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Abstract. D.V. Chudnovsky and G.V. Chudnovsky [CH] introduced a generalization of the Frobenius-
Stickelberger determinantal identity involving elliptic functions that generalize the Cauchy determinant.
The purpose of this note is to provide a simple essentially non-analytic proof of this evaluation. This method
of proof is inspired by D. Zeilberger’s creative application in [Z1].
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One of the most famous alternants is the Cauchy determinant which is only a special case of a
determinant with symbolic entries:

(1) det
[

1
xi − yj

]
1≤i,j≤n

= (−1)n(n−1)/2

∏
i<j(xi − xj)(yi − yj)∏n
i=1

∏n
j=1(xi − yj)

.

This expression lends itself to explicit formulas in Padé approximation theory and further applications
in transcendental theory. On the other hand, the Cauchy determinant cannot be readily generalized to
trigonometric or elliptic functions. However, its associate can.

A natural elliptic generalization of the 1/x Cauchy kernel to the corresponding Riemann surface
would be the Weierstraß ζ-function. Such a generalization was supplied by Frobenius and Stickelberger
[FS], with references given to Euler and Jacobi.

D.V. Chudnovsky and G.V. Chudnovsky [CH] introduced a generalization of the Frobenius Stickel-
berger determinantal identity involving elliptic functions that generalizes the Cauchy determinant.

The purpose of this note is to provide a simple essentially non-analytic proof of this evaluation. This
method of proof is inspired by D. Zeilberger’s creative application in [Z1].

We begin by recalling some notations. Given the Weierstraß elliptic function, ℘(z), then the
Weierstraß ζ-function and σ-function are defined respectively by

(2) ℘(z) = − d

dz
ζ(z), and ζ(z) =

d

dz
log σ(z).
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Theorem [CH]: For arbitrary n ≥ 1 we have

det
[
σ(ui + vj + e)
σ(ui + vj)σ(e)

eγ1ui+γ2vj

]
1≤i,j≤n

(3) =
σ(
∑
ui +

∑
vj + e)

∏
i>j σ(ui − uj)σ(vi − vj)

σ(e)
∏n
i,j=1 σ(ui + vj)

eγ1
P
ui+γ2

P
vj ,

where ui, vj and e are arbitrary parameters on the elliptic curve.
First, we prove a lemma (set a = b = 0 to get the result of the theorem).

Lemma: With the additional parameters a and b, we have

det
[
σ(ui+a + vj+b + e)
σ(ui+a + vj+b)σ(e)

eγ1ui+a+γ2vj+b

]
1≤i,j≤n

(4) =
σ(
∑
ui+a +

∑
vj+b + e)

∏
i>j σ(ui+a − uj+b)σ(vi+a − vj+b)

σ(e)
∏n
i,j=1 σ(ui+a + vj+b)

eγ1
P
ui+a+γ2

P
vj+b .

Proof: Let the left and right sides of equation (4) be Ln(a, b) and Rn(a, b), respectively. Dodg-
son’s rule [D] (see [Z2] for a bijective proof) for evaluating determinants immediately implies [Z1] the
recurrence Lewis:

Xn(a, b) =
Xn−1(a, b)Xn−1(a+ 1, b + 1)−Xn−1(a+ 1, b)Xn−1(a, b+ 1)

Xn−2(a+ 1, b+ 1)
holds with X = L. Moreover, the same is true if X = R. Indeed the latter takes the form of a
“three-term recurrence”

σ(A1 +A2)σ(A1 −A2)σ(A4 +A3)σ(A4 −A3) = σ(A4 +A1)σ(A4 −A1)σ(A3 +A2)σ(A3 −A2)

−σ(A3 +A1)σ(A3 −A1)σ(A4 +A2)σ(A4 −A2),(5)

where

y :=
n−1∑
i=2

(ua+i + vb+i), w := (y + ua+1 + ub+n)/2, A1 := w − ua+1,

A2 := w − ua+n, A3 := w + vb+1 and A4 := w + vb+n.

Equation (5) is similar to the well-known Jacobi identity on σ-functions (this is due to Weierstraß,
in lectures by Schwarz [S] p. 47):

σ(z + a)σ(z − a)σ(b+ c)σ(b − c) + σ(z + b)σ(z − b)σ(c+ a)σ(c− a)

+ σ(z + c)σ(z − c)σ(a+ b)σ(a− b) = 0,

and both equations follow from θ-functions identities or the “parallelogram” identity

(6) ℘(z)− ℘(y) = −σ(z + y)σ(z − y)
σ(z)2σ(y)2

.
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In fact, a repeated application of (6) in the former equation leads to a trivial algebraic equation in
cyclic notations

(℘(A1)− ℘(A2))(℘(A4)− ℘(A3))− (℘(A4)− ℘(A1))(℘(A3)− ℘(A2))

+ (℘(A3)− ℘(A1))(℘(A4)− ℘(A2)) = 0.

Since Ln(a, b) = Rn(a, b) for n = 1 (trivial!), and n = 2 (check!), it follows by induction that

Ln(a, b) = Rn(a, b) for all n.�
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