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Abstract

A finite family of subsets of a finite set is said to be evolutionary if its members
can be ordered so that each subset except the first has an element in the union of the
previous subsets and also an element not in that union. The study of evolutionary families
is motivated by a conjecture of Naddef and Pulleyblank concerning ear decompositions
of 1-extendable graphs. The present paper gives some sufficient conditions for a family
to be evolutionary.
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1 Introduction

The motivation for the concept of an evolutionary family of sets lies in a conjecture of Naddef
and Pulleyblank [5]. This conjecture has recently been proved by Carvalho, Lucchesi and
Murty [2]. In order to explain this theorem, we need several definitions concerning 1-factors
of graphs. We adopt the terminology and notation found in [1]. In this paper, graphs will be
assumed to be finite and to have no loops or multiple edgelsfaktorin such a graplds is
a setF' of edges such tha#' N dv| = 1 for eachv € VG. A graph isl-extendablef for
each edge there is a 1-factor containing An alternating circuitis a circuit which is the
sum (symmetric difference) of two 1-factors. A $eof alternating circuits isonsanguineous
(with respect) to a 1-factoF’ if each circuit inS has half its edges it". Note that ifG is
a connected 1-extendable graph with more than one edge, then every eddeelaings to
an alternating circuit. The alternating circuits span a subspace of the cycle spacd bis
space is called thalternating spaceand is denoted byl (G).

Now let H be a subgraph of a gragh An earof GG (with respect taH) is a path inG, of
odd length, joining vertices aff but having no edges or internal vertices belonging/td_et
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S be a set of vertex-disjoint ears ofr with respect taf. If each vertex and edge 6f is in
H or a member of5, then we say that’ is obtained fromH by ann-ear addition

Let G be a 1-extendable graph. Aegar decompositiof GG of lengthn is a sequence
(Go, Gy, ..., G,) of graphs such that the following conditions hold:

1. G, consists of an edge @f, together with its ends;
2. G, =G,

3. for each > 0 the graph; is 1-extendable and obtained fra_; by the addition of a
set of vertex-disjoint ears.

It is well known that there is a unique 1-factérof G such thatF’ N EG; is a 1-factor ofG;
for eachi. We say that is associatedvith the decomposition. For ea¢h> 0 and each ear
of GG; with respect ta7;_; there exists an alternating circuit 6% that includes the ear and is
consanguineous t6 N G;.

The following theorem has been proved by bsz ‘and Plummer [4] [p. 182].

Theorem 1 A 1-extendable graph has an ear decompositiGp, G4, . . ., G,) in which, for
eachi > 0, the graphG; is obtained fromG,_; by a 1- or 2-ear addition.

In view of Theorem 1, let us define an ear decomposition of a 1-extendable graph to be
permissiblef each graph in the decomposition (other than the first) is obtained from the pre-
ceding one by the addition of no more than two ears, and no 2-ear addition can be replaced by
a pair of 1-ear additions. The latter clause shows that in the case of a 2-ear addition there is no
alternating circuit which is consanguineous to the associated 1-factor and includes just one of
the ears.

One question addressed by Naddef and Pulleyblank [5] concerns the smallest number of
2-ear additions in a permissible decomposition. It is easy to obtain a lower bound for this
number. Indeed, if we denote I8)G) the cycle space of a gragh, then the number of ears
added in the course of the decompositiodiis. C(G), for if G is obtained from a subgrapf
by ann-ear addition then

dimC(G) —dimC(H) = n.
On the other hand,
dim A(G) — dim A(H) > 1.

These results imply that a lower bound for the number of 2-ear additions in a permissible ear
decomposition is given bytim C(G) — dim A(G). The theorem of Carvalho, Lucchesi and
Murty alluded to earlier is that this lower bound can always be met.

Theorem 2 [2] The minimum number of 2-ear additions in a permissible ear decomposition
of a 1-extendable grapf¥ is dim C(G) — dim A(G).
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For convenience we shall call the numbén C(G) — dim A(G) the Naddef-Pulleyblank
bound

Let (Go, Gy, ..., G,) be an ear decomposition of a 1-extendable gréphlf for each
1 > 0 we select an alternating circuit which is consanguineous to the associated 1-factor and
includes the ear or ears 6f, with respect td~;_1, then the resulting set of alternating circuits
is linearly independent. In fact, if the decomposition is permissible and the number of 2-ear
additions isdim C(G) — dim A(G), then these alternating circuits supply a basisA96).
Thusdim A(G) = n. Let us denote this basis lfyl;, A,, ..., A,), where for eachi we have
A; C EG,. Note that for each > 0 we have the following properties:

1. ANEG;,_ 1 # 0;
2. AN (EG — EGy_1) 1.

Roughly speaking, these conditions mean thatontains something old (in other words, in
EG;_1) and something new (iRG — EG;_1). They motivate the following definition.

Definition 1 LetS be a finite family of subsets of a finite $etWe say thaf is evolutionary

if there exists an orderingSy, Ss, . . ., S,,) of the sets irS such that for each > 1 we have
i—1
SinlUs;#0 (1)
j=1
and .
S;n(S—1JS;) #0. (2)
j=1

The ordering(S;, Sa, . .., S,) is also said to bevolutionary.

For example, the family{1}, {1, 2}, {2, 3}} has evolutionary ordering

({1}, {1,2},{2,3}),

but the family{{1}, {2}, {1, 2, 3} } is not evolutionary.

Thus if a 1-extendable grapgh has a permissible ear decomposition with the number of
2-ear additions meeting the Naddef-Pulleyblank bound, then its alternating space has a con-
sanguineous evolutionary basis. Conversely, supposetittat has such a basis, with evolu-
tionary ordering(A;, As, ..., A,). We propose to construct a permissible ear decomposition
of G with the number of 2-ear additions meeting the Naddef-Pulleyblank bound. First, define
Go = G[{e}] foranye € A;, and for each > 0 defineG; = G[U’_, 4;]. Since the basis
of A(G) is evolutionary, it follows thatGy, Gy, ..., G,,) is an ear decomposition @f. As
dim A(G) = n, there is no longer ear decomposition@f In fact, (Go,G1,...,G;) is a
longest ear decomposition 6f;, for eachi > 0. But consanguinity implies that i; is ob-
tained fromG;_, by the addition of more than two ears, then by the proof of Theorem 1 in [3]
there is a longer ear decomposition@f This contradiction shows that the ear decomposition



THE ELECTRONIC JOURNAL OF COMBINATORICS/ (2000), #R10 4

of G is permissible. That the number of 2-ear additions meets the Naddef-Pulleyblank bound
follows from the fact thatlim .A(G) = n. We have therefore established that the existence, in
a l-extendable grapH, of a permissible ear decomposition such that the number of 2-ear ad-
ditions meets the Naddef-Pulleyblank bound is equivalent to the existence of a consanguineous
evolutionary basis fod(G).

In this connection the following theorem is also of interest.

Theorem 3 Any finite-dimensional vector space ov&s (with addition given by symmetric
difference) has an evolutionary basis.

Proof: Let {5, 5,,...,S,} be a basis for a finite-dimensional vector space dger We
may assume thaf; has an element that does not appeas;ifor any: > 1, for otherwise we
may choose < S; and replaces; by S; + S; for eachi > 1 such thats € S;. Then resulting
vectors are linearly independent. Proceeding inductively, we may assume that

s,z U s, 3)

j=it1

for eachi < n. We may also assume thét N S; # 0 for all i < n, for otherwise we may
replaceS; by S; + S,,. Note again that the resulting vectors are linearly independent, and
moreover that they satisfy (3). The required evolutionary ordering for the resulting basis is
(Sn7 Sn—h AR Sl) O

In this paper we therefore propose to study evolutionary families. In particular we concen-
trate on sufficient conditions for a family to be evolutionary.

2 Evolutionary Families

Let S be a finite family of subsets of a finite s€t We derive necessary conditions and suffi-
cient conditions foiS to be evolutionary. TriviallyS is evolutionary if|S| < 1, but if |S| > 1
and( € S thenS is not evolutionary. Accordingly we shall assume henceforth [tfiat> 1
and that the elements 6fare non-empty. Clearly the components of any evolutionary order-
ing must be distinct. Hence we may also assumedhlaas no repeated elements (elements
of multiplicity greater than 1). We may therefore refer@a@s a set, rather than as a family,
though we sometimes retain the latter terminology for variety. A further observation is that at
most one element of an evolutionary family can be of cardinality 1, and we may assume that
S satisfies this condition also.

Let S be a finite set of subsets of a finite set. Suppose#tiatn U(S — 7)) # 0 for each
nonempty proper subsét of S . Then we say thaf$ is connected Connectedness is clearly
another requirement of an evolutionary family. The next result is slightly less trivial.

Theorem 4 Let S be a finite connected family of sets. Suppose that each memenad
cardinality no greater than 2. Thefi is evolutionary if and only if it is linearly independent.
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Proof: We representS by a simple grapiG whose vertices are the members|(¢8,
distinct vertices being adjacent if and only if both are found in a single membs&r d¢f a
(unigue) member aof is of cardinality 1, then its unique element is considered to be a distin-
guished vertex ofr. The connectedness Sfimplies that ofG. The familyS is evolutionary
if and only if there is a sequen¢é,, G, . . ., G},) of subgraphs o7 satisfying the following
conditions:

e (5, consists of a single vertex 6f (the distinguished vertex, if possible);

e for eachi > 1 the graph(z; has an edge;, joining a vertex OU;'-*llVGi to a vertex of

VG — U;;llVGZ, such thatEGZ = EGZ‘,1 U {61} andVGZ' = VG[EGZ,1 U {61}],
e G, =0G.

Since is connected, such a sequence exists if and only i§ a tree. This condition is
equivalent to a lack of circuits, and therefore to the linear independergeof

Further progress can be made by the introduction of the concepts of backward evolutionary
families and forward evolutionary families. An ordering of a finite famflyof subsets of a
finite setS is backward evolutionarpr forward evolutionaryif it satisfies condition (1) or
condition (2), respectively, of Definition 1. The family imckward evolutionargr forward
evolutionaryif it has a backward or forward evolutionary ordering, respectively. Backward
evolutionary families and forward evolutionary families can both be characterised.

Theorem 5 A finite family of subsets of a finite set is backward evolutionary if and only if it
iS connected.

Proof: Let S be a finite family of subsets of a finite sét Suppose first tha$ is not
connected. Then there exists a nonempty proper sdbeés suchthaty7 NnU(S—7) = 0.

Let (Si,5,...,S5,) be an ordering ofS. Without loss of generality we may suppose that
Sy, € T. SinceS — 7 # (), there exists a smallest integer- 1 such thatS; ¢ 7. Then
S; N Ué;ll S; = 0, so that the ordering, and hence the family, is not backward evolutionary.

If S is connected, we construct a backward evolutionary ordering inductively. First, choose
any elementS; of S. Next, assume thats;, S, ...,S;) is a backward evolutionary or-
dering of a nonempty proper subfamily 6f SinceS is connected, there existg,; €
S —{951,5,,...,S5;} such that

Simn s #0.
j=1
Then(Sy, S, ..., S;.1) is a backward evolutionary ordering of a subfamilyfHences is
backward evolutionary, by inductionl

Theorem 6 A finite familyS of subsets of a finite sétis forward evolutionary if and only if
each nonempty subfamily of S contains an elemerit such that

TZUT - A{T}).
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Proof: Suppose there is a nonempty subfamilpf S such that eacli’ € 7 is a subset of
U(7T —{T}). Let(Sy,S,,...,S,) be an ordering of. There is a largest integeisuch that
S; € T. SinceS; € U(T — {S;}), we haveS; N (S — U2} S;) = 0, so that the ordering, and
hence the family, is not forward evolutionary.

Conversely, suppose that every nonempty subfamilgf S contains a sef” such that
T ¢ U(T — {T}). We construct a forward evolutionary ordering inductively. khet=
|S|, and choose an elemest, of S such thatS, ¢ U(S — {S.}). Next, suppose that
(Sp—is Sn_it1,---,Sn) is an ordering of a nonempty proper subfanillyof S and satisfies
the condition that

SJ' Z U(S_ {SJ7SJ+17"'7S71}) (4)
for eachj such thath — 7 < j < n. By hypothesis there exists,_;_, € S — 7 such that

Sn—i—l Z U(S - {Sn—i—h Sn—i7 ER Sn})

We now have (4) holding for eachsuch that, — i — 1 < j < n. Proceeding inductively, we
obtain a forward evolutionary ordering, Ss, ..., .S,). O

Unfortunately a family may be both forward and backward evolutionary without being
evolutionary. For example, the family

{{1},{2,5},{1,2,3,5},{1,2,3,4}}

has forward evolutionary ordering

({1},{2,5},{1,2,3,5},{1,2,3,4})

and backward evolutionary ordering

({1},{1,2,3,4},{1,2,3,5},{2,5})

but is not evolutionary.

A family is said to bepairwise adjacenif any two of its members meet. Clearly any
ordering of a pairwise adjacent family is backward evolutionary. Consequently a pairwise
adjacent family is evolutionary if and only if it is forward evolutionary.

Let S be a finite set an& a family of subsets of whose union isS. For eachs € S we
defineis(s) to be the collection of elements 6fcontainings. Thusis is a function fromS
into P(S), the power set of. Note also thais(s) # () for eachs € S, sinceJS = S. We
definels(S) = |is[S]|. If S is evolutionary then there must be & S such thatis(s)| = 1,
as the last set in an evolutionary ordering must contain such Bnother words, there exists
a unique sefX € S such thats € X. Thus{X} € is[S]. We infer that ifm is the number of
setsT" in S for which {T'} € is[S] thenm > 0.

Theorem 7 Let S be a finite set an& a family ofn subsets of whose union iS. Letm be
the number of set§ € S such that{7T'} < is[S5].

(@) Ifm =nandis(S) > 2" — 2" 2, thenS is evolutionary.

(b) If 0 < m <nandis(S) > 2" — min{2"2, (n — m)2™}, thenS is evolutionary.
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Proof: Note first that ifIs(S) > 2™ — 2”2 thenS is pairwise adjacent. Indeed, choose
X,Y € 8. Of the2” — 1 nonempty subsets &, 22 contain bothX andY. The hypothesis
concerningls(.S) shows that at least one of these is the image uigef somes € S. In
other words, X € is(s) andY € is(s). It follows thats € X NY. HenceS is pairwise
adjacent. It remains only to show thé&tis forward evolutionary under the hypotheses of the
theorem.

(@) If m = n then any ordering of is forward evolutionary.

(b) Suppose that < m < n. Let7 be a nonempty subfamily af. According to
Theorem 6 we must find' € 7 such thatl’ Z U(7 — {T'}). Certainly an elemerif’ of 7
satisfies this property if there exists= 7" such thafir(s)| = 1, for thens ¢ U(7 — {T'}).
We may therefore assume that(s)| > 2 for eachs € 7. Thus7 contains none of the
m setsX € S for which {X} € is[S]. It follows that|7| = n — r for some integer such
thatm < r < n. Since there are” subfamilies ofS — 7, there argn — r)2" subfamilies
of S which contain exactly one element @f. Therefore there are at legst — m)2™ such
subfamilies, as

(n—(r+1))2" —(n—7)2"=2"(n—r—2)>0

wheneverr < n — 2. The hypothesis concerninig(.S) implies that at least one of these
subfamilies is the image undgy of somes € S, for otherwise
Is(S) <2"—1—(n—m)2™.
Thus there is a unigue membErof 7 containings. Hences ¢ J(7 — {T'}), so thatl" has
the required propertyl
The following lemma enables us to derive a corollary of Theorem 7.
Lemma 1 LetS be a finite family{ S, Ss, . . ., S, } of subsets of a finite sét and letk C S.

Let
S‘R:{SlﬂR,SgﬂR,,SnﬂR}

(SiNR,SNR,...,SNR)

is an evolutionary ordering of | g, then(Sy, Ss, . . ., S,,) is an evolutionary ordering af.

Proof: The result is an immediate consequence of the inclusions

i—1 1—1
SsNRNJ(S;NR)C SN S;
j=1 j=1

and
1—1 1—1

SinRN(R—J(S;NR) C8n (S~ 8))

j=1
forall: > 1.0
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Theorem 8 Let S be a finite set and a family ofn subsets off whose union isS. If n > 3
and/s(S) > 2" — nthenS is evolutionary.

Proof: Suppose first that > 4. In the notation of Theorem 7 we then hawe> 0 (since
n of the 2" — 1 nonempty subsets & are of cardinality 1)2"2 > n and2™(n — m) >
2(n — 1) > nif m < n. In this case the theorem follows immediately from Theorem 7.

Suppose therefore that= 3. We must show that ifs(S) > 5 thenS is evolutionary. Let
S ={X,Y,Z}. SinceJS = S we infer thatis(s) # () for eachs € S. In other words, the
members ofs[S] account for at least five of the seven nonempty subsefs @fithout losing
generality we may assume that the complemem (&) — {0} of is[S] is a subset of one of
the following:

(@) {{X}.{v}},

(b) {{X} {X,Y}},

(©) {{X}.{v. 2}},

@) {{X}.{X,Y, Z}},

() {{X,Y}.{Y, 2},

() {{X. Y} {X.Y. 2}}.

In cases (a) - (c) and (e) we hayéZ},{X, Z},{X,Y,Z}} C is[S] and so we may
choose:

a€Z—(XUY),

be(XNZ)-Y,
ce XNYNZ.
Thus if R = {a, b, ¢} we find that

({e} {b, ¢}, {a, b, c})

is an evolutionary ordering of the famifyX N R, Y N R, Z N R}. Similarly in the remaining
cases we havg{Y'}, {Y, Z},{X, Z}} C is[S] and may choose:

acY —(XUZ),
be (YNZ)-X,
ce(Xnz)-Y.

Once again, putting = {a, b, c} we obtain the evolutionary ordering

({c}, {b, ¢}, {a, b})

of the family{ X N R, Y N R, Z N R}. In all cases an appeal to Lemma 1 therefore completes
the proof.O

Theorem 8 does not hold for = 2. For example, les = {z,y} andS = {{z},{y}},
which is not evolutionary. Howevelg(z) = {{z}} andis(y) = {{y}}. Henceis[S] =

{{{z}}, {{y}}}, sothatls(S) = 2.



THE ELECTRONIC JOURNAL OF COMBINATORICS/ (2000), #R10 9

Observe also that Theorem 8 is the best possible result of this sort. Inddgd$jf =
2" —n — 1 then it may be that, = 0. If so, S cannot be evolutionary.

As an example, we use Theorem 8 to confirm that the Petersen graph satisfies the theorem
of Carvalho, Lucchesi and Murty. Lét denote the Petersen graph, take- £ P and letS
be a basis ford(P). Thus|S| = 4. We can verify thatS is evolutionary by showing that
Is(S) > 12. Infact it is easy to show thais(S) = |EP| = 15. Observe that for any two
distinct edges and f there is an alternating circuit that containisut notf. (This fact is easy
to check, as any alternating circuit passing throaghisses some edges at a distance of 1, 2
and 3 frome.) Consequently distinct edges have distinct images uizdand so this function
is injective. Hencels(S) = |EP|, as claimed. It follows by Theorem 8 that any basis for
A(P) is evolutionary. Thug indeed satisfies Theorem 2.

3 Dendritic Families

In this section we introduce a special kind of family which we describe as dendritic, and we
show that this property is sufficient for the family to be evolutionary.

Let S be a finite family of subsets of a finite s&t and leta,b € S. (Recall our earlier
assumption tha ¢ S.) An evolutionary pathin S betweeru andb is defined as a minimal
connected subset &f whose union contains andb.

Theorem 9 A finite familyS of subsets of a finite sétwhose union i is connected if and
only if there is an evolutionary path ifi between any two members%f

Proof: If S is a finite connected family of subsets of a finite Sevhose union isS and
a,b € S, then there is certainly an evolutionary pathiSiletweer: andb.

Conversely let us suppose th&ais a finite family of subsets of a finite sétwhose union
is S and that there exists an evolutionary pathSitbetween any two members 6f Let. A
be a nonempty proper subset®fand suppose that.A N UJ(S — A) = 0. Choosez € J.A
andb € U(S — A). By hypothesis there is an evolutionary p&hn S betweern: andb. Let
7 = PN A. Note thatT # (), sincea belongs to a set il and therefore not to a set in
S — A. Similarly 7 # P. SinceP is connectedJ 7 NU(P —7) # 0. ButU7 € UAand
U(P—T7) CU(S — A), and so we reach the contradiction thatl N U(S — A) # (. Hence
S is connected

Lemma 2 Let S be a finite family of subsets of a finite sgetand leta,b, ¢ € S. If there
exist an evolutionary path i§ betweer: andb and another betweehandc, then there is an
evolutionary path irS betweer: andc.

Proof: Let P be an evolutionary path betweerandb and letQ be an evolutionary path
betweerb andc. We may assume thatz |J P, for otherwise the lemma holds. L&t= PUQ.
It suffices to prov& connected. Choose a nonempty proper suds#t7 . LetR = PNA. If
) ¢ R C P, then the connectedness@implies that JR NUJ(P —R) # (. ButUR C UA
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sinceR C A, and similarliyJ(P — R) C U(7 — A). HencedJ ANU(T — A) # 0. Similarly
UANU(T — A) £ 0if QN Ais anonempty proper subset@f We may therefore assume
without loss of generality thatl = P. Then eithe € UANU(7 — A) or b belongs to a
member ofP N Q. In the latter case we haveC 9 NP C Q sincec € UQ — UP. In both
cases we conclude thatis connectedd

We say that a finite familyD of subsets of a finite sef is dendritic if the following
conditions hold:

1. |D| > 1 for eachD € D;

2. any two distinct elements ¢f D have a unique evolutionary pathimbetween them.

Theorem 10 Let D be a member of a dendritic family. ThenD has an evolutionary order-
ing whose first component is.

Proof: Let £ be a largest subset @ that has an evolutionary ordering whose first com-
ponent isD. We must show thaf = D.

Suppose thaf C D. By condition 2 and Theorem 9 we see tfhails connected. Therefore
UENUD — &) # 0. Hence there exists a st D — £ which meets a sett € £. Thus
we may choose € AN E. Suppose thakl — {a}, which is nonempty by condition 1, also
meets a seB € &, and choosé € BN (£ — {a}). Note that{ £} is an evolutionary path
betweena andb. But sincef is evolutionary and therefore connected, some subsétisf
also an evolutionary path betweerandb. As these evolutionary paths are distinct, we have
a contradiction to condition 2. Therefore — {a} does not meet any set &1 We deduce
that€ U {E'} is an evolutionary family. This contradiction to the choiceSofompletes the
proof. O

A family
A: {A17A27"°7An}

is called arancestorof a family
S: {51,82,...,Sn}

if ) c A; C S, for eachi. For eachi we say thatd; is theancestorof S;. If A; C S, for at
least one, then the ancestod is proper. A family is said to beaadical with respect to a given
property if no proper ancestor also satisfies the property.

Theorem 11 Let S be a backward and forward evolutionary family of subsets of a finite set
S. Suppose that each setdhhas cardinality greater than 1. Thehhas a dendritic ancestor.

Proof: If |S| = 1 thenS is dendritic. We may therefore assume tf#jt > 1 and that the
theorem holds for all forward and backward evolutionary families, of cardinality lesg&an
whose elements are sets of cardinality greater than 1. We must find a dendritic anceStor for

Sinces is forward evolutionary, it has a forward evolutionary ordering whose last compo-
nent £’ necessarily contains an element belonging to no sét#n{E}. Choose a backward
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evolutionary ordering fo& in which E appears as late as possible. Then th&kset elements
of S appearing befor& constitutes a maximal connected subfamilysof { £'}. CertainlyR
is backward evolutionary. Sinc® is forward evolutionary, so i®. As |R| < |S]| it follows
thatR has a dendritic ancestdt,

SinceS, being backward evolutionary, is connected uts a maximal connected sub-
family of S — { E'}, it follows thatUR N E # (). (Supposeé) R N E = (). SinceR C S and
S is connected, there must existe S — R such thatJR N S # (. ThusS # E. Moreover
R U {S} is backward evolutionary and hence a connected subfamify-ef{ £}, in contra-
diction to the maximality ofR.) Choose: € UR N E, and definel! = (E — UR) U {e}.
ThusE'NUR # 0, and|E’| > 1 sinceE has an element belonging to no other membe§.of
MoreoverE’ C E.

LetS’ = (S — {E}) U{E'}. SinceE'NUR # 0 andE — E' C UR, it follows that
S’ has a backward evolutionary ordering obtained by replagingith £’, and is therefore
connected.

We show next thas’ — R is connected. Choose a nonempty proper subsetS’ — R.
Without loss of generality we may assume that¢ 7. We must show that

UTnUS - (RUT)) #£0.

SinceS’ is connected, we may choosec U7 NU(S' — 7). If x ¢ UR thenz € U7 N
U(S" — (RUT)), as required. Suppose therefore that |JR. Sincex € U7, we also
havex € U(S’ — R), and it suffices to show thate J(S' — (R UT)). ButR is a maximal
connected subfamily of’ — {E’'}, and saUR NnU(S’ — R) C E'. Hencex € FE’, so that
reU(S — (RUT)), as required.

ThusS’ — R is backward evolutionary. It is also forward evolutionary, #r R has
a forward evolutionary ordering with last componédiitsinceS — R C S, and a forward
evolutionary ordering folS’ — R is obtained by replacing’ with E’. Since|E’| > 1 and
IS’ — R| = |S — R| < |S|, we may apply the inductive hypothesis to obtain a dendritic
ancestofD of &’ — R. Note also that

URNUS = R) = {e}.

We now introduce three cases, defining an ance4tof S in each.

Casel:lfec UCNUD,letC’ =C, D' =DandA=C"UuD'.

Case Il: Suppose that only onelgC, U D containse. Without loss of generality suppose
thate € UD. ChooseC' € C such that”' is the ancestor of a member &f that containg,
and define?’ = C U {e} andC’ = (C — {C})U{C'}. LetD' =D andA=C"UD'

Case llI: Suppose that neithighiC norJ D containse. ChooseC' € C such thatC' is the
ancestor of a member @& that containg, and define’ = CU{e} andC’ = (C—{C})u{C"}.
Similarly chooseD € D such thatD is the ancestor of a member §f — R that containg;,
and defineD’ = DU {e} andD’' = (D — {D})U{D'}. LetA=C"UTD.

In every cased is an ancestor of whose elements are sets of cardinality greater than 1.
It remains to prove that any two distinct elemeatandb in |J A have a unigue evolutionary
path in.A between them. Again we divide the argument into cases.
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Case I: Suppose first thét,, b} C UC. Then there is a unique evolutionary p&hn C
betweeru andb. If C' € P then we definé®’ = (P — {C}) U {C"}; otherwise letP’ = P.
Then?P’ is an evolutionary path i’ betweern: andb. (Suppose that some proper subget
of P’ were to satisfy the conditions thate |J Q, b € U Q andQ is backward evolutionary.
The minimality of P would imply thatC’ € Q, so thatC’ € P’ andC' € P. But then
(Q — {C"}) U {C} would be backward evolutionary sinee¢ U(Q — {C"}). This result
would contradict the minimality aP.)

Now let Q" be any evolutionary path il betweern: andb. SinceJy D' N UC' = {e}, we
haveQ’ C C’ by the minimality ofQ'. If C" ¢ P'UQ’ thenP’ = Q' = P by the uniqueness of
P. Without loss of generality we may therefore assume @fat Q'. It follows thatC' ¢ C'.
Moreover(Q' — {C’}) U {C} is backward evolutionary since¢ J(Q' — {C"}). Suppose
some proper subsét of (Q' — {C'}) U {C'} were to satisfy the conditions thate (J7,

b € U7 and7 is backward evolutionary. The minimality @’ would imply thatC' € 7, but
then(7 — {C}) U {C"} would be backward evolutionary, in contradiction to the minimality
of Q. We infer that(Q' — {C"}) U {C} is an evolutionary path betweenand b.Hence
(Q'—{C"})u{C} = P by the uniqueness @, so thatQ’ = (P—{C})U{C’}. SinceC ¢ C’

we haveP’ # P, and saC’ € P’ by the uniqueness @. ThusP' = (P—{C}HUu{C'} = Q..
HenceP’ is unique, as required.

The argument is similar fa, b} C UD.

Case Il Next, suppose thate |JC andb = e. We may assume thate C’, for otherwise
Case | applies. Sincg’| > 1, there exists: € C' — {a}. There is a unique evolutionary
pathP in C betweeru andc, andc belongs to a unique sét in P by the minimality of P.
DefineP’ = (P — {C}) U {C'} if P = C, and letP’ = P U {C’} otherwise. TherP’
is an evolutionary path i@’ betweena ande. (Suppose that some proper subgebf P’
were to satisfy the conditions thate U Q, e € | Q and Q is backward evolutionary. Then
¢’ € Qsincee € JQ, so that(Q — {C'}) U {C} would be backward evolutionary. This
result would contradict the minimality dP if C' € P, and the uniqueness @& otherwise
since|Q| < |P'|—-1=1P|.)

Now let Q' be any evolutionary path id betweer: ande. ThenQ' C C’ by the minimality
of @'. MoreoverQ’' — {C"} and(Q' — {C"}) U {C} are backward evolutionary. In fact, if
c € U(Q —{C"}) then it follows from the minimality o’ thatQ’ — {C"} is an evolutionary
path inC betweena andc. In this caseQ — {C’} = P by the uniqueness dP, so that
Q' = PU{C"}. Suppose therefore that U(Q' —{C"}). Then(7 —{C})u{C"} is backward
evolutionary for any backward evolutionary, proper sulisetf (Q' — {C’}) U {C} such that
{a,c} CUT. This contradiction to the minimality o’ shows thatQ’ — {C"}) U{C} is an
evolutionary path i€ betweer: andc. Hence(Q' — {C"}) U {C} = P by the uniqueness of
P, sothatQ’ = (P — {C}) U {C’}. In both case® is unique.

The argument is similar id € D andb = e.

Case lll: Without loss of generality we may now assume tha (JC — {e} andb €
UD — {e}. By Case Il there exist a unique evolutionary p&tlin C’ between: ande and a
unique evolutionary patkQ in D’ betweere andb. ThenP U Q is the unique evolutionary
path in.A betweer: andb, sinceC' N UD’ = {e}.

We have now confirmed that is the required dendritic ancestor®f O
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Corollary 1 Let S be a finite family which is radical with respect to the property of being
forward and backward evolutionary. Suppose also that each membgiiobf cardinality
greater than 1. Thet is dendritic.

Proof: OtherwiseS has a dendritic ancestor, by Theorem 11. Being evolutionary by
Theorem 10, this ancestor contradicts the assumptiorStigatadical.Cl

Corollary 2 Let S be a finite family of nonempty sets that is forward and backward evolu-
tionary and contains at most one set of cardinality 1. Tdmas an evolutionary ancestor.

Proof: The corollary follows immediately if no set i§iis of cardinality 1. In the remaining
case, letX be the set irS of cardinality 1, and le€ = S — {X} and X = {z}. Thenf is
forward and backward evolutionary and each sét ig of cardinality greater than 1. Thus, by
Theorem 11¢ has a dendritic ancestat.

Case I: Ifx € U A, then by Theorem 10 there is an evolutionary orderinglethose first
component contains. It follows that{ X } U A is an evolutionary ancestor 6f

Case lI: Ifx ¢ U A, then there is a sét in .4 which is a subset of a sétin S containing
x. DefineY’ =Y U{z} andletd’ = (A —{Y})U{Y’}. ThenA’is an ancestor of — { X'}
with an evolutionary ordering whose first component’is It follows that. A’ U {X} is an
ancestor ofS with an evolutionary ordering whose first two componentsiarandY”. O

For example, the family{1}, {2,5},{1,2, 3,5}, {1, 2, 3,4} }, which we have shown to be
forward and backward evolutionary, has an ancestor with evolutionary ordering

({1}, {1,2},{2,3},{2,5}).
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