again at the right side of the word each
time the left hand side is reached. The first standard subword consists of the letters
that have xs underneath them read from left to right. Erase these letters to form a
new word w′ and repeat the procedure forming the next standard subword with the
labels 1 through l(µ(w′)). Stop when all letters have been erased. The charge of the
word is then defined to be the sum of the charges of the standard subwords.

The reading word of a tableau is the word formed by reading the entries in the
cells in each of the rows from left to right, starting with the top row. Denote the
reading word of T by R(T ). Lastly, the charge of a tableau T is defined to be the
charge of the reading word of T . Denote the charge of a word w (or tableau T ) by
c(w) (respectively c(T )).

Example 5.1
7
3 4 6
2 2 3 5
1 1 1 2 4 8

A tableau of shape λ = (6, 4, 3, 1) and content µ = (3, 3, 2, 2, 1, 1, 1, 1). The reading
word of this tableau is 73462235111248. The word has standard subwords 73625148,
4231 and 12. The first standard subword has charge 6, the second charge 2, the third
charge 1. The charge of the tableau is 9.

If x, y and z are letters in the words u and v and w and w̃ are subwords then say
that two words u and v are elementary Knuth equivalent if either u = wxzyw̃ and
v = wzxyw̃ where x ≤ y < z or u = wyzxw̃ and v = wyxzw̃ where x < y ≤ z.
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Next say that two words u and v are Knuth equivalent and write u ∼ v if they are
in the symmetric, transitive, reflexive closure of the elementary Knuth equivalence.

There are several important facts about words and the charge of words that we
will use to develop statistics here. These are well known results and proofs can be
found in [18], [1], [2], [4].

Fact 5.2 Every word is equivalent to the reading word of a unique tableau with par-
tition shape.

Fact 5.3 If u ∼ v then c(u) = c(v).

Fact 5.4 If w = w11aw2 where w1 and w2 are subwords of w that do not contain 1
then c(w) = c((w2w1) ↓1) + |w2| where the notation of ↓k (dually, ↑k) indicates that
the letters of the word to the left of this symbol have their labels decreased (increased)
by k.

Fact 5.5 If w = x1x2 · · ·xn is a standard word, then

c(w) =

(
n

2

)
− c(xnxn−1 · · ·x1).

Fact 5.6 If w = x1x2 · · ·xn is a standard word and w is Knuth equivalent to the
reading word of a standard tableau T , then xnxn−1 · · ·x1 is Knuth equivalent to the
reading word of the conjugate tableau ωT .

The algorithm of Robinson-Schensted will be used implicitly throughout the fol-
lowing sections. Knowledge of the expressions row/column insertion/evacuation and
their relations to Knuth equivalence are assumed in some of the algorithms. Fre-
quently in the text we will identify a tableau with its reading word.

It is due to the development of this theory and the results of Lascoux and
Schützenberger [17], [18], [1], [23] that the Hall-Littlewood polynomials have in the
expansion Hµ(X; t) =

∑
T∈CSTµ t

c(T )sλ(T )(X) where CST µ is the collection of column
strict tableaux of content µ.

To describe the standard tableaux statistics for the case that the Macdonald poly-
nomials were indexed by (2a1b) we defined two procedures for building the standard
tableaux of size n+ 2 from those of size n. The statement of these definitions will be
for arbitrary m but for now set m = 2.

Let T be a standard tableau of shape λ ` n and let ρ be a partition of 2n + m
such that ρ/λ ∈ Hn+m. Consider the cells that are in λ and not in ρr and perform
one column evacuation for each cell from right to left so that cells are evacuated in
increasing order. Let the row of evacuated cells be R and the remaining tableau be
T̃ . Raise the labels of the cells of R and T̃ by m and row insert the labels 1 through
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m followed by all of R in increasing order. The result will be the definition of the
tableau Hρ

mT .
We may say that if Hρ

mT and ρ are given, T can be recovered by evacuating
12 · · ·mR (a row of size m+ |λ/ρr|) from Hρ

mT to leave T̃ of shape ρr. Denote this
reverse operation by (Hρ

m)−1.

Also define the operator that adds a column block of m cells to be the transpose
of the operation Hρ

mT . Again, let T be a standard tableau of shape λ ` n. Let
ρ ` n + m be a partition with ρ/λ ∈ Vn+m. Consider the cells that are in λ and
are not in ρc and perform one row evacuation for each cell from top to bottom so
that the cells are evacuated in increasing order. Let the column of evacuated cells
be C and the remaining tableau be T̃ . Raise the labels of the cells of C and T̃ by
m and column insert the labels 1, through m and all of C in increasing order. The
resulting tableau will be the definition of H̄ρ

mT . For the same reason as before, T can
be recovered if H̄ρ

mT and ρ are given.

Example 5.7 Let T =
2 4
1 3 5 6

Let ρ = (11, 3); then in the procedure we have that R = 2 4 5 and T̃ =

1 3 6 . The labels are all raised by two and 1, 2 and R are all inserted into T̃ to
form the tableau

Hρ
2T =

3 5 8
1 2 4 6 7

Consider the same tableau T , but now ρ = (4, 3, 17). In the procedure for adding

a column of size 2 we have that C = 6 and T̃ =
2 4
1 3 5

. Therefore,

H̄ρ
2T =

8
2 4 6
1 3 5 7

We also introduced the notion of the (2a1b) − type of a standard tableau. The
type is defined recursively by ‘unbuilding’ the standard tableau in blocks of size 2
(for now set m = 2 in the following definition).

If 1 2 m is a subtableau of T then let R be the first row of T and T̃ be T
with the first row of T removed. Define H−1

m T to be the tableau formed by column
inserting the labels in R that are not the labels 1 through m into T̃ in decreasing
order, and then lowering all of the labels in the result by m.

If

m

2
1

is a subtableau of T then let C be the first column of T and T̃ be T with the

first column of T removed. Define H−1
m T to be the tableau formed by row inserting
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the labels in C that are not a 1 through m into T̃ in decreasing order then lower all
of the labels in the result by m.

Now define the (2a1b)− type of T as follows.

• If a = 0 and µ = (1b) then typeµ(T ) = ( 1
b).

• If a > 1 and 2 lies to the right of 1 in T , then
type(2a1b)(T ) = ( 1 2 , type(2a−11b)(H

−1
2 T ))

• If a > 1 and 2 lies just above 1 in T , then
type(2a1b)(T ) =

(
2
1 , type(2a−11b)(H

−1
2 T )

)
Example 5.8 Let T =

3
2 6
1 4 5

.

H−1
2 T =

4
2
1 3

and H−1
2 H−1

2 T = 1 2

Therefore, type(23)(T ) =
(

2
1 ,

2
1 , 1 2

)
.

It was necessary to introduce more machinery in [22] to prove the following results.
Here we will take them as given without defining the handful of tableaux operators
that were necessary to verify that they are true. The first is Proposition 3.5 and the
second is Corollary 3.11 of [22].

Proposition 5.9 Let µ = (2a1b) and n = 2a + b. The statistics aµ(T ) and bµ(T )
from equation (1.5) may be defined to be

aµ(T ) = c(T )−
a∑
i=1

((n+ 1)− 2i)χ(typeµ(T )i = 1 2 )

bµ(T ) =
a∑
i=1

χ
(
typeµ(T )i = 2

1

)
Proposition 5.10 Let n = 2a + b and T ∈ ST n and let ρ be a partition of 2n + 2
such that ρ/λ(T ) ∈ Hn+2.

type(2a+11b)(H
ρ
2T ) = ( 1 2 , type(2a1b)(T ))

Similarly, if ρ/λ(T ) ∈ Vn+2 then

type(2a+11b)(H̄
ρ
2T ) =

(
2
1 , type(2a1b)(T )

)
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6 Statistics for µ = (32a1b) or µ = (42a1b)

When H t
m acts on a Macdonald symmetric function, we observe experimentally that

if m ≥ µ1 − 1, then H t
mHµ(X; q, t) is Schur positive. This can be explained for the

case that µ = (2a1b) where we have a combinatorial interpretation for the terms.
We then use this result to show that HSH(2a1b)(X; q, t) is Schur positive when S is a
standard tableau of size 3 or 4 where the HS operators are given in equations (3.6)
and (4.8).

The definition of type(2a+11b)(H
ρ
2T ) is ( 1 2 , type(2a1b)(H

−1
2 Hρ

2T )), so Proposition
5.10 is equivalent to type(2a1b)(H

−1
2 Hρ

2T ) = type(2a1b)(T ). First, extend this result for
all m ≥ 2.

In all of the results in this section we will assume that m ≥ 2.

Lemma 6.1 Let T ∈ ST n and let ρ be a partition of 2n + m such that ρ/λ(T ) ∈
Hn+m.

type(2a1b)(H
−1
m Hρ

mT ) = type(2a1b)(T )

Similarly, if ρ/λ(T ) ∈ Vn+m then

type(2a1b)(H
−1
m H̄ρ

mT ) = type(2a1b)(T )

Proof: We will just consider the first case since the proof of the second is mostly
a matter of changing Hθ

k to H̄θ
k and ‘row’ to ‘column.’

Let ρ̃ = λ(Hρ
mT )r. We claim that Hρ̃

2H
−1
m Hρ

mT = Hρ
2T .

Let S be the tableau of shape ρr formed by evacuating the cells in λ(T )/ρr and
let R be the evacuated cells in the procedures for calculating Hρ

mT and Hρ
2T . We will

analyze the procedures without making changes in the labels for Hρ
mT and instead

of inserting the labels 1 through m, insert m ‘spaces.’ The procedure for calculating
the right hand side says row insert two spaces and all of R into S.

The procedure for calculating the left hand side says row insert m spaces and all
of R into S. Next, row evacuate the entire first row of the result, throw away all but 2
of the spaces and reinsert what is left. Clearly, since row insertion and row evacuation
are inverses of each other, this is equivalent to the procedure for calculating the right
hand side.

The result follows from a couple of applications of Proposition 5.10, since

type(2a1b)(H
−1
m Hρ

mT ) = type(2a1b)(H
−1
2 Hρ̃

2H
−1
m Hρ

mT )

= type(2a1b)(H
−1
2 Hρ

2T ) (6.1)

= type(2a1b)(T )

◦
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Define an involution, Inλ , on partitions. Let γ = ρcn and h = htn(ρ). If λh > γh,
then define Inλ (ρ) = γ with an n-snake of height h + 1 added. If λh ≤ γh then let
Inλ (ρ) = γ with an n-snake of height h−1 added. Lemma 3.15 of [22] was the following
result.

Lemma 6.2 Inλ is an involution on the set of partitions ρ such that ρ/λ ∈ Hn, ρcn
exists, and λ 6= ρcn. The involution satisfies the equations htn(Inλ (ρ)) = htn(ρ) ± 1
and ρcn = Inλ (ρ)cn.

Example 6.3 Let n = 10, λ = (5, 5, 2), and ρ = (12, 5, 5). Then ρcn = (4, 4, 4) and
htn(ρ) = 3. Inλ (ρ) = (13, 5, 4) because Inλ (ρ) = (4, 4, 4) with a 10 snake of height 2
added.

Lemma 6.4 For a pair (T, ρ) where T a standard tableau and ρ/λ(T ) ∈ Hn+m,

c(Hρ
mT ) = c(T ) + |λ(T )/ρr|+

(
m

2

)
+ (m− 1)n (6.2)

Proof: We note that Hρ
mT = (T̃ ↑m)12 · · ·m(R ↑m) where T̃ and R are given in

the procedure for the calculation of Hρ
mT . T = RT̃ and |R| = |λ(T )/ρr|. Apply Fact

5.4 m times. ◦

Lemma 6.5 The following two conditions are equivalent for a pair (T, ρ) such that
ρ/λ(T ) ∈ Hn+m and ρcn exists.

H−1
m Hρ

mT = T (6.3)

λ(Hρ
mT ) = ρcn (6.4)

Moreover, if (T, ρ) satisfies these these conditions, then htn(ρ) = 1.

Proof: Since ρ/λ(Hρ
mT ) ∈ Hn then if λ(Hρ

mT ) = ρcn then we have that ρ/
ρcn ∈ Hn, and hence htn(ρ) = 1.

Let T̃ and R be (respectively) the tableau of shape ρr and the row of size |λ(T )/
ρr| in the procedure for Hρ

mT .
If λ(Hρ

mT ) = ρcn then ρcn = (ρ1 − n, ρr) = (m + |R|, ρr) hence the first row
of Hρ

mT (which must contain 12 · · ·m(R ↑m) since it was row inserted in increasing
order) is 12 · · ·m(R ↑m). Therefore H−1

m Hρ
mT = RT̃ = T .

If H−1
m Hρ

mT = T then the first row of Hρ
mT will be denoted by 12 · · ·mR̄ and the

remainder of the tableau will be called T̄ . We have that R̄T̄ = T and we want to
show that |R̄| = |R|. By Lemma 6.4 and repeated application of Fact 5.4 we have



the electronic journal of combinatorics 6 (1999), #R41 23

c(T ) = c(T̄12 · · ·mR̄)− |R| −

(
m

2

)
− (m− 1)n = c(T ) + |R̄| − |R| (6.5)

Therefore λ(Hρ
mT ) = (m+ |R|, ρr) = ρcn. ◦

Call a pair that satisfies the conditions of Lemma 6.5 stable and a pair (T, ρ) such
that ρ/λ(T ) ∈ Hn+m and ρcn exists and that does not satisfy the conditions of the
lemma, unstable. A pair (T, ρ) such that ρ/λ(T ) ∈ Hn+m and ρcn does not exist will
be called immaterial.

Lemma 6.6 There exists an involution In,m on pairs (T, ρ) that are unstable. The
corresponding pair (T̂ , ρ̃) = In,m(T, ρ) has the property that Hρ̃

mT̂ = Hρ
mT , htn(ρ̃) =

htn(ρ)± 1 and type(2a1b)(T ) = type(2a1b)(T̂ ).

Proof: Begin by setting λ = λ(Hρ
mT ) and ρ̃ = Inλ (ρ). The property that htn(ρ̃) =

htn(ρ)±1 follows from Lemma 6.2. We want to define T̂ = (Hρ̃
m)−1Hρ

mT , but it is not
always possible to apply (Hρ̃

m)−1 to a tableau. The first m columns of ρ and ρ̃ must
be the same because ρ1 and ρ̃1 are both at least n+ m and the leftmost m columns
of ρcn = ρ̃cn are the same as the leftmost m columns of both ρ and ρ̃. Therefore the
procedure for applying (Hρ̃

m)−1 to the tableau Hρ
mT evacuates the labels 12 · · ·m and

hence there is no problem defining T̂ in this way.
This is an involution since Inλ (ρ̃) = ρ and T = (Hρ

m)−1Hρ̃
mT̂ .

We also have Hρ̃
mT̂ = Hρ

mT , and hence by Lemma 6.1

type(2a1b)(T ) = type(2a1b)(H
−1
m Hρ

mT ) = type(2a1b)(H
−1
m Hρ̃

mT̂ ) = type(2a1b)(T̂ )

◦

Example 6.7 Let m = 2 and T =
5
4
1 2 3

and ρ = (8, 3, 1).

We calculate Hρ
2T =

6
3 4
1 2 5 7

and find that (T, ρ) is an unstable pair. ρ̃ =

(7, 4, 1) and T̂ = (Hρ̃
2)−1Hρ

2T =
4
1 2 3 5

.

Notice that the types of T , T̂ , and H−1
2 Hρ

2T are all the same.
type(2,2,1)(T ) = type(2,2,1)(T̂ ) = type(2,2,1)(H

−1
2 Hρ

2T ) = ( 1 2 , 1 2 , 1 ).
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Proposition 6.8

H t
mH(2a1b)(X; q, t) =

∑
T

q
b
(m2a1b)

(T )
t
a

(m2a1b)
(T )
sλ(T )(X)

where the sum is over standard tableaux T of size 2a+ b+m that contain 1 2 m

as a subtableau and b(m2a1b)(T ) = b(2a1b)(H
−1
m T ) and

a(m2a1b)(T ) =c(T )−

(
m

2

)
− (m− 1)(2a+ b)

−
a∑
i=1

((2a+ b+ 1)− 2i)χ(type(2a1b)(H
−1
m T )i = 1 2 )

Remark: For the case that m = 1, H t
1H(2a1b)(X; q, t) is also Schur positive, but not

because any of the lemmas in this section hold true and so the following proof does not
apply. There is an algebraic explanation for this fact. By using commutation relations
(3.1) and (3.3) and Theorem 1.2 we have H t

1H(2a1b)(X; q, t) = taH(2a1b+1)(X; qt−1, t).

Proof: Set n = 2a+ b. For m ≥ 0, the action of H t
m on the Schur function basis

is given in Proposition 1.1 and using equation (1.5), we have

H t
mH(2a1b)(X; q, t) =

∑
T

∑
ρ/λ(T )∈Hm+n

(−1)htk(ρ)−1q
b
(2a1b)

(T )
t
a

(2a1b)
(T )+|λ/ρr |

sρcn(X)

(6.6)

There is exactly one term in equation (6.6) for every pair (T, ρ) where T is a
standard tableau of size n and ρ is a partition such that ρ/λ(T ) ∈ Hm+n (ex-
actly the pairs for which Hρ

mT is defined). The weight of a pair (T, ρ) will be

(−1)htk(ρ)−1q
b
(2a1b)

(T )
t
a

(2a1b)
(T )+|λ/ρr |

sρcn(X). Note that the immaterial pairs have weight
zero. We will use the lemmas above to show that the unstable pairs cancel and we
will be left with the stable pairs which are in bijection with the standard tableaux
containing 1 2 m as a subtableau.

If (T, ρ) is an unstable pair then let (T̂ , ρ̃) = Im,n(T, ρ). Since the (2a1b)− types
are the same then we have that b(2a1b)(T ) = b(2a1b)(T̂ ) and by Proposition 5.9 and
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Lemma 6.4,

a(2a1b)(T ) + |λ(T )/ρr| = c(T ) + |λ(T )/ρr|

−
a∑
i=1

((n+ 1)− 2i)χ(type(2a1b)(T )i = 1 2 ) (6.7)

= c(Hρ
mT )−

(
m

2

)
− (m− 1)n

−
a∑
i=1

((n+ 1)− 2i)χ(type(2a1b)(T )i = 1 2 ) (6.8)

= c(Hρ̃
mT̂ )−

(
m

2

)
− (m− 1)n

−
a∑
i=1

((n+ 1)− 2i)χ(type(2a1b)(T̂ )i = 1 2 ) (6.9)

= c(T̂ ) + |λ(T̂ )/ρ̃r|

−
a∑
i=1

((n+ 1)− 2i)χ(type(2a1b)(T̂ )i = 1 2 ) (6.10)

= a(2a1b)(T̂ ) + |λ(T̂ )/ρ̃r| (6.11)

Therefore the unstable pairs (T, ρ) and (T̂ , ρ̃) have the same weight but opposite sign.
If (T, ρ) is a stable pair then by Lemma 6.5 the sign of the term is positive and

hence are the only terms that contribute to this sum. The map that sends (T, ρ) to
Hρ
mT is a bijection from these pairs to the standard tableaux that contain 1 2 m

as a subtableau. Also remark that by Proposition 5.9 and Lemma 6.4, for a tableau
of this sort

a(2a1b)(H
−1
m T ) + |λ(T )/ρr| = c(H−1

m T ) + |λ(T )/ρr| (6.12)

−
a∑
i=1

((n+ 1)− 2i)χ(type(2a1b)(H
−1
m T )i = 1 2 )

= c(T )−

(
m

2

)
− (m− 1)n (6.13)

−
a∑
i=1

((n+ 1)− 2i)χ(type(2a1b)(H
−1
m T )i = 1 2 )

Hence, the exponent of t in the weight of the pair agrees with our definition of
a(m2a1b)(T ). ◦
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Proposition 6.9

H̄ t
mH(2a1b)(X; q, t) =

∑
T

q
b
(m2a1b)

(T )−(m2 )ta(m2a1b)
(T )
sλ(T )(X)

where the sum is over standard tableaux T of size 2a + b + m that contain

m

2
1

as a

subtableau and for these tableaux, b(m2a1b)(T ) = b(2a1b)(H
−1
m T ) +

(
m
2

)
and

a(m2a1b)(T ) = c(T )−
a∑
i=1

((2a+ b+ 1)− 2i)χ(type(2a1b)(H
−1
m T )i = 1 2 )

Proof: All of the arguments and lemmas in this section can be transposed and
traced through for the case of H̄ t

m and H̄ρ
m, but an algebraic method is much easier.

Set n = 2a + b. We have Hµ(X; q, t) = ωtn(µ)qn(µ′)Hµ(X; 1/q, 1/t) where n(µ) =∑
i(i− 1)µi by [19, eq. 8.14, p.354], and hence

H̄ t
mH(2a1b)(X; q, t) = ωH1/t

m ωRtH(2a1b)(X; q, t) (6.14)

= ωH1/t
m tntn(2a1b)qn(a+b,a)H(2a1b)(X; 1/q, 1/t) (6.15)

= tn+n(2a1b)qa
∑
T

t
−a

(m2a1b)
(ωT )

q
−b

(m2a1b)
(ωT )

sλ(T )(X) (6.16)

=
∑
T

t
n+n(2a1b)−a

(m2a1b)
(ωT )

q
b
(m2a1b)

(T )−(m2 )sλ(T )(X) (6.17)

where the sum here is over all standard tableaux of size n + m that contain the

subtableau

m

2
1

.

The t exponent can be reduced after this using Proposition 6.8, Fact 5.5, and the
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relation a(2a1b)(ωT ) = n(2a1b)− a(2a1b)(T ).

n+ n(2a1b)− a(m2a1b)(ωT ) (6.18)

= n(2a1b)− c(ωT ) +

(
m

2

)
+mn

+
a∑
i=1

((n+ 1)− 2i)χ(type(2a1b)(ωH−1
m T )i = 1 2 ) (6.19)

= c(T )−

(
n

2

)
+ n(2a1b)

+
a∑
i=1

((n+ 1)− 2i)χ(type(2a1b)(ωH−1
m T )i = 1 2 ) (6.20)

= c(T )−
a∑
i=1

((n+ 1)− 2i)χ(type(2a1b)(H
−1
m T )i = 1 2 ) (6.21)

◦

To extend these results to H
2
1 3 and H

3
1 2 , recovering the statistics involves delet-

ing the first cell and then reducing to the two column case. We introduce the notation
of the operator Kh that acts on standard tableaux with more than h cells. The result
KhT is the tableau formed by deleting the cells with labels 1 through h (completely
removing them to form a skew diagram and bringing the resulting tableau to straight
shape) and then lowering the labels in the remaining tableau by h.

Proposition 6.10

H
2
1 3H(2a1b)(X; q, t) =

∑
T

q
b
(32a1b)

(T )−1
t
a

(32a1b)
(T )
sλ(T )(X)

where the sum is over standard tableaux T of size 2a + b + 3 that contain 2
1 3 as a

subtableau. For these tableaux set b(32a1b)(T ) = b(2a1b)(H
−1
2 K1T ) + 1 and

a(32a1b)(T ) = c(T )− 1− (2a+ b)

−
a∑
i=1

((2a+ b+ 1)− 2i)χ(type(2a1b)(H
−1
2 K1T )i = 1 2 )

Proof:

e1(X)H t
2H(2a1b)(X; q, t) =

∑
T

q
b
(2a+11b)

(K1T )
t
a

(2a+11b)
(K1T )

sλ(T )(X) (6.22)
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where the sum is over all standard tableaux T that contain either 1 2 3 or 2
1 3 .

For the tableaux that contain 1 2 3 , c(T ) = c(K1T ) + 2a+ b+ 2 and

a(2a+11b)(K1T ) = c(K1T )−
a+1∑
i=1

((2a+ b+ 3)− 2i)χ(type(2a+11b)(K1T )i = 1 2 )

= c(T )− (2a+ b+ 2)− (2a+ b+ 1) (6.23)

−
a+1∑
i=1

((2a+ b+ 1)− 2i)χ(type(2a1b)(H
−1
2 K1T )i = 1 2 )

For those tableaux that have H−1
3 T = H−1

2 K1T , it is clear that equation (6.23)
is equal to a(32a1b)(T ). For the rest we need verify that type(2a1b)(H

−1
2 K1T ) =

type(2a1b)(H
−1
3 T ).

Let T̄ = H−1
3 T so that T = H

(3+2a+b+λ(T )1,λ(T )r)
3 T̄ . Therefore we have that K1T =

K1H
(3+2a+b+λ(T )1 ,λ(T )r)
3 T̄ = H

(2+2a+b+λ(T )1,λ(T )r)
2 T̄ .

type(2a1b)(H
−1
2 K1T ) = type(2a1b)(H

−1
2 H

(2+2a+b+λ(T )1,λ(T )r)
2 T̄ ) = type(2a1b)(T̄ ) (6.24)

From this we can conclude

(e1(X)H t
2 −H

t
3)H(2a1b)(X; q, t) =

∑
T

q
b
(2a+11b)

(K1T )
t
a

(2a+11b)
(K1T )

sλ(T )(X) (6.25)

where the sum is over all standard tableaux T that contain 2
1 3 . For these tableaux

we have that c(T ) = c(K1T ) and hence

a(2a+11b)(K1T ) = c(K1T )−
a+1∑
i=1

((2a+ b+ 3)− 2i)χ(type(2a+11b)(K1T )i = 1 2 )

= c(T )− (2a+ b+ 1)

−
a∑
i=1

((2a+ b+ 1)− 2i)χ(type(2a1b)(H
−1
2 K1T )i = 1 2 )

◦

A similar proof verifies that the operator H
3
1 2 works as expected.

Proposition 6.11

H
3
1 2H(2a1b)(X; q, t) =

∑
T

q
b
(32a1b)

(T )−2
t
a

(32a1b)
(T )
sλ(T )(X)
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where the sum is over standard tableaux T of size 2a + b + 3 that contain 3
1 2 as a

subtableau. For these tableaux set b(32a1b)(T ) = b(2a1b)(H
−1
2 T̄ ) + 2 and

a(32a1b)(T ) = c(T )− 2− (2a+ b)

−
a∑
i=1

((2a+ b+ 1)− 2i)χ(type(2a1b)(H
−1
2 K1T )i = 1 2 )

These propositions together as well as Theorem 1.3 and equation (3.7) show the
following theorem.

Theorem 6.12

H(32a1b)(X; q, t) =
∑
T

q
b
(32a1b)

(T )
t
a

(32a1b)
(T )
sλ(T )(X)

where the sum is over all standard tableaux T of size 3 + 2a + b and a(32a1b)(T ) and
b(32a1b)(T ) are defined in Propositions 6.8, 6.9, 6.10 and 6.11.

Unfortunately, since there is no general formula for the HS (each one is a special
case) and each must be checked separately to show that they have the property that
HSH(2a1b)(X; q, t) is Schur positive.

For T a standard tableau of size 2a+ b+ 4 that contains the standard tableau S
of size 4 we will define

a(42a1b)(T ) =c(T )− αS − βS(2a+ b) (6.26)

−
a∑
i=1

((2a+ b+ 1)− 2i)χ(type(2a1b)(θS(T ))i = 1 2 )

b(42a1b)(T ) = b(2a1b)(θS(T )) + γS (6.27)

where αS, βS, θS(T ), and γS are given in Table 1.
The format for the statistics is the same, just a few variables change for each

equation. It is easier to give a table of values for the parts of this equation that
change than it is to describe a procedure for calculating them. Below is a table for
the statistics for H(42a1b)(X; q, t) The values in the table for H(32a1b)(X; q, t) follow
from Propositions 6.8, 6.9, 6.10 and 6.11.

Proposition 6.13 For each standard tableau S of size 4 except 3
1 2 4 , 3 4

1 2 , 2 4
1 3 and

4
2
1 3

we have

HSH(2a1b)(X; q, t) =
∑
T

q
b
(42a1b)

(T )−γS t
a

(42a1b)
(T )
sλ(T )(X)
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S αS βS θS(T ) γS HS

1 2 3 4 6 3 H−1
4 T 0 H t

4

2
1 3 4 3 2 H−1

3 K1T 1 e1H
t
3 −H

t
4

3
1 2 4 + 3 4

1 2 4 2 H−1
2 K2T 2 h2H

t
2 −H

t
4

4
1 2 3 5 2 H−1

2 K2T 3 h2H̄
t
2 − h1H̄

t
3 + H̄ t

4

3
2
1 4

1 1 H−1
2 K2T 3 e2H

t
2 − e1H

t
3 +H t

4

4
2
1 3

+ 2 4
1 3 2 1 H−1

2 K2T 4 e2H̄
t
2 − H̄

t
4

4
3
1 2

3 1 H−1
3 K1T 5 e1H̄

t
3 − H̄

t
4

4
3
2
1

0 0 H−1
4 T 6 H̄ t

4

1 2 3 3 2 H−1
3 T 0 H t

3

2
1 3 2 1 H−1

2 K1T 1 e1H
t
2 −H

t
3

3
1 2 1 1 H−1

2 K1T 2 e1H̄
t
2 − H̄

t
3

3
2
1

0 0 H−1
3 T 3 H̄ t

3

Table 1: Values for variable pieces of formulas (6.26) and (6.27)
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where the sum is over all standard tableaux T of size 4 + 2a+ b that contain S as a
subtableau. In addition we have(

H
3 4
1 2 +H

3
1 2 4

)
H(2a1b)(X; q, t) =

∑
T

q
b
(42a1b)

(T )−2
t
a

(42a1b)
(T )
sλ(T )(X)

where the sum is over all standard tableaux T of size 4 + 2a + b that contain either
3
1 2 4 or 3 4

1 2 . Furthermore,

(
H

2 4
1 3 +H

4
2
1 3

)
H(2a1b)(X; q, t) =

∑
T

q
b
(42a1b)

(T )−4
t
a

(42a1b)
(T )
sλ(T )(X)

where the sum is over all standard tableaux T of size 4 + 2a + b that contain either
2 4
1 3 or

4
2
1 3

.

The fact that H(42a1b)(X; q, t) is Schur positive follows immediately from this
proposition and Theorem 1.4 and equation (4.9).

Theorem 6.14

H(42a1b)(X; q, t) =
∑
T

q
b
(42a1b)

(T )
t
a

(42a1b)
(T )
sλ(T )(X)

where the sum is over all standard tableaux T of size 4 + 2a+ b.

Proof: (of Proposition 6.13)

We note that if T contains 1 2 3 4 or
4
3
2
1

, it is not necessarily the case that H−1
4 T =

H−1
3 K1T = H−1

2 K2T , but it will be true that type(2a1b)(H
−1
4 T ) = type(2a1b)(H

−1
3 K1T ) =

type(2a1b)(H
−1
2 K2T ). Similarly, if T contains

4
3
1 2

or 2
1 3 4 then in general it is not

true that H−1
3 K1T = H−1

2 K2T , but it will be true that type(2a1b)(H
−1
3 K1T ) =

type(2a1b)(H
−1
2 K2T ). This follows from a similar argument to the one used in equation

(6.24).
For each operator HS we must verify that it has the property stated in the propo-

sition. The cases of H 1 2 3 4 and H

4
3
2
1 follow from Proposition 6.8 and 6.9 respectively.

H
2
1 3 4 :
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Since H t
3H(2a1b)(X; q, t) is a generating function for the standard tableaux that

contain 1 2 3 , then e1(X)H t
3H(2a1b)(X; q, t) is a generating function for the standard

tableaux that contain 1 2 3 4 or 2
1 3 4 , that is

e1(X)H t
3H(2a1b)(X; q, t) =

∑
T

q
b
(2a1b)

(H−1
3 K1T )

t
a

(32a1b)
(K1T )

sλ(T )(X) (6.28)

To verify this proposition in this case we need to show that a(32a1b)(K1T ) = a(42a1b)(T )

for these tableaux. For the tableaux that contain 2
1 3 4 , this is true by definition. For

the tableaux that contain 1 2 3 4 , we note that c(K1T ) = c(T ) − (2a + b + 3) and
type(2a1b)(H

−1
4 T ) = type(2a1b)(H

−1
3 K1T ).

H
3 4
1 2 +H

3
1 2 4 :

h2H
t
2H(2a1b)(X; q, t) is a generating function for the standard tableaux that contain

3 4
1 2 , 3

1 2 4 or 1 2 3 4 as a subtableau.

h2(X)H t
2H(2a1b)(X; q, t) =

∑
T

q
b
(2a1b)

(H−1
2 K2T )

t
a

(2a+11b)
(K2T )

sλ(T )(X) (6.29)

We verify for these standard tableaux that a(2a+11b)(K2T ) = a(42a1b)(T ) For the

tableaux that contain 3 4
1 2 or 3

1 2 4 as standard subtableau we have that c(K2T ) =
c(T )−(2a+b+3). For the tableaux that contain 1 2 3 4 , c(K2T ) = c(T )−(2(2a+b)+5)
and we note that type(2a1b)(H

−1
3 K1T ) = type(2a1b)(H

−1
2 K2T ).

H

3
2
1 4 :
e2H

t
2H(2a1b)(X; q, t) is a generating function for the standard tableaux that contain

3
2
1 4

and 2
1 3 4 as a subtableau with the formula

h2(X)H t
2H(2a1b)(X; q, t) =

∑
T

q
b
(2a1b)

(H−1
2 K2T )

t
a

(2a+11b)
(K2T )

sλ(T )(X) (6.30)

The operator H

3
2
1 4 = e2H

t
2 − H

2
1 3 4 . We calculate that for the standard tableaux

that contain
3
2
1 4

, c(K2T ) = c(T ) and for the standard tableaux the contain 2
1 3 4 ,

c(K2T ) = c(T )− (2a+ b+ 2).

The verification of the cases for the operators with the transpose tableaux is nearly
identical, or an algebraic argument can be used. αS = 6 − αωS and βS = 3 − βωS
for all standard tableaux S of size 4. Let n = 2a + b. It follows from the relation

HS = ωHωS
∣∣∣
t→1/t

ωRt and equation (6.17)
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HωSH(2a1b)(X; q, t) =
∑
T

t
n+n(2a1b)−a

(42a1b)
(ωT )

q
n(a+b,a)−b

(42a1b)
(ωT )

sλ(T )(X)

where the sum is over all standard tableaux T that contain ωS.
Now for the statistic, we have

n+ n(2a1b)− a(42a1b)(ωT )

= n+ n(2a1b)− (c(ωT )− αS − βSn (6.31)

−
a∑
i=1

((2a+ b+ 1)− 2i)χ(type(2a1b)(θS(ωT ))i = 1 2 ))

= c(T )−

(
n+ 4

2

)
+

(
n

2

)
+ n+ αS + βSn (6.32)

−
a∑
i=1

((2a+ b+ 1)− 2i)χ(type(2a1b)(θωS(T ))i = 1 2 )

= c(T )− (3− βS)n− (6− αS) (6.33)

−
a∑
i=1

((2a+ b+ 1)− 2i)χ(type(2a1b)(θωS(T ))i = 1 2 )

= a(42a1b)(T ) (6.34)

◦

It makes sense here to generalize the notion of the type(2a1b) as it was introduced
in [22] to the case of (32a1b) and (42a1b). For m = 3 or 4,let T be a standard
tableau of size m+ 2a+ b that contains the standard tableau S of size m. Define the
type(m2a1b)(T ) = (S, type(2a1b)(θS(T ))) where θS(T ) is given in Table 1.

We finish this article by noting that experimental calculations indicates that the
following analog to Conjecture 4.8 of [22] seems to be true.

Conjecture 6.15 The number of tableaux of a fixed (m2a1b)− type, (S, s), and fixed
a(m2a1b) value, i, increases to a maximum and then decreases as i ranges over all
possible values.

More precisely stated, if S is a standard tableau of size m (m = 3 or 4) and
s is a sequence of a standard tableaux of size 2 and b of size 1, then let Ai(S,s) =

#{T |T ∈ STm+2a+b, type(m2a1b)(T ) = (S, s), a(m2a1b)(T ) = i}. The sequence A∗(S,s) =(
A0

(S,s), A
1
(S,s), A

2
(S,s), . . .

)
is unimodal.
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Example 6.16 Let s = ( 1 , 1 , 1 ) and let S range over all standard tableaux of size 3.

S = 1 2 3 A∗(S,s) = (1, 2, 3, 4, 2, 1, 1)

S = 2
1 3 A∗(S,s) = (2, 4, 6, 5, 4, 2, 1)

S = 3
1 2 A∗(S,s) = (1, 2, 4, 5, 6, 4, 2)

S =
3
2
1

A∗(S,s) = (1, 1, 2, 4, 3, 2, 1)

Let s = ( 1 , 1 ) and let S range over all standard tableaux of size 4. This partitions
all of the standard tableaux of size 6 into 10 different types.

S = 1 2 3 4 A∗(S,s) = (1, 2, 1, 1) S = 2
1 3 4 A∗(S,s) = (2, 4, 2, 1)

S = 3
1 2 4 A∗(S,s) = (2, 4, 2, 1) S = 4

1 2 3 A∗(S,s) = (1, 2, 3, 3)

S = 3 4
1 2 A∗(S,s) = (1, 2, 2, 1) S = 2 4

1 3 A∗(S,s) = (1, 2, 2, 1)

S =
3
2
1 4

A∗(S,s) = (3, 3, 2, 1) S =
4
2
1 3

A∗(S,s) = (1, 2, 4, 2)

S =
4
3
1 2

A∗(S,s) = (1, 2, 4, 2) S =
4
3
2
1

A∗(S,s) = (1, 1, 2, 1)

Example 6.17 Let s = ( 1 2 , 1 2 , 1 ) and S range over all standard tableaux of size 3.

S = 1 2 3 A∗(S,s) = (1, 4, 6, 8, 7, 6, 4, 2, 1, 1)

S = 2
1 3 A∗(S,s) = (2, 3, 8, 12, 13, 10, 8, 4, 2, 1)

S = 3
1 2 A∗(S,s) = (0, 0, 2, 7, 12, 14, 13, 9, 4, 2)

S =
3
2
1

A∗(S,s) = (0, 0, 1, 3, 5, 7, 7, 4, 2, 1)
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