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Abstract

An orthogonal coloring of a graph G is a pair {c1, c2} of proper colorings of G, having

the property that if two vertices are colored with the same color in c1, then they must

have distinct colors in c2. The notion of orthogonal colorings is strongly related to the

notion of orthogonal Latin squares. The orthogonal chromatic number of G, denoted by

Oχ(G), is the minimum possible number of colors used in an orthogonal coloring of G.

If G has n vertices, then the definition implies that d
√
n e ≤ Oχ(G) ≤ n. G is said to

have an optimal orthogonal coloring if Oχ(G) = d
√
n e. If, in addition, n is an integer

square, then we say that G has a perfect orthogonal coloring, since for any two colors x

and y, there is exactly one vertex colored by x in c1 and by y in c2.

The purpose of this paper is to study the parameter Oχ(G) and supply upper bounds

to it which depend on other graph parameters such as the maximum degree and the

chromatic number. We also study the structure of graphs having an optimal or perfect

orthogonal coloring, and show that several classes of graphs always have an optimal or

perfect orthogonal coloring. We also consider the strong version of orthogonal colorings,

where no vertex may receive the same color in both colorings.

1 Introduction

All graphs considered here are finite, undirected, and have no loops or multiple edges. For

the standard graph-theoretic and design-theoretic notations the reader is referred to [4] and
∗e-mail: yairc@macam98.ac.il
†e-mail: raphy@macam98.ac.il
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to [6]. A k-orthogonal coloring of a graph G, is a set {c1, . . . , ck} of proper colorings of G,

with the additional property that if u and v are two distinct vertices having the same color

in some coloring ci, then they must have distinct colors in all the other colorings cj where

j 6= i. A 2-orthogonal coloring is simply called an orthogonal coloring. The k-orthogonal

chromatic number of G, denoted by Oχk(G), is the minimum possible number of colors used

in a k-orthogonal coloring of G. When k = 2 we simply define Oχ(G) = Oχ2(G), to be the

orthogonal chromatic number of G. Clearly, we may take c1 to be a coloring which colors

every vertex by a distinct color, and ci = c1, for i = 2, . . . , k. This shows that Oχk(G) ≤ n,

where n is the number of vertices of G. (Note that, trivially, Oχk(G) ≤ Oχk+1(G)). On

the other hand, the definition implies that Oχ(G) ≥ χ(G), and also that Oχ(G) ≥ d√n e,
since otherwise, there are less than n possible color pairs. We can therefore summarize:

max{χ(G),
⌈√
n
⌉
} ≤ Oχ(G) ≤ Oχ3(G) ≤ . . . ≤ n. (1)

There are many graphs which satisfy Oχ(G) = d√n e. For example, Oχ(C5) = 3 as we

may color the cycle once by the colors (1, 2, 3, 1, 2) and then by the colors (3, 1, 3, 1, 2). Note

that we have Oχ(C5) = χ(C5). These observations naturally raise the following definitions:

1. G is said to have an optimal k-orthogonal coloring (k-OOC) for short) if Oχk(G) =

d√n e. A 2-OOC is simply called an OOC.

2. If n is an integer square and G has a k-OOC we say that G has a perfect k-orthogonal

coloring (k-POC for short), as, in this case, each ordered color pair appears in each

ordered pair of colorings in exactly one vertex. A 2-POC is simply called a POC.

An example of a graph having a POC is C9, since we may color the cycle first by

(1, 2, 3, 1, 2, 3, 1, 2, 3) and then by (1, 2, 1, 2, 3, 2, 3, 1, 3).

The notion of k-orthogonal colorings is strongly related to the notion of orthogonal Latin

squares. Recall that two Latin squares L1, L2 of order r are orthogonal if for any ordered

pair (s, t) where 1 ≤ s ≤ r and 1 ≤ t ≤ r, there is exactly one position (i, j) for which

L1(i, j) = s and L2(i, j) = t. It is well-known that orthogonal Latin squares exist for every

r /∈ {2, 6} (cf. [6]). A family of k-orthogonal Latin squares of order r, is a set of k Latin

squares every two of which are orthogonal. It is well-known that for every k, there exists

L(k), such that for every r ≥ L(k), there exists a family of k-orthogonal Latin squares of

order r (cf. [6], and [3] who showed that L(k) = O(k14.8)).

Given a family F = {L1, . . . , Lk} of k-orthogonal Latin squares of order r, we define

the graph U(F ) as follows: G has r2 vertices, which are denoted by the ordered pairs (i, j)

for i = 1, . . . r, j = 1, . . . , r. A vertex (i1, j1) is joined to a vertex (i2, j2) if for every

p = 1, . . . , k, Lp(i1, j1) 6= Lp(i2, j2). Note that U(F ) is regular of degree r2 − k(r − 1) − 1.
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The crucial fact is that Oχk(U(F )) = r, since we can define the colorings {c1, . . . , ck} in

the obvious way: cp((i, j)) = Lp(i, j). The pairwise-orthogonality of the members of F , and

the definition of U(F ) show that this is a k-orthogonal coloring of U(F ). Since the coloring

only uses r colors, and since the number of vertices is r2, we have that Oχk(U(F )) = r, and

that U(F ) has a k-POC. This discussion yields the following fact:

FACT 1: Let k and r be positive integers with r ≥ L(k). Let G be a subgraph of every

graph X with r2 vertices where X is r2 − k(r − 1) − 1-regular, then Oχk(G) ≤ r. If, in

addition, G has r2 vertices, then G has a k-POC.

U(F ) is a graph which can be obtained from the complete graph Kr2 be deleting k

edge-disjoint Kr-factors, since each Latin square Li ∈ F eliminates one Kr-factor from Kr2 ,

where every Kr in this factor corresponds to r cells having the same symbol in Li. The fact

that the distinct Kr-factors are edge-disjoint follows from the pairwise-orthogonality of the

members of F . It is interesting to note that in case k = 2, the graph U(F ) (considered as

an unlabeled graph) is independent of the actual Latin squares {L1, L2}. This is because

whenever we delete two edge-disjoint Kr-factors from Kr2 , we always get the same graph,

which we denote by Ur. We therefore call Ur the universal orthogonal graph of order r.

Note that Ur exists for every r ≥ 1, although for r = 2, 6 there is no corresponding pair

of orthogonal Latin squares. For example, U2 = 2K2, since by deleting two independent

edges from K4 we get C4, and then deleting another pair of independent edges we get 2K2.

Now put Ur = Kr2 \ {F1, F2} where F1 is the first Kr-factor deleted from Kr2 and F2 is the

second Kr factor deleted from Kr2 \ {F1}. We can associate each vertex v of Ur with an

ordered pair of integers (i, j), 1 ≤ i ≤ r and 1 ≤ j ≤ r, where i is the serial number of the

clique Kr in F1 containing v, and j is the serial number of the clique Kr in F2 containing

v. This association shows that for all r, Oχ(Ur) = r and Ur has a POC. Another obvious

result of this association is that every graph G with Oχ(G) ≤ r is isomorphic to a subgraph

of Ur, since we may map v ∈ G colored with (i, j) to the vertex of Ur associated with the

pair (i, j). We can summarize this discussion in the following statement:

FACT 2: Let r be a positive integer. A graph G is isomorphic to a subgraph of Ur if and

only if Oχ(G) ≤ r. If, in addition, G has r2 vertices, then G has a POC.

A related concept to orthogonal coloring is the notion of orthogonal edge coloring, in-

troduced in [2]. In this case, one requires two proper edge colorings with the property that

any two edges which receive the same color in the first coloring, receive distinct colors in

the second coloring. For a survey of the results on orthogonal edge colorings the reader

is referred to [1]. The results on orthogonal edge coloring naturally translate to results

on orthogonal vertex coloring when one considers line graphs. In this paper we study the

parameter Oχk(G), with our main attention on Oχ(G). In section 2 we supply several

upper bounds to Oχ(G) and Oχk(G) which depend on other graph parameters such as the
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maximum degree and the chromatic number. In some cases we are able to obtain exact

results. In particular, we prove the following theorems:

Theorem 1.1 Let G be a graph with n vertices, and with maximum degree ∆. Then

Oχ(G) ≤
⌈

n

∆ + 1

⌉
+ ∆.

Furthermore, if n > ∆(∆ + 1) then the r.h.s. can be reduced by 1. For k ≥ 2 the following

upper bound holds:

Oχk(G) ≤ min{2
√
k − 1 max{∆,

√
n} , (k − 1)

⌈
n

∆ + 1

⌉
+ ∆}.

Theorem 1.2 Let G be a graph with n vertices, and with χ = χ(G). Then

Oχ(G) ≤ Oχ3(G) ≤ χ+
√
χ
√
n.

For k ≥ 4 we have that

Oχk(G) < χL(k − 2) + χ+
√
χ
√
n.

Furthermore, for every χ and k there exists N = N(χ, k) such that if n > N then Oχk(G) ≤
χ+
√
χ
√
n.

Theorem 1.3 Let G be a complete t-partite graph with vertex classes of sizes s1, . . . , st.

Then,

Oχ(G) =
t∑
i=1

d√si e − bm/2c

where m is the number of vertex classes whose size si satisfies
⌈√
si
⌉ ⌊√

si
⌋
≥ si but is not

an integer square.

Recall that a graph G is d-degenerate if we may order the vertices of G such that every

vertex has at most d neighbors preceding it in the ordering. Such an ordering is called

a d-degenerate ordering. For example, trees are 1-degenerate and planar graphs are 5-

degenerate. Obviously, d-degenerate graphs have a greedy coloring with d+ 1 colors. The

next theorem bounds the k-orthogonal chromatic number of d-degenerate graphs.

Theorem 1.4 Let G be a d-degenerate graph with n vertices. If t satisfies

(t− d)k >

(
k

2

)
(n− d− 1)tk−2

then Oχk(G) ≤ t. Consequently, for k = 2 we get

Oχ(G) ≤ d+
⌈√

n− d
⌉
.
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In Section 3 we consider graphs having an OOC or a POC. We prove several extensions of

Facts 1 and 2, and, in particular, we show that every graph with maximum degree which is

not too large has a k-OOC:

Theorem 1.5 If G is an n-vertex graph satisfying n ≥ L(k − 2)2, and ∆(G) ≤ (
√
n −

1)/(2k), then G has a k-OOC. In particular, if n is a perfect square, then G has a k-POC.

(Note that for k = 2, 3 the condition n ≥ L(k − 2)2 is vacuous, so in these cases, Theorem

1.5 applies to every n). In section 4 we consider strong orthogonal colorings in which no

vertex is allowed to receive the same color in both colorings. We will show the existence of

a non-trivial family of graphs which are perfect w.r.t strong orthogonality. The final section

contains some concluding remarks and open problems.

2 Upper bounds

In this section we prove Theorems 1.1-1.4 which all give upper bounds to Oχ(G) and

Oχk(G). Depending on the graph, each theorem may give a different estimate. The first

theorem supplies a useful upper bound for graphs with a rather large chromatic number.

Proof of Theorem 1.1: We shall use the result of Hajnal and Szemerédi [7], which states

that every graph has a proper vertex coloring with ∆ + 1 colors, in which every color class

contains at most dn/(∆ + 1)e vertices and at least bn/(∆ + 1)c vertices. Let c1 be such a

coloring of G. Now add to G edges between each two vertices colored the same by c1. The

resulting graph, denoted by G1 has maximum degree

∆(G1) ≤ ∆ +
⌈

n

∆ + 1

⌉
− 1.

Let c2 be a greedy coloring of G1 with ∆(G1) + 1 colors. The definition of G1 implies that

c1 and c2 are orthogonal. Since the number of colors used by c1 is ∆+1 ≤ ∆+dn/(∆ + 1)e,
it follows that

Oχ(G) ≤ ∆ +
⌈

n

∆ + 1

⌉
.

We can improve this bound in case n > ∆(∆ + 1). We will show that in this case, G1

satisfies the conditions of the theorem of Brooks [4]. Put x = ∆ + dn/(∆ + 1)e. We first

show that G1 does not have a clique of order x. Assume X is any set of x vertices in G1.

There are at most x ·∆/2 edges of G with both endpoints in X . Each vertex is adjacent

in G1 to at most dn/(∆ + 1)e − 1 vertices to which it was not adjacent in G. Thus, there

are at most x · (dn/(∆ + 1)e − 1)/2 such edges with both endpoints in X. Summing up,

there are at most x(x− 1)/2 edges in G1 with both endpoints in X, where the only way to

achieve this number is if X is a union of y = x/ dn/(∆ + 1)e vertex classes of c1 with size

dn/(∆ + 1)e each. Namely, if (∆ + dn/(∆ + 1)e)/ dn/(∆ + 1)e is an integer, which imposes
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that ∆ be a multiple of dn/(∆ + 1)e. This, however, is impossible, since n > ∆(∆ + 1).

Thus, X is not a clique. Consequently, G1 does not have a clique of order x. Also, note that

if ∆ > 1 then x > 3, and if ∆ = 1 the claim holds trivially, so in any case, the Theorem of

Brooks applies to G1, and G1 has a coloring c2 with x− 1 colors. As before, c1 and c2 are

orthogonal, and c1 uses only ∆ + 1 colors, which is not greater than x− 1. Thus,

Oχ(G) ≤ x− 1 = ∆ +
⌈

n

∆ + 1

⌉
− 1.

For k ≥ 2 we may use a recursive application of the Hajnal and Szemerédi Theorem.

Instead of coloring G1 using a greedy coloring, we can color it once again using ∆(G1) + 1

colors using the Hajnal and Szemerédi result. Denote this coloring by c2. We now define

G2 by adding to G1 edges between two vertices having the same color in c2. Clearly,

∆(G2) ≤ dn/(∆(G1) + 1)e+ ∆(G1) − 1. After k − 1 applications we obtain a graph Gk−1

with ∆(Gk−1) ≤ dn/(∆(Gk−2) + 1)e + ∆(Gk−2) − 1. We may color Gk−1 greedily using,

say, ∆(Gk−1) + 1 colors, and denote the final coloring by ck. The construction shows that

{c1, . . . , ck} is a family of k-orthogonal colorings of G. The recurrence equation ∆(Gp) ≤
dn/(∆(Gp−1) + 1)e + ∆(Gp−1) − 1 for p = 1, . . . , k − 1 (define G = G0) is dominated by

both 2
√
p∆(G0) = 2

√
p∆, assuming ∆ ≥

√
n, and by p dn/(∆ + 1)e+ ∆− 1. Thus,

Oχk(G) ≤ min{2
√
k − 1 max{∆,

√
n} , (k − 1)

⌈
n

∆ + 1

⌉
+ ∆}.

Note that whenever ∆ ≥ k1/4√n the estimate (k − 1) dn/(∆ + 1)e + ∆ is better than the

estimate 2
√
k − 1∆. 2

If the chromatic number of G is large (say, greater than
√
n), and close to the maximum

degree, then the estimate in Theorem 1.1 is very good. For example, consider a graph with

χ(G) = nα and ∆(G) = nα+ε where α > 0.5 and ε ≥ 0 is small. By (1) and by Theorem

1.1 we have that

nα ≤ Oχ(G) ≤ nα+ε + n1−α−ε + 1 = nα+ε(1 + o(1)).

Theorem 1.2 supplies a useful bound for graphs with a rather small chromatic number.

Before proving it, we need the following lemma:

Lemma 2.1 Let It denote the independent set of size t. Then, Oχ(It) = Oχ3(It) =
⌈√

t
⌉
,

and if k ≥ 4 then Oχk(It) ≤ max{
⌈√

t
⌉
, L(k − 2)}.

Proof: Let p be a positive integer, and let k ≥ 3. Suppose there exist k − 2 orthogonal

Latin squares of order p. We claim that Ip2 has a k-POC. Let L1, . . . , Lk−2 be k − 2

orthogonal Latin squares or order p. We first assign to every vertex v of Ip2 a distinct pair

of indices (i, j) where 1 ≤ i ≤ p and 1 ≤ j ≤ p. We now define the k orthogonal colorings
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c1, . . . , ck. Assume that v is assigned the pair (i, j). Then we define c1(v) = i, c2(v) = j

and cs(v) = Ls−2(i, j) for s = 3, . . . , k. It is easily verified that c1, . . . , ck are pairwise

orthogonal.

Trivially, L(1) = 1, since there exists a Latin square of every positive order. In any case,

if
⌈√

t
⌉
≥ L(k − 2), then by the proof above, Oχk(It) =

⌈√
t
⌉
, and therefore, Oχk(It) ≤

max{
⌈√

t
⌉
, L(k−2)}, for every k ≥ 3. Since L(1) = 1 and since

⌈√
t
⌉
≤ Oχ(It) ≤ Oχ3(It)

we also have Oχ(It) = Oχ3(It) =
⌈√

t
⌉
. 2

Proof of Theorem 1.2: We partition the vertices of G into χ independent sets, denoted

by C1, . . . , Cχ. By using disjoint color sets for each Ci, i = 1, . . . , χ, and by applying Lemma

2.1 to each Ci we obtain that for k = 2, 3

Oχk(G) ≤
χ∑
i=1

⌈√
|Ci|

⌉
,

and for k ≥ 4,

Oχk(G) ≤
χ∑
i=1

max{
⌈√
|Ci|

⌉
, L(k − 2)}.

Since |C1| + . . . + |Cχ| = n, it follows by an elementary convexity argument that the last

two inequalities are maximized when all the sets have equal size. Thus, for k = 2, 3

Oχk(G) ≤
χ∑
i=1

⌈√
n

χ

⌉
≤ χ+

√
χ
√
n,

and for k ≥ 4, if s denotes the number of vertex classes whose size is less than L(k − 2)2

then

Oχk(G) ≤ sL(k − 2) + (χ− s)
⌈√

n

χ− s

⌉
≤ sL(k − 2) + (χ− s) +

√
χ− s

√
n

< χL(k − 2) + χ+
√
χ
√
n.

If n is sufficiently large then sL(k − 2) ≤
√
n(
√
χ−√χ− s), and thus

Oχk(G) ≤ χ+
√
χ
√
n.

2

Theorem 1.3 shows that the orthogonal chromatic number of complete partite graphs

can be computed exactly.

Proof of Theorem 1.3: Let S1, . . . , St denote the vertex classes of G, where |Si| = si,

and the sizes of the first m classes have the property that si is not an integer square and⌈√
si
⌉ ⌊√

si
⌋
≥ si. We first create an orthogonal coloring {c1, c2} with the required number

of colors. For i = m+1, . . . , t we use
⌈√
si
⌉

distinct colors to color the vertices of Si in both

c1 and c2, while maintaining orthogonality. This can be done since Si is an independent
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set. If m is odd, then Sm is also colored with
⌈√
sm
⌉

distinct colors in both c1 and c2. We

now consider the bm/2c pairs of classes {S1, S2}, . . . , {S2bm/2c−1, S2bm/2c}. In coloring the

vertices of each of these pairs we proceed as follows. Assume the pair is {Si, Si+1}, and let

{w1, . . . , wz} be a set of z distinct colors where z =
⌈√
si
⌉

+
⌈√
si+1

⌉
− 1. Consider all the

ordered pairs of colors of the form (wp, wq) where 1 ≤ p ≤
⌊√
si
⌋

and 1 ≤ q ≤
⌈√
si
⌉
. There

are at least si such pairs, so we may color the vertices of Si with these pairs, where the first

coordinate is the color in c1 and the second is the color in c2. Now consider all the ordered

pairs of colors of the form (wp, wq) where
⌊√
si
⌋

+ 1 ≤ p ≤ z and
⌈√
si
⌉

+ 1 ≤ q ≤ z. There

are at least si+1 such pairs, so we may color the vertices of Si+1 with these pairs where the

first coordinate is the color in c1 and the second is the color in c2. Note that no vertex of

Si receives the same color as a vertex of Si+1 in neither c1 nor c2. Summing up over all the

distinct sets of colors we have used at most
∑t
i=1

⌈√
si
⌉
− bm/2c colors. Thus

Oχ(G) ≤
t∑
i=1

d√si e − bm/2c .

We now need to show that any orthogonal coloring requires at least this number of colors.

Let {c1, c2} be an orthogonal coloring of G. The colors used by c1 in Si cannot be used in

any Sj for j 6= i since c1 is proper. The same holds for c2. Let ai and bi denote the number

of colors used in Si by c1 and c2, respectively. Thus, c1 uses a1 + . . .+ at colors and c2 uses

b1 + . . .+ bt colors. Since c1 and c2 are orthogonal, we know that aibi ≥ si for i = 1, . . . , t.

The overall number of colors used by the pair {c1, c2} is

max{
t∑
i=1

ai,
t∑
i=1

bi} ≥
⌈∑t

i=1(ai + bi)
2

⌉
.

Since aibi ≥ si, the r.h.s. of the last inequality is minimized when ai+bi = 2
⌈√
si
⌉

if i > m,

and when ai + bi =
⌈√
si
⌉

+
⌊√
si
⌋

= 2
⌈√
si
⌉
− 1 if i ≤ m. Thus,

Oχ(G) ≥
⌈∑t

i=1 2
⌈√
si
⌉
−m

2

⌉
=

t∑
i=1

d√si e − bm/2c .

2

As an example, we have that Oχ(K6,6) = 5 since 6 is not an integer square and 2 · 3 ≥ 6, so

m = 2 in this case. Note that the same reasoning yields Oχ(K5,5) = 5 and Oχ(K5,4) = 5.

Proof of Theorem 1.4: Consider a d-degenerate ordering {v1, . . . , vn} of the vertices of

G. We need to create a set {c1, . . . , ck} of k-orthogonal colorings. We prove the theorem

by coloring the vertices one by one while maintaining orthogonality. Coloring v1, . . . , vd is

trivial, since we may define, say, cj(vi) = i for all j = 1, . . . , k and i = 1, . . . , d. Note that

t ≥ d so we are still within bounds. Assume we have successfully colored v1, . . . , vi−1 (i > d)

by using no more than t colors. We now wish to color vi. Let R be the set of neighbors of
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vi in G which have already been colored. Clearly, |R| ≤ d. Without loss of generality, we

may assume |R| = d. There are at most d colors used in R in the coloring cj. Thus, there

are at least t− d ways to extend cj to vi while still maintaining that cj is a proper coloring.

Overall, there are at least (t− d)k ways to extend all the colorings to vi, and still have that

all the colorings are proper. We still need to show that at least one of these extensions

maintains orthogonality. Consider a vertex vj where j < i and j /∈ R. Any extension of

the colorings to vi which satisfies that for some distinct colorings cx and cy cx(vj) = cx(vi)

and cy(vj) = cy(vi) is illegal. This eliminates at most tk−2 extensions of the colorings to vi.

Since this holds for every pair of distinct colorings and for all the i−d− 1 vertices vj where

j < i and j /∈ R, there are at most
(k
2

)
(i− d− 1)tk−2 illegal extensions. This still leaves at

least one legal extension since (t− d)k >
(k

2

)
(i− d− 1)tk−2.

For k = 2 we can solve this inequality explicitly and obtain that if t > d+
√
n− d− 1 then

Oχ(G) ≤ t. In particular, Oχ(G) ≤ d+ 1 +
⌊√

n− d− 1
⌋

= d+
⌈√

n− d
⌉
. 2

Theorem 1.4 is rather tight since Oχ(G) ≥ d√n e always. In fact, for every d, we can show

that there exist d-degenerate graphs G for which Oχ(G) = d +
⌈√

n− d
⌉
. Consider the

graph Gn,d = In−d ∗Kd which is defined by taking an independent set of order n− d and a

clique of order d and joining every vertex of the clique with every vertex of the independent

set. It is easy to see that Gn,d is d-degenerate and that χ(Gn,d) = d+ 1. We claim that we

cannot color Gn,d orthogonally with less than d+
⌈√

n− d
⌉

colors. Consider two orthogonal

colorings c1 and c2 of Gn,d. Since they are orthogonal on In−d, at least one of them uses⌈√
n− d

⌉
colors on In−d, and, obviously, an additional set of d colors on Kd.

3 Optimal and perfect orthogonal colorings

In this section we focus on graphs having a k-OOC or a k-POC. Clearly, if χ(G) > d√n e
then G does not have a k-OOC. Hence, there exist graphs G with ∆(G) = d

√
n e which do

not have a k-OOC (e.g. any graph G on n vertices with ∆(G) = d
√
n e having a clique on

d√n e + 1 vertices as a connected component). It turns out that graphs with a somewhat

lower maximum degree, but still with ∆(G) = Ω(
√
n), always have a k-OOC. This is shown

in Theorem 1.5:

Proof of Theorem 1.5: Consider the set V of the vertices of G, as a set of n isolated

vertices. Since n ≥ L(k − 2)2, we have, by Lemma 2.1, that V has k-OOC. Let c1, . . . , ck

be such a k-OOC. We will now add to V edges of G, one by one, until we obtain G. Every

time we add a new edge, we will modify the colorings c1, . . . , ck so that they will remain

proper and pairwise orthogonal. Thus, at the end, we will have a k-OOC of G. Assume

that we have already added some edges of G to V , and we now wish to add the next edge

e = (u, v). Denote the graph after the addition of e by G∗. Note that G∗ is a spanning
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subgraph of G, and we assume that c1, . . . , ck is a k-OOC of G∗ \ {e}. If ci(v) 6= ci(u) for

each i = 1, . . . , k, then c1, . . . , ck form a k-OOC of G∗. Otherwise, we will show how to find

a vertex x, such that by interchanging the k colors of x with the corresponding k colors

of v, we still have that every coloring is proper, and hence this modification constitutes a

k-OOC of G∗. Consider the set Z of the neighbors of v in G∗. Clearly, |Z| ≤ ∆ = ∆(G).

Let W ⊂ V be the set of vertices w having, for some i, and some z ∈ Z, ci(w) = ci(z). (We

allow z = w, so Z ∪{v} ⊂W ). Since the colorings form a k-OOC in G∗ \{e}, we know that

each color appears at most d
√
n e times in each coloring. Thus, |W | ≤ k|Z| d

√
n e. Now

let Y ⊂ V denote the set of vertices y, other than v, which have ci(y) = ci(v) for some

i = 1, . . . , k. Clearly, |Y | ≤ k(d√n e − 1). Now consider the set Y ∗ of all the vertices of G∗

which have a neighbor in Y . |Y ∗| ≤ |Y |∆. Finally, let X = V \ (W ∪ Y ∗). We first show

that X is not empty. This is true since

|X| ≥ n− |W | − |Y ∗| ≥ n− k|Z|
⌈√
n
⌉
−∆|Y | ≥ n− k∆

⌈√
n
⌉
− k∆(

⌈√
n
⌉
− 1) > 0

where the last inequality follows from the fact that ∆ ≤ (
√
n−1)/(2k) < n/(k(2 d

√
n e−1)).

Now let x ∈ X . We can interchange the k colors given to x with the k corresponding colors

given to v, and remain with a proper coloring. This is because after the interchange,

the colorings in the neighborhood of v are proper since x /∈ W , and the colorings in the

neighborhood of x are proper since x /∈ Y ∗, and so it has no neighbor which shares the

same color with the original color of v, in any of the k colorings. 2

Theorem 1.4 and (1) show that for every n-vertex tree T , d√n e ≤ Oχ(T ) ≤ 1 +⌈√
n− 1

⌉
. Thus, Oχ(T ) is one of two consecutive possible values, and if n− 1 is an integer

square, those upper and lower bounds coincide, so in this case, T has an OOC. In case

n − 1 is not an integer square, the example after Theorem 1.4 shows that the star on n

vertices, K1,n−1, has Oχ(K1,n−1) = 1+
⌈√

n− 1
⌉
, and thus, K1,n−1 does not have an OOC.

However, stars are not the only examples of trees which do not have an OOC. In fact, every

tree with n vertices, having a vertex of degree (
⌊√

n− 1
⌋
)2 + 1 does not have an OOC. For

example, all the trees with 18 ≤ n ≤ 25 vertices which have a vertex of degree 17 do not

have an OOC since they contain K1,17 and Oχ(K1,17) = 6. It is, however, an easy exercise

to establish that when n − 2 is an integer square, and T is a tree with n vertices which is

not a star, then T has an OOC.

There are trees with a much lower maximal degree which do not have an OOC. Let n be

an integer square, and assume (although this is not necessary) that n is even. Let T be

the double star obtained by joining two K1,n/2−1 at the roots. T has maximum degree n/2,

and we claim that T does not have an OOC whenever (d√n e)(d√n− 1e) < n. Let c1 and

c2 be two orthogonal colorings using x colors. The roots must have distinct colors in c1,

denote these colors by 1 and 2. At most x− 2 leaves may have color 1 (otherwise c2 must
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use x+ 1 colors if it is to be proper), and similarly, at most x− 2 leaves may have color 2.

Consequently, there are at least n− 2− 2(x− 2) = n+ 2− 2x leaves that have colors other

than 1 or 2 in c1. No other color may appear x times at a leaf, so the number of other colors

is at least (n+ 2−2x)/(x−1) So we must have (n+ 2− 2x)/(x− 1) + 2 ≤ x. Consequently,

x(x− 1) ≥ n. Thus, whenever (d√n e)(d√n− 1e) < n, we must have x > d√n e.

4 Strong orthogonal colorings

A k-strong orthogonal coloring, is a k-orthogonal coloring c1, . . . , ck, where for each vertex

v and for every pair of distinct colorings ci and cj , ci(v) 6= cj(v). The analogous definitions

of SOχk(G) and SOχ(G) are obvious. A graph G is said to have a strong perfect orthogonal

coloring (SPOC for short) if it has r(r − 1) vertices and SOχ(G) = r. A graph G with r2

vertices is said to have a strong orthogonal scheme if it has a strong orthogonal coloring

with r + 1 colors, where the first coloring only uses r colors (thus, all possible r2 pairs of

colors, under this restriction, are used).

If G has n vertices, then, clearly, SOχ(G) ≥ (1 +
√

1 + 4n)/2, and Oχ(G) ≥ √n. It

is therefore plausible to conjecture that Oχ(G) ≤ SOχ(G) ≤ Oχ(G) + 1. This, however,

is far from being true, as Oχ(U4) = 4 while it is not difficult to check that SOχ(U4) = 6.

In fact, it can be shown that SOχ(Ur) − Oχ(Ur) grows linearly with r. It is possible,

however, to prove that SOχ(G) ≤ Oχ(G) + dχ(G)/2e. To see this, assume c1, c2 is an

orthogonal coloring of G with Oχ(G) colors (assume the colors are 1, . . . , Oχ(G)). Let X

be the set of vertices of G colored the same in c1 and c2. X, being a subgraph of G, can

be partitioned into at most χ(G) independent sets X1, . . . , Xχ(G). Now, for every v ∈ Xi

with i ≤ χ(G)/2 we redefine c1(v) = Oχ(G) + i. For every v ∈ Xi with i > χ(G)/2

we redefine c2(v) = Oχ(G) + i − bχ(G)/2c. After these modifications, c1, c2 is a strong

orthogonal coloring of G using at most Oχ(G) + dχ(G)/2e colors. Note that, in particular,

every bipartite graph has SOχ(G) ≤ Oχ(G) + 1, and, by Theorem 1.4, every d-degenerate

graph has SOχ(G) ≤ d(3d+ 1)/2e+
⌈√

n− d
⌉
.

There exist universal graphs w.r.t. strong orthogonality and strong orthogonal schemes.

In the first case, one may take the set of all r(r − 1) ordered pairs (i, j) where i 6= j and

1 ≤ i ≤ r, 1 ≤ j ≤ r as the vertices, and connect a pair (i, j) to a pair (k, l) with an edge if

and only if i 6= k and j 6= l. The resulting graph, denoted by Wr, has SOχ(Wr) = r, and

therefore has a SPOC. Also, any graph G having SOχ(G) ≤ r is isomorphic to a subgraph

of Wr, as can be seen from the obvious isomorphism, where v ∈ G is mapped to the vertex

(c1(v), c2(v)) of Wr, c1, c2 being a strong orthogonal coloring of G with at most r colors.

The universal graph w.r.t strong orthogonal schemes, denoted by Xr. is defined analogously,

where now the set of vertices consists of all the ordered pairs (i, j) where 1 ≤ i ≤ r and
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1 ≤ j ≤ r + 1, and i 6= j.

All the theorems proved in Section 2 and Section 3 have analogous versions when strong

orthogonality is required, where only minor modifications are needed. We will therefore not

prove them here. We will, however, show that an interesting family of graphs, namely the

family of the complement graphs of Ur, denoted by U cr , has a strong orthogonal scheme,

with the exception of r ∈ {2, 3, 6}. In other words, U cr is a spanning subgraph of Xr, unless

r ∈ {2, 3, 6}. In fact we will show something more general:

Consider the grid graph Ga,b, where a ≥ b are positive integers. The vertices of Ga,b are

defined by all pairs of ordered integers (i, j) where 1 ≤ i ≤ a and 1 ≤ j ≤ b, and a vertex

(i, j) is connected to a vertex (k, l) if i = k or j = l. Clearly, Ga,b has ab vertices and is

regular of degree a+ b− 2. Also, Ga,b has a maximum clique of order a. Clearly, Gr,r = U cr .

Theorem 4.1

1. Every subgraph G of Gr,r−1 has SOχ(G) ≤ r. In particular, every spanning subgraph

of Gr,r−1 has a SPOC.

2. For every positive integer r /∈ {2, 3, 6}, every spanning subgraph of Gr,r has a strong

orthogonal scheme.

Proof: We begin with the proof of the first part. It suffices to show that Gr,r−1 has a

SPOC. We define two colorings c1 and c2 of Gr,r−1 as follows. Both colorings will only

use the colors 0, . . . , r − 1. Consider first the case where r is odd. We define c1((i, j)) =

(i + j − 2) mod r. Next, we define c2((i, j)) = (c1(i, j) + j) mod r. Now, c1 is a proper

coloring since c1((i, j)) 6= c1((i, k)) when k 6= j, and c1((i, j)) 6= c1((k, j)) when k 6= i.

Similar reasoning shows that c2 is proper (we use the fact that r is odd). No vertex uses the

same color in both c1 and c2, since 1 ≤ j ≤ r−1. Finally, both colorings are orthogonal since

if, for two distinct vertices, c1((i, j)) = c1((k, l)) then we must have j 6= l, and therefore

c2((i, j)) 6= c2((k, l)). Now assume that r is even. We define c1((i, j)) = (i + j − 2) mod r

for all 1 ≤ i ≤ r and for all 1 ≤ j ≤ r/2, and we define c1((i, j)) = (i+ j − 1) mod r for all

1 ≤ i ≤ r and r/2 + 1 ≤ j ≤ r− 1. We define c2((i, j)) = (c1(i, j) + j) mod r for all i and j.

Once again, it is easy to check that c1 and c2 are both proper, orthogonal, and no vertex

has the same color in both c1 and c2.

For the second part of the proof, it suffices to show that Gr,r has a strong orthogonal

scheme. The proof of this relies on the existence of self-orthogonal Latin squares for every

order r /∈ 2, 3, 6 [5]. A Latin square L is called self-orthogonal if the Latin square Lt (the

transpose of L) is orthogonal to L. Let, therefore, L be a self-orthogonal Latin square of

order r. We define a strong orthogonal scheme c1, c2 of Gr,r as follows. c1((i, j)) = L(i, j)

for every 1 ≤ i ≤ r and 1 ≤ j ≤ r. If i 6= j we define c2((i, j)) = Lt(i, j) = L(j, i). Finally,
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we define c2((i, i)) = r + 1, for i = 1, . . . , r. Clearly, c1 is a proper coloring of Gr,r since L

is a Latin square. Also, c2 is a proper coloring of Gr,r since Lt is a Latin square and since

{(1, 1), . . . , (r, r)} are an independent set in Gr,r. Also, the colorings are orthogonal since L

and Lt are orthogonal and since any two vertices of the set {(1, 1), . . . , (r, r)} do not have

the same color in c1 as the diagonal of L and Lt is the same, and they are orthogonal, which

implies that no symbol may appear twice in the diagonal. Finally, c1 and c2 are strong

orthogonal since no vertex has the same color in both c1 and c2. Since c1 uses only r colors,

the result follows. 2

In the cases r = 2 or r = 3 it is easy to check that G2,2 and G3,3 do not have a strong

orthogonal scheme. The fact that there is no strong orthogonal scheme for G6,6 is less

trivial, and relies on the fact that there are no two orthogonal Latin squares for r = 6. (It

is also possible to check this by computer since one only needs to check that W6 does not

contain G6,6. A very small fraction of the 36! possible mappings need to be checked since

there are many equivalences and restrictions, which result from the large automorphism

group of G6,6). 2

5 Concluding remarks and open problems

1. Theorem 1.5 shows, in particular, that if ∆(G) ≤ (
√
n− 1)/4, then G has an OOC. It

is interesting to find out if the bound (
√
n− 1)/4 can be improved to a bound of the

form
√
n/c where c < 4. Clearly we cannot expect c ≤ 1, as shown in the discussion

prior to the proof of Theorem 1.5. The obvious generalization for k > 2 (i.e. replacing

the denominator 2k with something smaller) may also be considered.

2. Determining if a graph G has a POC is equivalent, according to FACT 2, to a spanning

subgraph isomorphism problem, namely, is a given graph G with r2 vertices isomorphic

to a spanning subgraph of Ur. Since general spanning subgraph isomorphism problems

are known to be NP-Complete, it is safe to conjecture that determining if an input

graph G has a POC is NP-Complete. Determining Oχ(T ) for a given tree T with n

vertices is, on the other hand, a much more interesting problem, since, as shown in

Section 3, this number is either d
√
n e or 1 +

⌈√
n− 1

⌉
. For some trees the answer

is known (see section 3), while for a general input tree T , we do not yet have an

algorithm that determines, in polynomial time, which of the two values is the right

one for T .

3. Is it true that every tree with maximum degree smaller than n/2 has an OOC? In

section 3 we have shown that there are trees with degree n/2 which do not have an

OOC.
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4. It would be interesting to determine the exact relationship betweenOχ(G) and SOχ(G).

5. A graph G is called [n, k, r]-partite if the vertex set of G can be partitioned into n

independent sets (called vertex classes), each of size k exactly, and there are exactly

r independent edges between any two vertex classes. (See [8] which focuses on these

graphs). For example, Kn is [n, 1, 1]-partite, and C9 is [3, 3, 3]-partite. An independent

covering of an [n, k, r]-partite graph is a set of k vertex-disjoint independent sets of

size n, each containing exactly one vertex from each vertex class. It is shown in [8]

that every [k, k, 2]-partite graph has an independent covering. This implies that every

[k, k, 2]-partite graph has a POC, since one can define the first coloring according to

the vertex classes, and the second coloring according to the independent coverings. It

is not even known whether every [k, k, 3]-graph has an independent covering, although

much more is conjectured, namely that every [k, k, k]-partite graph has an independent

covering ([8] Conjecture 1.5). A seemingly easier conjecture is the following: “Does

every [k, k, k]-partite graph have a POC?”
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