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Abstract

A pairwise balanced design, B(K; v), is a block design on v points, with block
sizes taken from K, and with every pair of points occurring in a unique block; for
a fixed K, B(K) is the set of all v for which a B(K; v) exists.

A set, S, is a PBD-basis for the set, T , if T = B(S). Let Na(m) = {n : n ≡
a mod m}, and N≥m = {n : n ≥ m}; with Q the corresponding restriction of N
to prime powers.

This paper addresses the existence of three PBD-basis sets.

1. It is shown that Q1(8) is a basis for N1(8) \ E, where E is a set of 5 definite
and 117 possible exceptions.

2. We construct a 78 element basis for N1(8) with, at most, 64 inessential ele-
ments.

3. Bennett and Zhu have shown that Q≥8 is a basis for N≥8 \E′, where E′ is a
set of 43 definite and 606 possible exceptions. Their result is improved to 48
definite and 470 possible exceptions. (Constructions for 35 of these possible
exceptions are known.)

Finally, we provide brief details of some improvements and corrections to the
generating/exception sets published in The CRC Handbook of Combinatorial De-
signs.
Key words and phrases: BIBD, Pairwise Balanced Design
AMS subject classifications: Primary 05B05.
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1 Introduction

A pairwise balanced design, B(K; v), is a block design on v points, with block sizes
taken from K, and with every pair of points occurring in a unique block; for a fixed K,
B(K) is the set of all v for which a B(K; v) exists.

A set, S, is a PBD-basis for the set, T , if T = B(S). Let Na(m) = {n : n ≡ a mod m},
and N≥m = {n : n ≥ m}; with Q the corresponding restriction of N to prime powers.

This paper addresses the existence of three PBD-basis sets. The opening sections
deal with useful known results and more general constructions. In Section 5, we give
constructions that are particularly useful for the first of our two problems, then in
Section 6, we show that Q1(8) is a basis for N1(8) \ E, where E is a set of 5 definite and
117 possible exceptions; an application of this result is given in [5]. In Section 7, we
construct a 78 element basis for N1(8) with, at least, 14 essential elements. In Section 8,
we look at what Q≥8 is a basis for. Bennett and Zhu have already tackled the last
problem, and give some applications [9, 13]; they have shown that Q≥8 is a basis for
N≥8 \ E′, where E′ is a set of 43 definite and 606 possible exceptions. Their result is
improved to 48 definite and 470 possible exceptions. Results (without proofs) from this
paper were incorporated into [12, Tables III.3.18–19].

Finally, in Section 9, we provide brief details of some improvements and corrections
to the generating/exception sets published in The CRC Handbook of Combinatorial
Designs, specifically [12, Tables III.3.17–19].

Although we sometimes give some non-existence results (phrased as definite excep-
tions and essential elements above) we will not establish these here; they require tech-
niques quite different from the ones we are using here. We will merely note that most
of them can be established by some results of Wilson’s [41]: the integrality conditions,
and the bound on the size of a flat; these conditions are also given in [12, Lemma 3.2,
Theorem 3.1.2].

Remark 1.1 Wilson’s integrality conditions imply that if S ⊂ N1(m), and if a B(S; v)
exists, then it follows that v ∈ N1(m).

2 Notation

The notation we use is fairly straightforward. A K-GDD is a group divisible design
with block sizes taken from K, and with a group size vector of {G1, G2, . . . , Gn}; we will
usually write the group size vector in exponential notation. We will only be concerned
with the λ = 1 case; i.e., a pair of elements from different groups occurs in one block of
the design, whilst a pair of elements from the same group appears in no block.

A pairwise balanced block design is a GDD with a group size vector of 1v; it is
denoted by B(K; v). If the block size is uniform, with K = {k} then this block design
is referred to as a balanced incomplete block design (a BIBD), and denoted by B(k; v).

If a B(k; v) exists, then the quantity r = (v − 1)/(k − 1) is called the replication
number of the BIBD, and we say that r ∈ RN(k).
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A transversal design, TD(k; t), is a {k}-GDD of group type tk.
The set of all v for which a B(K; v) exists is denoted by B(K), and a similar definition

is used for TD(k).
The notation B(K ∪ {k∗}; v) indicates there is exactly one block of size k in the

design in addition to those of sizes from K (further blocks of size k can occur only if
k ∈ K).

Resolvable designs are designs that admit a partition of the block set into subsets of
blocks that contain every point exactly once. These designs are denoted by the prefixR.

If a RB(k; v) exists, then we say that r ∈ RRN(k), where RRN(k) ⊂ RN(k).
Some notation that is specific to a section will be introduced in that section.
One final notational convention we have adopted should be mentioned. We have

labelled several lemmas by a one or two letter code. This is summarized in the key in
the appendix, which gives the symbolic parameters used in the lemma where the code is
introduced, but numeric values are substituted in the table of constructions. This device
allows considerable compression of the table, yet retains all the information needed to
verify the constructions.

3 Direct Constructions

We start this section by summarizing some well-known results in the first lemma.

Lemma 3.1 If q is a prime or prime power, then

1. q2 ∈ RB(q), and

2. q2 + q + 1 ∈ B(q + 1), and

3. q3 + 1 ∈ RB(q + 1), and

4. q3 + q2 + q + 1 ∈ RB(q + 1).

Proof : All these are standard results. The first two amount to the existence of the affine
and projective geometries, AG(2, q) and PG(2, q). The resolvability of the unital design
was shown by Bose (see [15, 26]), and the resolvability of the last design can be found
in Lorimer [33].

Lemma 3.2 Embedded in PG(2, 2N) is a set of v(n) = 2n(2n−1)2N−n+2n points whose
incidences with the lines of the plane are all either 0 or 2n. Furthermore, if m < n, the
set of v(n) points contains a subset of v(m) points whose incidence with the lines of the
plane is either 0 or 2m.

Proof : The first part of this result was shown by Denniston [19]. Denniston considers
an irreducible second order curve, Q(x, y) = ax2 + bxy + cy2 over GF (2N) in the non-
homogeneous coordinates (x, y) of the plane. Let G be any additive sub-group of order
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2n of the additive group GF (2N). Then the set of points satisfying Q(x, y) ⊂ G forms
a Denniston arc, {v(n); {0, 2n}}, in PG(2, 2N) with v(n) = 2N+n − 2N + 2n; note if we
consider a sub-group H of order 2m and take H ⊂ G, this yields a {v(m); {0, 2m}}-arc
whose points are a subset of the v(n) points, so that Denniston arcs can be taken to be
nested.

Corollary 3.3 If k is a power of 2, and n is a non-negative integer, then k(k−1)2n+k ∈
RB(k).

Proof : The resolvability was demonstrated by Seiden in the case n = 1, (see [39]), and
her proof carries over to Denniston’s arcs. The device used is to consider a line that has
zero incidence with the arc; the incidence of its points with the non-zero lines of the arc
identifies the resolution classes.

Corollary 3.4 The following designs exist:

1. B({9, 17∗}; 120 + 17 = 137 = 8 ∗ 17 + 1);

2. B({9, 33∗}; 232 + 33 = 265 = 8 ∗ 33 + 1);

3. B({9, 65∗}; 456 + 65 = 521 = 8 ∗ 65 + 1);

4. B({17, 33∗}; 496 + 33 = 529 = 8 ∗ 66 + 1);

5. B({9, 17}; 273− 120 = 153 = 8 ∗ 19 + 1);

6. B({17, 33}; 1057− 496 = 561 = 8 ∗ 70 + 1);

7. B({9, 17, 33∗}; 496− 232 + 33 = 297 = 8 ∗ 37 + 1).

Proof : The first four examples are formed by adding a complete external line to the
appropriate Denniston arc in planes of order 16, 32, 64 and 32. The next two designs are
formed by taking the complements of the Denniston arcs used in parts 1. and 4. above.
The final result comes from taking the difference of the two arcs of parts 2. and 4., in
the plane of order 32, again adding a complete external line.

Corollary 3.5 The following designs exist:

1. B({8, 9, 16, 17, 27∗}; 291);

2. B({8, 9, 16, 17, 31∗}; 295);
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Proof : Again we use the 264 point difference of two Denniston arcs that we used in
Corollary 3.4.7, and now we add an incomplete external line.

If we have a projective plane, PG(2, q), then we may generate a TD(q+1; q) from it by
deleting a point, and using the lines through that point to generate groups. Since all the
Desarguesian planes have ovals, we may consider how these oval points are distributed
amongst the groups. Recall that if q is odd, then there are q + 1 points in the oval; (if
D is the Singer difference set, then −D is such an oval). If q is even, with D = 2D,
then we may augment this set, −D, of q+ 1 points by the point {0} to get a set of q+ 2
hyperoval points, which we will also term an oval.

Lemma 3.6 If q = 2t + 1 is an odd prime power, then we may form a TD(q + 1; q)
such that the distribution of the oval points amongst the groups is of type 011q or 0t122t

or 0t+12t+1. If q = 2t is an even prime power, then we may form a TD(q + 1; q) such
that the distribution of the oval points amongst the groups is of type 1q+1 or 0t2t+1.

Proof : To demonstrate this in the odd case, we either delete an oval point, or a non-oval
tangent point, or a non-tangent point, and note the number of external lines, tangents
and secants that the deleted point lay on. For the plane of even order, we delete an oval
point, or a non-oval point; there are no tangents here.

Lemma 3.7 {81, 585} ⊂ RB(9), and {73, 433, 577} ⊂ B(9).

Proof : The first three values follow from Lemma 3.1 using q = 8 or q = 9. The values
433 and 577 result from constructions by Abel [1] and Buratti [17].

Lemma 3.8 If t ∈ {1, 6, 7} or t is a power of 2, then 56t+ 8 ∈ RB(8).

Proof : This follows from Lemma 3.1 using q = 8 or q = 7, or from Corollary 3.3 using
k = 8.

Lemma 3.9 If q is a prime or prime power, and q ≡ 1 mod 8, and q 6∈ {25, 89} and
q < 4096, then 7q + 1 ∈ RB(8).

Proof : The results for q ∈ {9, 17} are given above. The remaining constructions were
given by Greig [20]. It can be shown that the restriction q < 4096 is unneccessary,
although we do not need that improvement here.

Lemma 3.10 The {9}-RGDD of type 333 exists.

Proof : This design was constructed by Mathon; see [28].

The remaining basic designs we need are transversals. We will briefly summarize
some well known results.
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Lemma 3.11 If q is a prime or prime power, then q ∈ TD(q + 1).

Lemma 3.12 If m ∈ TD(k + 1), then m ∈ TD(k).

Lemma 3.13 If {m,n} ⊂ TD(k), then mn ∈ TD(k).

These last three lemmas can be combined to give a weaker version of MacNeish’s
result [34].

Theorem 3.14 If m has no prime divisors less than k, then m ∈ TD(k + 1).

Lemma 3.15 TD(k + 1) = RTD(k).

Lemma 3.16 If t 6= 3, then 8t ∈ TD(9), and if t 6= 4, then 8t+ 1 ∈ TD(9).

Proof : See [3]; for Wojtas’ TD(9; 48) see [18].

Unless otherwise noted, all the TDs we need are from [3]. The remaining designs we
need are incomplete transversal designs (ITDs). Loosely speaking, an ITD, written as
TD(k;m)−TD(k; a), is a design that could be completed to a TD(k;m) by adding the
blocks of a TD(k; a) to the ITD; we do not actually need to have a TD(k; a) to have an
ITD. We have chosen to provide constructions for the ITDs we need, even though better
values can sometimes be obtained from [4].

Lemma 3.17 If m ∈ TD(k), then the incomplete transversal TD(k;m) − TD(k; 1)
exists.

Proof : Delete one block of the TD to get the ITD.

The other two constructions of ITDs that we use are corollaries of Wilson’s basic
construction [40].

Lemma 3.18 If m ∈ TD(10) and 0 ≤ n ≤ m, and {k, k + 1} ⊂ TD(9), then the
incomplete transversal TD(9; km+ n)− TD(9;n) exists.

Lemma 3.19 If m ∈ TD(n) and 8 ≤ n, then the incomplete transversal TD(9; 8m +
n− 8)− TD(9;n) exists.

4 General Constructions

Lemma 4.1 (Direct Product) If m ∈ TD(n), then mn ∈ B({m,n}).

Proof : We just fill in the groups of the TD.
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Theorem 4.2 Suppose we have a K-GDD with v points and a group size vector of
{|Gj| : j = 1, . . . , g}, and, for the first g − 1 groups, we have a B(K ∪ {w∗}; |Gj| + w)
with 0 ≤ w, and, for the last group we have a B(K; |Gg| + w); then there exists a
B(K; v + w).

Proof : This is a standard result; we add w infinite points, and when we fill the first
g− 1 groups, we align the w block with the infinite points, and refrain from using it for
these groups. Note that the resulting design does not contain aw block, unless, possibly,
when w ∈ K.

Corollary 4.3 (Indirect Product) If (m − w) ∈ TD(n), and a B(K;m) containing
a B(K;w) sub-design exists, (or a B(K;m) exists with w = 1), then n(m − w) + w ∈
B(K ∪ {n}).

Theorem 4.4 (Wilson’s Fundamental Construction) Suppose there is a “master”
K−GDD with g groups and a group size vector of {|Gj| : j = 1, . . . , g}, and a weighting
that assigns a positive weight of w(x) to each point x. Let W (Bi) be the weight vector
of the i-th block. If, for every block Bi, we have a K ′ − GDD with a group size vector
of W (Bi), then there exists a K ′ −GDD with a group size vector of {∑x∈Gj w(x) : j =
1, . . . , g}.

Proof : See [41]. Also note that the blocks in the final design have cardinalities in K ′,
rather than K.

Theorem 4.5 If r ∈ RN(k), then a design with block size of k and a group vector of
(k − 1)r exists.

Proof : Deleting a point, and using its blocks as groups in a B(k; (k− 1)r+ 1), gives the
GDD; note that this construction can be reversed; (see [25]).

5 Specific Constructions

In this section, we start applying the results of the previous section to produce the
tools for the second of the problems, that of constructing designs whose block sizes are
in Q1(8), where Q1(8) is the set of prime-powers congruent to 1 modulo 8. It will be
convenient to define U1(8) by:

t ∈ U1(8) ⇐⇒ 8t+ 1 ∈ B(Q1(8)).

Lemma 5.1 There exist {9}-GDDs of type 89 and type 810.

Proof : Apply Theorem 4.5 to the 73 and 81 point designs of Lemma 3.7.
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Lemma 5.2 If q = 8t+ 1 ∈ RRN(8), then 56t+ 8 ∈ RB(8), and 64t+ 9 ∈ B({9, q∗}),
and there exists a {9}-GDD of type 87t+1(q−1)1, and there exists a {9, q∗}-GDD of type
8q.

Proof : Complete the RBIBD with q = 8t+ 1 infinite points, and then delete either an
infinite point, or a finite point, and use its lines to indicate the groups.

Theorem 5.3 If there exists a K-GDD on v points, with group sizes contained in M ,
and K ⊂ RN(9) ∪

(
Q1(8) \ {25, 89}

)
, then M ⊂ U1(8) implies v ∈ U1(8).

Proof : Give each point a weight of 8, and apply Wilson’s fundamental construction. The
needed components come from Theorem 4.5 for RN(9), and Lemma 3.9 via Lemma 5.2
for the other block sizes. We fill in the groups with a point at infinity to obtain the
required result.

Corollary 5.4 If there exists a {9, 10}-GDD on v points, with group sizes chosen from
M , and M ⊂ U1(8), then v ∈ U1(8).

Lemma 5.5 (Code T) If m ∈ TD(10) and 0 ≤ n ≤ m and {m,n} ⊂ U1(8), then
9m+ n ∈ U1(8).

Proof : Truncate one group of the transversal to size n, then use Corollary 5.4.

Concentrating on the points in the last block yields the “last spike” and “block
deletion” constructions given below.

Lemma 5.6 (Code Ls) If m ∈ TD(n) and m ∈ U1(8), and n ≥ 9 and n ∈ Q1(8) \
{25, 89}, then 9(m− 1) + n ∈ U1(8).

Proof : Remove m−1 points from n−9 groups of the transversal, retaining all the points
of the last block, to give a {9, 10, n∗}-GDD of type m91n−9. Now use Theorem 5.3.

Lemma 5.7 (Code L) If m ∈ TD(n) and m ∈ Q1(8) \ {25, 89}, and n ≥ 9 and n ∈
U1(8), then 9(m− 1) + n ∈ U1(8).

Proof : As in Lemma 5.7, we construct a {9, 10, n∗}-GDD of type m91n−9. Now fill in
the groups and delete the big block to give a {9, 10,m}-GDD of type 19m−9n1, and use
Theorem 5.3.

Lemma 5.8 (Code BD) If m ∈ TD(10) and 9 ≤ n ≤ 10 and {m,m − 1} ⊂ U1(8),
then 10m− n ∈ U1(8).

Proof : Remove n points from one block of the transversal, then use Corollary 5.4.
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Remark 5.9 Note that if n = 10, then m ∈ U1(8) is not needed.

Lemma 5.10 (Code R) If v ∈ RB(9) and 8n+1 ≤ v and n ∈ U1(8), then v+n ∈ U1(8).

Proof : Add n new points to the blocks of n resolution sets, then use Corollary 5.4.

Lemma 5.11 If m ∈ TD(k + 1), then:

1. there exists a {k + 1,m+ 1}-GDD of type kmm1;

2. there exists a {k + 1,m}-GDD of type km(m− 1)1.

Proof : Take the transversal, and fill in groups with 1 or 0 points at infinity and then
delete a finite point and use its blocks as groups to give the result.

Lemma 5.12 If k is a power of 2, then there exists a {k+ 1, 2k+ 1}-GDD on k(2k+ 3)
points, and this design has a group vector of k2k−1(2k)2.

Proof : In some ways, this lemma is a corollary of Lemma 3.2. The Seiden design can
be embedded in PG(2, 2k). We now consider the non-Seiden points in PG(2, 2k), and
delete one of these and use its blocks to define the groups.

Lemma 5.13 There exist {9, 17}-GDDs with group vectors of 815161, 817, 816161, 817161

and 815162.

Proof : This follows from Lemma 5.2 with t = 2 (twice), from Lemma 5.11 with m = 16
and m = 17, and from Lemma 5.12.

Mullin et al. [38, Lemma 6.12], used a construction similar to Lemma 5.14. We could
also adapt their Lemma 6.20, but this yields nothing new here, as we have a rich set of
constructions in the next six lemmas, covering essentially the same ranges. Five of these
constructions of these lemmas were used previously by Greig and Abel [22]; Lemma 5.16
(code B) is new.

Lemma 5.14 (Code A) If m ∈ TD(18) and 0 ≤ s ≤ t ≤ m and n = s + t, and
{m, 2m, s, t} ⊂ U1(8), then 17m+ n ∈ U1(8).

Proof : Truncate two groups to sizes s and t, and give the points of these truncated
groups a weight of 8. Give the points of one other group weight 16 and give all the other
points weight 8. The needed component group vectors are 815161, 816161, and 817161,
and are obtained from Lemma 5.13, so we may apply Wilson’s fundamental construction
to give a design with a group vector of (8m)15(16m)1(8s)1(8t)1. We fill these groups in
with the aid of a point at infinity.
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Remark 5.15 Note that, provided we took s = 0, we could relax the condition m ∈
TD(18) to m ∈ TD(17).

Lemma 5.16 (Code B) If m is a prime power with m ≥ 17, 0 ≤ t ≤ 17, n = 2t ≤
m+ 1, and {m,m+ 2} ⊂ U1(8), then 17m+ n ∈ U1(8).

Proof : Using Lemma 3.6, we may construct a TD(17;m) with at least t groups con-
taining a pair of oval points; give these t pairs of points a weight of 16, and give all
the other points a weight of 8. The needed component group vectors are 817, 816161,
and 815162, and are obtained from Lemma 5.13, so we may apply Wilson’s fundamental
construction to give a design with a group vector of (8m)17−t(8(m+ 2))t. We fill these
groups in with the aid of a point at infinity.

Lemma 5.17 (Code C) If m ∈ TD(17) and 0 ≤ s ≤ t ≤ m and n = 2m+ s + t, and
{m,m+ s,m+ t} ⊂ U1(8), then 15m+ n ∈ U1(8).

Proof : Give s points from one group a weight of 16, give t points from another group
a weight of 16, and give all the other points a weight of 8. The needed component
group vectors are 817, 816161, and 815162, and are obtained from Lemma 5.13, so we
may apply Wilson’s fundamental construction to give a design with a group vector of
(8m)15(8m+ 8s)1(8m+ 8t)1. We fill these groups in with the aid of a point at infinity.

Lemma 5.18 (Code D) If m ∈ TD(17), 0 ≤ s+ t ≤ m, n = s+2t, and {m, 2m,n} ⊂
U1(8), then 17m+ n ∈ U1(8).

Proof : Give s points from one group a weight of 8, give t points from the same group a
weight of 16, give the points of another group a weight of 16, and give the points of all the
other 15 groups a weight of 8. The needed component group vectors are 815161, 816161,
and 815162, and are obtained from Lemma 5.13, so we may apply Wilson’s fundamental
construction to give a design with a group vector of (8m)15(16m)1(8s + 16t)1. We fill
these groups in with the aid of a point at infinity.

Lemma 5.19 (Code E) If m ∈ TD(17) and 1 ≤ s ≤ m and 1 ≤ t ≤ m and 15(s−1)+
t ≤ m and n = m+t, and {m+1,m+s,m+t} ⊂ U1(8), then 16(m+1)+(s−1)+n ∈ U1(8).

Proof : Give the points from the last block a weight of 16, give s− 1 other points from
the first group a weight of 16, give t − 1 other points from the second group a weight
of 16, and give all the other points a weight of 8. There are 15(s − 1) lines containing
a pair of points with weight 16, one from group 1 and the other from groups 3 through
17; when assigning the extra t− 1 weight 16 points in the second group, we must avoid
these lines; this is possible by hypothesis. The needed component group vectors are 817,
816161, 815162, and 1617, and are obtained from Lemma 5.13, or from Lemma 3.8 with
q = 16, so we may apply Wilson’s fundamental construction to give a design with a
group vector of (8m+ 8)15(8m+ 8s)1(8m+ 8t)1. We fill these groups in with the aid of
a point at infinity.
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Remark 5.20 In all instances, we will take s = 1.

Lemma 5.21 (Code F) If m ∈ TD(18), 0 ≤ n < m, and {m−1, 2m,n} ⊂ U1(8), then
18m− 16 + n ∈ U1(8).

Proof : Give the points from the last block a weight of 0, except for the first group,
where all points get a weight of 16; also give m − n − 1 other points from the last
group a weight of 0; and give all the other points a weight of 8. The needed component
group vectors are 815161, 816161, and 817161, and are obtained from Lemma 5.13, so we
may apply Wilson’s fundamental construction to give a design with a group vector of
(8m− 8)16(16m)1(8n)1. We fill these groups in with the aid of a point at infinity.

Remark 5.22 In all instances of the preceeding six lemmas, rather than filling the
groups with the aid of a single infinite point, we could use w > 1 infinite points, as
allowed by Theorem 4.2; we shall have occassion to do this.

The Singular Indirect Product construction was introduced in [36]. The following is
a particular instance.

Lemma 5.23 (Code Ir) If 56m+ 8 ∈ RB(8), and t ≤ 8m+ 1, and m+ t = n ∈ U1(8),
and the incomplete transversal TD(9; 56m+ 8 + t)−TD(9; t) exists, then 63m+ 9 +n ∈
U1(8).

Proof : Since 56m + 8 ∈ RB(8), we may adjoin 8m+ 1 points to the resolution sets to
produce a B({9, 8m + 1∗}), We use this design to fill in the groups of the incomplete
transversal design with aid of 8m+ 1− t points at infinity, with the points of the design
labelled so that the single filling block of size 8m + 1, (which is omitted), coincides
with the missing subgroup and the infinite points. Filling in the infinite points and
the missing subgroups with a single block of size 8(m + t) + 1 = 8n + 1 completes the
construction.

Remark 5.24 For application in Appendix Table A.1, we will obtain the ITDs we need
from Lemma 3.19, using m = 37, or m = 107.

6 The Spectrum

The objective of this section is to establish Theorem 6.1.

Theorem 6.1 If m is not one of the values listed in Table 6.1, then m ∈ U1(8), and
8m+ 1 ∈ B(Q1(8)).
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Table 6.1.

Values of m for which m ∈ U1(8) is unknown.

4 7 8 13 16 20 22 23 25 26
27 31 33 37 38 40 43 47 48 52
58 59 60 61 62 63 67 68 69 70
76 79 85 88 89 92 93 94 98 103

106 112 114 115 118 123 124 125 130 132
133 134 139 140 142 143 148 151 157 160
166 175 178 184 187 191 192 195 196 197
199 202 203 204 205 208 209 211 213 214
218 220 221 223 224 226 227 229 232 238
247 250 256 259 265 268 364 367 368 373
376 382 385 391 400 424 427 438 463 607
623 628 637 643 646 670 823 832 1024 1039

1048 1084

We give, in appendix Table A.1, our constructions for values up to 288 together with
further constructions covering portions of the range up to 1648. We begin this section
by concentrating on the first 288 values, and in exhibiting subdesigns for this range.

Lemma 6.2 (Code RB) If m ∈ E, then 8m + 1 ∈ B(Q1(8)) with E given by: E =
{9, 17, 41, 49, 97, 113, 121, 169, 193, 233, 241}∪ {361, 409, 1033}.

Proof : This lemma is essentially a corollary of Lemma 5.2.

Lemma 6.3 (Code ZZ) If m ∈ {111, 198, 805, 814, 826}, then m ∈ U1(8).

Proof : For 111; take Mathon’s design of Lemma 3.10, and add 12 infinite points, to
give a {10}-GDD of type 333121; apply Lemma 5.3. For 198; take Mathon’s design
of Lemma 3.10, and give each point a weight of 16, and apply Wilson’s Fundamental
Construction of Theorem 4.4, using a TD(9; 16). For 805; take a TD(10; 81) and truncate
one block to size 5; note that the short block only contains points from the full groups;
fill the full groups, and remove the short block to give a {9, 10, 81}-GDD with group
sizes from {1, 80, 5∗}, and thence a {9, 10}-GDD with group sizes from {1, 80, 5∗}; the
needed designs for Wilson’s FC come from Lemmas 5.1. For {814, 826}; truncate one
group of a TD(18; 23) to size 16 or 22, and give each point a weight of 16, and apply
Wilson’s FC; we may obtain {17}-GDDs of types 1617 and 1618 for this application by
using Theorem 4.5 with k = 17 on Lemma 3.1 with q = 16 or 17.

We next summarize some of the smaller designs constructions.
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Table 6.2.

m 8m+ 1 Authority Remarks

9 73 = PG(2, 8) Lemma 3.1
10 81 = AG(2, 9) Lemma 3.1
17 137 = 17 +RB(8; 120) Lemma 6.2
18 145 = 9 ∗ (17− 1) + 1 Lemma 4.3
19 153 = 9 ∗ 17 Lemma 4.1
28 225 = 9 ∗ 25 Lemma 4.1
34 273 = PG(2, 16) Lemma 3.1
36 289 = AG(2, 17) Lemma 3.1
45 361 = 9 ∗ (41− 1) + 1 Lemma 4.3 [3] for TD(9; 40)
46 369 = 9 ∗ 41 Lemma 4.1
53 425 = 17 ∗ 25 Lemma 4.1
54 433 = B(9; 433) Lemma 3.7
55 441 = 9 ∗ 49 Lemma 4.1
64 513 = RB(9; 513) Lemma 3.1
73 585 = 9 ∗ (73− 9) + 9 Lemma 4.3
74 593 = 9 ∗ (73− 9) + 17 Lemma 5.23 ITD(9;65)-(9;1)
78 625 = AG(2, 25) Lemma 3.1
91 729 = 9 ∗ 81 Lemma 4.1

127 1017 = 9 ∗ 113 Lemma 4.1
128 1025 = 25 ∗ 41 Lemma 4.1
135 1081 = 9 ∗ (121− 1) + 1 Lemma 4.3
136 1089 = 9 ∗ 121 Lemma 4.1
137 1097 = 9 ∗ (137− 17) + 17 Lemma 4.3
138 1105 = 9 ∗ (137− 17) + 25 Lemma 5.23 ITD(9;121)-(9;1)
145 1161 = 9 ∗ (137− 9) + 9 Lemma 4.3
146 1169 = 9 ∗ (145− 17) + 17 Lemma 4.3
201 1609 = 25 ∗ (73− 9) + 9 Lemma 4.3
206 1649 = 17 ∗ 97 Lemma 4.1
210 1681 = AG(2, 41) Lemma 3.1
216 1729 = 9 ∗ (193− 1) + 1 Lemma 4.3
217 1737 = 9 ∗ 193 Lemma 4.1
228 1825 = 25 ∗ 73 Lemma 4.1
240 1921 = 17 ∗ 113 Lemma 4.1
251 2009 = 41 ∗ 49 Lemma 4.1

We next turn to the range 289–3439; constructions A and C, as detailed below in
Tables 6.3 and 6.4 and Remark 6.4, cover large portions of this range. In both Tables 6.3
and 6.4, we get valid constructions for the range 17m through 19m with the exception
of the noted failures.
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Table 6.3.

m Invalid n 17m 19m Failures

17 33 289 323 322
32 55,63 544 608 599,607
41 79,81 697 779 776,778
64 116,122–127 1088 1216 1204,1210–1215
73 133–4,140–1 1241 1387 1374–5,1381–2
81 1377 1539
97 189 1649 1843 1838

121 2057 2299
127 250,251 2159 2413 2409,2410
137 269 2329 2603 2598
149 297 2533 2831 2830
163 2771 3097
167 333 2839 3173 3172
181 3077 3439

Remark 6.4 Using the overlapping ranges, or applying construction C of Lemma 5.17
with the same value of m to the exceptions in Table 6.3, we are able to remove all of
them except 322, 607 and 1211.

Table 6.4 presents some cases of construction C. Again, apart from the noted failures,
the inclusive range 17m through 19m has a valid construction available.

Table 6.4.

m Invalid n 15m 17m 19m Failures

19 39,41,44,46, 285 323 361 324,326,329,331,
73–76 358–361

29 115,116 435 493 551 550,551
49 189,195,196 735 833 931 924,930,931
53 115,116,211,212 795 901 1007 910,911,1006,1007
71 280,281,283,284 1065 1207 1349 None thru 1344
83 331,332 1245 1411 1577 1576,1577

101 392,397,403,404 1515 1717 1919 None thru 1911
107 409,415,421,423, etc. 1605 1819 2033 None thru 2013
113 227–8,231,443, etc. 1695 1921 2147 None in 1927–2137

Lemma 6.5 If 289 ≤ t ≤ 3439, and t 6∈ E, then t ∈ U1(8), where E is given by:

{322, 324, 326, 329, 331}∪N492
358 ∪ {607} ∪N696

609 ∪N832
780 ∪N1087

1006 ∪N1648
1576 .
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Proof : This follows by the application of constructions A and C as detailed in Tables 6.3
and 6.4, noting Remark 6.4.

Most of the exception set E of Lemma 6.5 can be dealt with by applying our con-
structions exactly as given. However, for some constructions we will use Theorem 4.2
with more than one infinite point.

Lemma 6.6 A B(Q1(8) ∪ {8w + 1∗}; 8(m + w) + 1) exists when (m,w) is one of the
following pairs:

(8, 1) (16, 1) (16, 2) (17, 1) (25, 3) (27, 1) (32, 2)
(43, 6) (50, 3) (54, 1) (81, 6) (83, 1) (89, 1)

Proof : For m = 43, this follows from Lemma 5.2; for other m < 81, this follows from
Table 6.2; for m ≥ 81, this follows from Lemma 5.5, truncating a TD(10, 9).

We use these subdesigns in the constructions given in Table 6.5.

Table 6.5.

Code m w Needed Result n range Successes
subdesigns

T 16 1 (16,1) 144 + n 1 ≤ n ≤ 17 Several
T 25 3 (25,3) 225 + n 3 ≤ n ≤ 28 Several
T 27 1 (27,1) 243 + n 1 ≤ n ≤ 28 Several
A 16 2 (16,2) (32,2) 272 + n 2 ≤ n ≤ 18 274,277,

(0,2) 281,283,286
T 32 2 (32,2) 288 + n 2 ≤ n ≤ 34 322
A 17 1 (17,1) 289 + n n = 2m+ w = 35 324
T 43 6 (43,6) 387 + n 6 ≤ n ≤ 49 Several
D 25 3 (25,3) (50,3) 425 + n 3 ≤ n ≤ 53 454,457
A 27 1 (27,1) (54,1) 467 + n 1 ≤ n ≤ 28 472

(8,1)
C 43 6 (43,6) (81,6) 726 + n 49 ≤ n ≤ 92 808,817
T 83 1 (83,1) 747 + n 1 ≤ n ≤ 84 831
C 89 1 (89,1) 1424 + n 90 ≤ n ≤ 189 1582

Lemma 6.7 If t ≤ 3439, and t 6∈ T , then t ∈ U1(8), where T is the list of unconstructed
cases given in Table 6.1.

Proof : Appendix Table A.1, in conjunction with Table 6.2, covers the values through
288 and most of the exception set E.

To deal with the values exceeding 3439, we need three preliminary lemmas.

Lemma 6.8 Any sequence of 10 consecutive integers contains at least one value from
TD(10).



the electronic journal of combinatorics 7 (2000), #R13 16

Proof : Consider only the 5 odd numbers of the sequence, and note that at most two are
divisible by 3, and at most one by 5 or 7. Hence there is (at least) one value with no
factors less than 11; the result then follows by Theorem 3.14.

Lemma 6.9 Let E′ = {367, 373, 391, 463, 607, 643, 823, 1039}. If m 6∈ U1(8), and 288 ≤
m ≤ 3439 and m 6∈ E′, then m is divisible by 2 or 7.

Proof : This is simply a matter of checking Table 6.1.

Lemma 6.10 G ⊂ U1(8) ∩ TD(10), where G = {331, 337, 343, 349, 353, 359, 361, 369,
379, 389, 397, 461, 467, 601, 611, 641, 647, 821, 827, 1033, 1040}.

Proof : ForG ⊂ U1(8), we check Table 6.1. ForG ⊂ TD(10), we note that all the numbers
given are prime powers, except 369 = 9∗ 41, 611 = 13 ∗ 47, and 1040 = 16 ∗ 64 + 16.

Lemma 6.11 If m > 3439, then m ∈ U1(8).

Proof : Note that U1(8) contains an unbroken sequence of values from 269 through 363; the
range 269 through 331 contains 63 > 6∗9 values. We may use the truncated transversal
construction of Lemma 5.5, with 331 ≤ m ≤ 361 to construct the range 3248 = 9∗331+
269 through 3610, with m being chosen from the set G of Lemma 6.10; note that the m
values used do not differ by more than 6. Next, note the range 269 through 361 contains
93 > 10 ∗ 9 values. Again we use the truncated transversal construction of Lemma 5.5.
By Lemma 6.8, we are assured that we may find a sequence of m ∈ TD(10) close enough
together that the ranges of the successive constructions overlap. The only problem is
that some of the needed m may not be in U1(8). The set E′ of Lemma 6.9 gives the
only possible problem values in the values that Lemma 6.8 is providing. These problem
values can be overcome by use of values from the set G of Lemma 6.10; the remaining
values of G (i.e., those exceeding 361), were all chosen to straddle values in E′, with the
straddling values differing by at most 10.

Theorem 6.12 If v is not in Table 6.6, and v ≡ 1 mod 8, then v ∈ B(Q1(8)).

Proof : This is really a restatement of Theorem 6.1.

Table 6.6.

Values of v for which v ∈ B(Q1(8)) is unknown.

33 57 65 105 129 161 177 185 201 209
217 249 265 297 305 321 345 377 385 417
465 473 481 489 497 505 537 545 553 561
609 633 681 705 713 737 745 753 785 825
849 897 913 921 945 985 993 1001 1041 1057
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1065 1073 1113 1121 1137 1145 1185 1209 1257 1281
1329 1401 1425 1473 1497 1529 1537 1561 1569 1577
1593 1617 1625 1633 1641 1665 1673 1689 1705 1713
1745 1761 1769 1785 1793 1809 1817 1833 1857 1905
1977 2001 2049 2073 2121 2145 2913 2937 2945 2985
3009 3057 3081 3129 3201 3393 3417 3505 3705 4857
4985 5025 5097 5145 5169 5361 6585 6657 8193 8313
8385 8673

7 The Basis for 1 mod 8

Since we already have the machinery and most of the results already in place, we will
take the opportunity to treat the PBD basis for the 1 mod 8 case. Let N1(m) = {v :
v ≡ 1 mod m}; we wish to find a set H1(m) containing as few elements as possible, such
that N1(m) = B(H1(m)). This problem was considered by Wilson for 2 ≤ m ≤ 4, and
subsequently by Mullin for 5 ≤ m ≤ 7, and by Greig [41, 35, 21].

Lemma 7.1 Let a be a positive integer, and suppose that there exists a positive integer
u such that u ≡ 1 mod a, and that there exists both a TD(a+1; u−1) and a TD(a+1; u).
If there exists a TD(u+ 1;m), then m(u− 1)(a+ 1) + at+ 1 is inessential in H1(a) for
0 ≤ t ≤ m.

Proof : See [35, Lemma 2.2]; we truncate one group of the TD(u + 1;m), and apply
Wilson’s FC, with group types found from the first two TDs, and then fill with an
infinite point.

Let Pk = {q : q ≤ k, q prime}; we define U(Pk) to be the smallest integer δ such
that, for any positive n, we can always find some s satisfying n ≤ s < n + δ with the
property that s is relatively prime to every element of Pk. The main consequence of
this, via MacNeish [34], is the following lemma.

Lemma 7.2 Let k be a positive integer. Then given any positive integer n, there exists
an integer s such that n ≤ s < n+ U(Pk) and there exists a TD(k + 2; s).

Proof : See [35, Lemma 2.1].

Let V (a, b) = {v : a+ 1 ≤ v ≤ b, v ≡ 1 mod a}.

Lemma 7.3 Let a be a positive integer, and let u be an integer such that u ≡ 1 mod a
and there exists a TD(a+ 1; u− 1) and a TD(a+ 1; u). Let δ = U(Pk) and let w be an
integer such that there exists a TD(u+ 1;w) and w ≥ δ(u− 1)(a+ 1)/a− 1. Then the
set V (a, w(u− 1)(a+ 1)− a+ 1) is a finite basis for N1(a).
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Proof : See [35, Theorem 2.3]; we give a slightly improved version, with the improvement
resulting from the observation that consecutive intervals need only abut each other, not
overlap; the hypothesized bound on w is decreased by unity.

Corollary 7.4 V (8, 6401) is a basis for N1(8).

Proof : Take a = 8, u = 9, 10 = δ = U(P9) = U(P7), and w = 89. It follows from
Lemma 6.8 that we can take δ = 10.

Actually, since the prime powers below 89 are within 6 of each other, there is more
overlap of consecutive intervals than is provided for in Lemma 7.3, with its allowed gap
of 10, so the result of Corollary 7.4 can be improved on considerably.

Lemma 7.5 Let S = N80
1 ∪N98

91 ∪N116
111 ∪N143

131 ∪N206
191 . If m 6∈ S ∪N332

321 , then 8m+ 1 is
inessential in H1(8).

Proof : In Lemma 7.1, take a = 8, u = 9, and let m range through the prime powers
from 9 through 83.

Lemma 7.6 If m ∈ N332
321 , then 8m+ 1 is inessential in H1(8).

Proof : In Lemma 5.14, take m = 17 or m = 19.

Lemma 7.7 If E = {9, 17, 41, 49, 97, 113, 193} ∪ {33, 57, 65}, then 8q + 1, with q ∈ E,
is inessential in H1(8).

Proof : This lemma is essentially a corollary of Lemma 5.2, and Lemma 3.8.

Lemma 7.8 We have 125 ∈ B({5∗, 9, 11, 13}), and also the incomplete transversal de-
sign TD(9; 125)− TD(9; 5) exists.

Proof : The PBD was constructed in [21] from an RTD(10; 13) in PG(2, 13) and parallels
the construction of the 158 point PBD in Lemma 8.2. The ITD result follows from this
PBD.

Table 7.1.

m 8m+ 1 Authority Remarks

63 505 = 9 ∗ (57− 1) + 1 Lemma 4.3 K = {9, 57}
68 545 = 17 ∗ (33− 1) + 1 Lemma 4.3 K = {17, 33}
72 577 = 9 ∗ (65− 1) + 1 Lemma 4.3 K = {9, 65}

132 1057 = PG(2, 32) Lemma 3.1 K = {33}
142 1137 = 9 ∗ (137− 17) + 57 Lemma 5.23 K = {9, 57}

Lemma 7.8 ITD(9;125)-(9;5)
199 1593 = 9 ∗ 177 Lemma 4.1 K = {9, 177}
200 1601 = 25 ∗ (65− 1) + 1 Lemma 4.3 K = {25, 65}
202 1617 = 33 ∗ 49 Lemma 4.1 K = {33, 49}
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Theorem 7.9 If m is not listed in Table 7.2, then 8m+ 1 is inessential in H1(8).

Proof : We only have to deal with elements of S from Lemma 7.5. We use Corollary 3.4
to remove m ∈ {19, 37, 66, 70}; we use Lemma 7.7 to remove m ∈ {9, 17, 33, 41, 49, 57,
65, 97, 113, 193}; we use Lemma 3.7 to remove m ∈ {10, 54, 73}; we use Lemma 6.3 to
remove m ∈ {111, 198}; the remaining constructions are to be found in Table 6.2, or
Table 7.1.

Table 7.2.

Values of m for which 8m+ 1 ∈ B(H1(8) \ {8m+ 1}) is unknown.

1 2 3 4 5 6 7 8 11 12
13 14 15 16 20 21 22 23 24 25
26 27 29 30 31 32 35 38 39 40
42 43 44 47 48 50 51 52 56 58
59 60 61 62 67 69 71 75 76 77
79 80 92 93 94 95 96 98 112 114

115 116 131 133 134 139 140 141 143 191
192 194 195 196 197 203 204 205

Theorem 7.10 If v is not listed in Table 7.3, then v is inessential in H1(8).

Proof : This is just another version of Theorem 7.9. The first 14 values are essential.

Table 7.3.

Values of v for which v ∈ B(H1(8) \ {v}) is unknown.

9 17 25 33 41 49 57 65 89 97
105 113 121 129 161 169 177 185 193 201
209 217 233 241 249 257 281 305 313 321
337 345 353 377 385 401 409 417 449 465
473 481 489 497 537 553 569 601 609 617
633 641 737 745 753 761 769 785 897 913
921 929 1049 1065 1073 1113 1121 1129 1145 1529

1537 1553 1561 1569 1577 1625 1633 1641

8 Prime Powers Exceeding Seven

The main aim of this section is to improve the spectrum of B(Q≥8), where Q≥8 is the
set of all prime powers exceeding 7. This problem was introduced by Bennett [9] and
further discussed in [13]. Direct constructions for the values 123, 156, 158, 254, 316, and
1262 are given in [21], and for 291 and 295 were given in Corollary 3.5. The 123 point
design takes the 120 point Denniston arc used in Corollary 3.4.1 and adds three extra
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points on an 8-line. The 158 point design uses the q − x construction from [21] (with
q = 16 and x = 6): start with PG(2, q), and remove a point and x+1 lines through it to
produce a RTD(q − x; q) and then take a (q − x)-line (in the plane) and flip the status
of its q + 1 points, now deleting q − x and restoring x+ 1, and finally add a non-planar
point to the (x+ 1)-line and the q − x (q − 1)-groups. The remaining constructions are
based on Brouwer [16], who considers the cyclic difference set for PG(2, q), and looks
at the points belonging to a residue set modulo w, for w a divisor of q2 + q + 1. Here
however, we take more than one residue set; we take twelve modulo 21 sets in PG(2, 16),
two modulo 3 sets in PG(2, 19), four modulo 7 sets in PG(2, 23), or two modulo 3 sets in
PG(2, 43) to get our designs; if w = 3, it doesn’t matter which sets we pick; in the other
two cases we used the eleven used sets plus 0, and the four least used sets, considering
the use in the difference set given by Baumert [8].

Theorem 8.1 {123, 291, 295, 316, 574, 814, 1262} ⊂ B(Q≥8).

Proof : See [21] or Corollary 3.4, or apply the q−x construction with q = 32 and x = 14
or 6.

We high-light two particularly useful values:

Lemma 8.2 156 ∈ B({8, 9, 11, 17}) and 158 ∈ B({8∗, 9, 11, 16}).

Corollary 8.3 158 ∈ TD(9).

Lemma 8.4 1. If TD(k;m) exists, then km ∈ B({k,m}), and all block sizes occur.

2. If TD(k + 1;m) exists, and 0 < t < m, then km+ t ∈ B({k, k + 1,m, t}), and all
block sizes occur.

Proof : See Bennett [9, Lemma 2.8].

Lemma 8.5 If TD(t;m) exists, and k + 1 ≤ t, then km + t − k ∈ B({k, k + 1,m, t}),
and all block sizes occur.

Proof : See Bennett [9, Lemma 2.11].

Using the notation TD∗(k;m) to denote a TD(k;m) with at least one parallel class
of k-lines, we have the following lemma which was exploited by Bennett and Zhu [13].

Lemma 8.6 If a TD(k; p) exists, and a TD∗(p; q) exists, and a TD∗(k; q) exists, then
a {k, p, q}-GDD of type (kp)q exists.

Proof : Filling in the groups of the third TD, and removing a parallel class produces a
{k, q}-GDD of type kq. Now a similar construction with the second TD shows we have
a {p, q}-GDD of type pq. Applying Wilson’s FC with weight of p for all points in our
first constructed design, using the second constructed design to give the ingredients for
the blocks of size q, and using the first hypothesized design to give the ingredients for
the blocks of size k, shows the required result.
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Lemma 8.7 If m 6= 4, then 8m+ 1 ∈ B(Q≥8).

Proof : See Bennett [9, Theorem 4.1].

Lemma 8.8 1. If m 6∈ {3, 5, 6, 7}, then 8m ∈ B(Q≥8);

2. If m ≥ 8 and m 6= 22, then 8m ∈ B(Q≥8 ∪ {8∗});

Proof : For the first part, see Bennett [9, Theorem 4.2]. Actually a careful analysis of
Bennett’s proof establishes most of the second part. It n ≥ 8 is odd and n 6∈ E9, where
E9 is a set of 30 numbers, then a TD(9;n) is known to exist, and Bennett also shows
that n ∈ B(Q≥8), [9, Theorem 4.1]. Hence, if n 6∈ E9, then we have the result for m = n
by Lemma 8.4.1, and for m = n+ 1 by Lemma 8.4.2 with t = 8. Lemma 8.4.1 also deals
with the case that m ≥ 8 is a power of 2. Lemma 8.4.2 with t = 16, 32 also gives the
cases m = n+ 2 and m = n+ 4 if n is not too small. Lemma 8.5 with t = 32 gives the
cases m = n + 3 for n ≥ 31, and with t = 72 gives m = 78. We can use Lemma 8.4.2
with k = 16, t = 8 to deal with m = 35, 95. We also note that an RB(8; v) exists for
v = 120, 288, 680; (the latter deals with m = 94). This abbreviated proof establishes
the second part of the lemma; Bennett’s result now follows by noting that the missing
smaller m are all powers of 2, and 8∗22 = 11∗16, and we can again apply Lemma 8.4.1.

Lemma 8.9 (Bennett [10])

1. If n = 10 or 12 ≤ n ≤ 19, then 8n+ 12 ∈ B(Q≥8 ∪ {w∗}) for 8 ≤ w ≤ 12;

2. If n = 12 or 14 ≤ n ≤ 19, then 8n+ 14 ∈ B(Q≥8 ∪ {w∗}) for 8 ≤ w ≤ 14;

3. If n ∈ {11, 13, 19} or 15 ≤ n ≤ 17, then 8n+ w ∈ B(Q≥8 ∪ {w∗}) for w ≤ 11.

Proof : If w ≤ n, we can truncate one group of a TD(9;n) to size w whenever n is a
prime power, and if n = 15, we can add w points to a RB(8; 120). If w ≤ n+2 and n+1
is a prime power, we can apply Lemma 8.5 to a TD(w;n+ 1). Finally, for n = 14, the
RB(8; 120) is embedded as a {120; {0, 8}}-arc in PG(2, 16); we can extend an 8-secant
to size w.

Lemma 8.10 (Bennett [10])

1. If m = 136 or 138 ≤ m ≤ 146 or m ∈ {148, 149}, then 8m+ 156 ∈ B(Q≥8);

2. If m = 138 or 140 ≤ m ≤ 146 or m ∈ {148, 149}, then 8m+ 158 ∈ B(Q≥8);
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Proof : Let u ∈ {156, 158}; for m ≤ 144, set w = u − 144 and truncate one group of a
TD(9; 144); now add w infinite points, and fill the groups using Lemma 8.9 for all but
the last group (on 144+w points) which we fill with a B(Q≥8; u) design from Lemma 8.2.
For m = 145, set w = u− 144 and remove 8 collinear points from a TD(9; 19), and use
this as the master design in Wilson’s Fundamental Construction of Theorem 4.4, giving
all points weight 8, to get a {8, 9}-GDD of type 14481521; now add w infinite points,
and fill the groups using Lemma 8.9 for all but the last group (on 144 +w points) which
we fill with a B(Q≥8; u) design from Lemma 8.2. For m > 145, set w = u − 152 and
truncate one group of a TD(9; 152); now add w infinite points, and fill the groups using
Lemma 8.9 for all but the last group (on 152 + w points) which we fill with a B(Q≥8; u)
design from Lemma 8.2.

Lemma 8.11 If TD(k; v − u) exists, and v ∈ B(Q≥8 ∪ {u}∗), and v ∈ B(Q≥8), then
k(v − u) + u ∈ B(Q≥8).

Proof : See Bennett [9, Lemma 2.12].

Theorem 8.12 Let 0 ≤ y ≤ u− x and 0 ≤ a− y ≤ v − (u− x) and suppose:

1. {k, k + 1} ⊂ B(Q≥8),

2. the incomplete transversal TD(k + 1; v)− TD(k + 1; a) exists,

3. v + x ∈ B(Q≥8 ∪ {a+ x}∗).
Further suppose either (A):

4. u ∈ B(Q≥8),

5. ka+ x+ y ∈ B(Q≥8 ∪ {x+ y}∗);
or else (B):

4′. u ∈ B(Q≥8 ∪ {x+ y}∗),

5′. ka+ x+ y ∈ B(Q≥8);

then kv + u ∈ B(Q≥8).

Proof : This is a variation of the usual singular indirect product construction. We add x
infinite points to the design, then truncate one of the groups of the ITD, leaving u− x
points with y of them in the missing part. The initial conditions on x and y ensure that
we actually remove a non-negative number from both the missing and non-missing parts
of the groups of the ITD, and also leave a non-negative number of points in each part of
the group. We then use D3 to fill the k untruncated groups, omitting the flat which we
align with the infinite points and the hole. For version B, we then use D4′ to fill the last,
truncated, group, and finally use D5′ to fill the holes and infinite points. For version A,
we reverse this order, and use D5 first, then D4.
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Corollary 8.13 If 160 ≤ m ≤ 170, or 192 ≤ m ≤ 279, and u ∈ {156, 158}, then
8m+ u ∈ B(Q≥8).

Proof : We will apply version A of Theorem 8.12, with k = 8 and x = 0. Express m
as m = v = 8q + a with q taken from 19, 23, 25, 27, 29, 31, and with 8 ≤ a ≤ q; this
form provides us with the ITD, and also with D3 since x = 0. Take y = 8 for q = 19 or
a = 22, and y = 0 otherwise. Lemma 8.2 gives us D4; and since ka+ x+ y is a multiple
of 8, Lemma 8.8 gives us D5 for both values of y, noting in the case y = 0 the subdesign
is trivial.

Corollary 8.14 Let 144 ≤ m ≤ 159, or 180 ≤ m ≤ 187.

1. If m 6= 146, then 8m+ 156 ∈ B(Q≥8).

2. If m 6∈ {145, 147, 148, 149}, then 8m+ 158 ∈ B(Q≥8).

Proof : We will apply version B of Theorem 8.12, with k = 8. For 144 ≤ m ≤ 159, let
m = v = 144 +a and y = a; the ITD follows from Wilson’s MOLS construction [40] and
v = 16∗9 +a for a ≤ 9, or from v = 8∗19 + (a−8) and for 8 < a ≤ 15. For u = 156, let
x = 17− a, and for u = 158, let x = 16− a; D3 follows from v+ x = 8 ∗ 19 + (x+ a− 8)
and Lemma 8.5, and D4′ follows from Lemma 8.2, and D5′ is on 8a + 17 or 8a + 16
points, which is alright by Lemma 8.7, unless a = 2 for u = 156, or else is alright by
Lemma 8.8, unless a ∈ {1, 3, 4, 5} for u = 158.

For u ∈ {156, 158}, if 180 ≤ m ≤ 187, let m = v = 176 + a, let x = 11 − a, and
y = a − 2; the ITD follows from v = 16 ∗ 11 + a, and D3 follows from v + x = 11 ∗ 17
and Lemma 8.4.1, and D4′ follows from Lemma 8.2, and D5′ is on 8a+ 9 points, which
is alright, by Lemma 8.7, for 4 ≤ a ≤ 11.

Lemma 8.15 If 171 ≤ m ≤ 191, and m 6∈ {174, 175, 188}, then 8m+ u ∈ B(Q≥8) for
u ∈ {156, 158}.

Proof : For the odd values not covered by Corollary 8.14, and for 176, we may apply
Lemma 8.4.2 with t = u and k = 8. For the remaining m, we note that m+1 is a prime,
and apply Lemma 8.5 with t = u and k = 8.

Lemma 8.16 If a TD(14;m) exists, 0 ≤ s, t, w, x, y, z ≤ m and x + y + z ≤ m, then
there is a Q≥8-GDD of type (8m)10(8x+ 9y + 10z)1(8s)1(8t)1(8w)1.

Proof : See Bennett [9, Lemma 3.11].

Corollary 8.17 1558 ∈ B(Q≥8)

Proof : Apply Lemma 8.16 with m = 17, s = x = 1, t = 4, z = 15 and w = y = 0 to
give a GDD of type 13610158181321.
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Theorem 8.18 If 138 ≤ m ≤ 279, then 8m+ 156 ∈ B(Q≥8).

Proof : Combining the preceeding corollaries and lemmas, we only have to deal with the
three exceptions of Lemma 8.15, and these are covered by Lemma 8.4 with k=31, using
the prime powers 49 and 53.

Theorem 8.19 If 140 ≤ m ≤ 279, then 8m+ 158 ∈ B(Q≥8).

Proof : The proof is essentially the same as for Theorem 8.18. The use of Lemma 8.4
with k = 31 and the prime powers 43, 49, 53, resolves m = 147, and two of the three
exceptions of Lemma 8.15, and Corollary 8.17 resolves the third exception.

We turn now to the construction of some miscellaneous values. In addition to the
values mentioned in the beginning of this section, we also have:

Theorem 8.20 1102 ∈ B(Q≥8).

Proof : Apply Lemma 8.6 with k = 9, p = q = 11 to give a {9, 11}-GDD of type
9911, and fill with 13 infinite points using a B({8, 9, 13}; 112 = 99 + 13) provided by
112 = 8 ∗ 13 + 8.

Remark 8.21 A construction similar to this one was used by Bennett and Zhu to re-
move this and two other values in [13]. In the introduction to this section, we mentioned
the construction of adding t−8 extra points from an 8-line through a 120 point Dennis-
ton arc in PG(2, 16); if we use the lines through a further point on this line to generate
the groups, we have a {8, 9}-GDD of type 814t1 for 8 ≤ t ≤ 16 (and in particular t = 15);
taking this in conjunction with the method used in the proof of [9, Lemma 3.9] and with
254 ∈ B(Q≥8) accounts for the other constructions in [13]. Actually, This particular
GDD, in conjunction with Bennett [9, Lemma 3.8], enables us to extend Lemma 8.16 to
allow six further groups receiving weights of some mix of 0 and 8, if we wish, Provided,
of course we were weighting a TD(20;m)).

Theorem 8.22 {1182, 1220, 1222, 1244, 1260, 1268, 1946} ⊂ B(Q≥8).

Proof : For 1182, use Brouwer’s stacking Baer sub-planes construction of [16] to give 7
PG(2, 4)s in PG(2, 16), i.e., a B({7, 11}; 147), and to this add 6 infinite points for the
resolutions on the short blocks to give aB({8, 11, 6∗}; 153); use this design to fill 7 groups
of a TD(8; 147) with 6 infinite points, and then a B({9, 17}; 153) from 153 = 9∗17 to fill
the last group. For the next two values, let u ∈ {156, 158} and let a = u− 152; now use
u = 8 ∗ 19 + a ∈ B({8, 9, 19, a∗}) to fill in all but the last group of a TD(8; 152) with a
added infinite points, and use Lemma 8.2 for the last group. The next two values are the
two smallest values given by Lemma 8.10. For the last two values, we use Lemma 8.11,
noting that 1268 = 9 ∗ (156− 17) + 17 and 1946 = 13 ∗ (158− 9) + 9.
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Remark 8.23 For the applications discussed in [9, 13], the following equations are
worth noting:

1. 1578 = 11 ∗ (158− 16) + 16, and

2. 1626 = 11 ∗ (156− 9) + 9.

We may summarize the main results of this section:

Theorem 8.24 If v has the value 4 or 6 modulo 8, and v ≥ 1276, then v ∈ B(Q≥8).

Proof : Given in Theorems 8.18 and 8.19.

Remark 8.25 We have now substantiated the majority of the improvements made
in [12, Table 3.18] over the results in [9]. We have no construction for 1578 or 1626, the
two values noted in Remark 8.23; it would appear that these were erroneously omitted
from [12, Table 3.18]. In addition, we have noted constructions for the values 316, 574,
814, 1244, 1260 and 1318 which further improve [12, Table 3.18].

9 Update

In this final section, we wish to provide some updates and corrections to the three tables
of generating/exception sets given in [12, Tables III.3.17–19].

9.1 Table III.3.17

Most of the changes here involve designs with 4 ∈ K, and result from improvements
to [37] during its later drafts. That paper has a couple of weak entries in the summary
table [37, pp. 74–75]: (55 ∈ B({4, 6, 8, 9}), 30 6∈ B({4, 7, 8, 9})). It is known that
44, 45, 47 6∈ B({4, 7, 8}) and also that 48 6∈ B({4, 7, 9}). The remaining improvements
with 4 ∈ K from [37] are in constructing designs; another results from Ling [29, p. 57]
who gives a B({4, 5}; 104) with 21 parallel classes of 4-blocks, so adding 11 points gives
a B({4, 5, 11∗}; 115). For 4 ∈ K, we have chosen to list the current possible exceptions
for all such listed K, several of which seem close to solution.
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K Possible exceptions
4, 6 33, 34, 39, 45, 46, 51, 75, 87
4, 8 48, 53, 60, 65, 69, 77, 89, 101, 161, 164, 173
4, 9 60, 69, 84, 93, 96, 192

4, 5, 7 30, 39, 42, 51, 54
4, 5, 11 38, 42, 43, 46, 50, 54, 58, 62, 66, 67, 70, 74

78, 82, 90, 94, 98, 102, 106, 114, 118, 126
4, 6, 7 33, 45, 87
4, 6, 8 33, 34, 35, 39, 41, 47, 50, 51, 53, 59, 62, 65,

71, 75, 77, 87, 89, 95, 101, 110, 131, 161, 170
4, 6, 9 34, 75, 87
4, 7, 8 48, 51, 54, 59, 62, 65, 66, 69, 74, 75, 77, 78, 83, 87,

89, 90, 101, 102, 110, 111, 114, 123, 126, 131, 135, 143,
150, 159, 161, 162, 164, 167, 170, 173, 174, 186, 195

4, 7, 9 51, 54, 60, 66, 69, 75, 78, 84, 87, 93, 96, 102,
111, 114, 138, 147, 150, 159, 174, 183, 186, 195, 210

4, 8, 9 48, 53, 60, 69, 77, 101, 161, 164, 173
4, 5, 7, 8 30, 42, 51
4, 5, 7, 9 30, 51, 54
4, 5, 7, 11 30, 42, 54
4, 6, 7, 8 33, 35, 41, 65, 77, 131
4, 6, 8, 9 34, 35, 41, 47, 50, 53, 59, 62, 71,

75, 77, 87, 95, 101, 131, 161, 170
4, 7, 8, 9 35, 38, 39, 41, 42, 44, 47, 48, 51, 54, 59, 62,

110, 143, 150, 159, 161, 164, 167, 173, 174
4, 5, 7, 8, 9 30, 51
4, 6, 7, 8, 9 35, 41

4, 5, 7, 9, 10, 11 30
4, 5, 9, 11, 19, 31 38, 42, 43, 46, 50, 54, 62, 66, 74, 78, 90, 98, 102, 114, 126

There were three changes involving designs with 5 ∈ K resulting from improvements
to [11] during its final draft. The remaining improvements to [12, Table III.3.17] come
from other results in the table or from three designs: Bierbrauer [14] exhibits a pentario
in PG(2, 8) (i.e., a set of 3 quintuples, any pair of which form a hyperoval), and the
pentario forms a {15; {0, 2, 3}}-arc in the plane, so deleting the pentario and an external
line gives a B({5, 6, 8}; 49); there are over 106 such configurations, and using the Singer
difference set given by powers of 2 in Z73, an example set of deleted points is:

{1, 2, 11, 27, 60}{0, 9, 29, 45, 58}{7, 30, 38, 46, 71}{3, 4, 6, 10, 18, 34, 39, 57, 66}
The two other designs are 7-GDDs of types 725 and 737 constructed by Janko and

Tonchev [27] and by Abel [2], and modifying these designs give the remaining new PBDs.

K Change
5, 7 259, 709 ∈ B(K)

5, 6, 8 49, 307 ∈ B(K)
5, 6, 8, 9 174 ∈ B(K)
5, 7, 8, 9 163, 243 ∈ B(K)
6, 7, 8 170, 174, 175, 176 ∈ B(K)

6, 7, 8, 9 137, 170, 174, 175, 176 ∈ B(K)
7, 8, 9 175, 176, 259, 260 ∈ B(K)
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Finally, we note that [29, p. 21] contains an arithmetic error; this affects part of [30,
Lemma 4.7], for (94, 95). More specifically, Ling gives a (lower) bound up to which
we safely can add points to a certain configuration in a projective plane, although he
mis-evaluated the bound here; using essentially Ling’s plan, one can exceed this bound
with carefully chosen points, and this was demonstrated in [7, Lemma 4.18], correcting
the lacuna.

9.2 Table III.3.18

First, we note the errors in this table. For K = Q≥4 clearly the prime powers 11, 19, 23,
27 are not exceptions, nor is 51 a possible exception (truncate one group of a TD(5; 11)
to size 7); incidentally, the exception set can be deduced from the K = {4, 5, 7, 8, 9}
exception set. Earlier, we commented on the other possible errors in this table for K =
Q≥8 in Remark 8.25, (1578, 1626 omitted), as well as the improvements of constructions
for 316, 574, 814, 1244, 1260, 1318; Bennett [10] has also obtained constructions for
1196, 1198, 1212, 1214, 1236, 1238, 1246, 1254, 1270, 1706, 1770, 1778, 1794 and all
values ≥ 1810.

In [6], it is shown that:

{161, 231, 266, 276, 296, 376, 561, 741, 946} ⊂ B(Q1 mod 5 ∪ {6}).

The Janko-Tonchev and Abel designs [27, 2] also show

{175, 176, 259, 260} ⊂ B(Q0,1 mod 7).

9.3 Table III.3.19

There is one error: clearly 15 is an essential element of H0,1(5).
In [6], for H1(5), it is shown that the following are inessential:

{131, 146, 166, 196, 221, 226, 231, 251, 261, 266, 296, 316, 326, 351, 356}.

9.4 Updated References

Finally we note that the references in [37, 11] are more accurate than those in [12, Table
III.3.19], and give the following updates to the reference section of [12].
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Citation in [12] Citation in this paper
[4] [11]
[12] This paper itself
[13] [21]
[14] [24]
[15] [23]
[19] [30]
[20] [31]
[21] [32]
[25] [37]
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A Appendix

The object of this appendix is to provide the constructions for the first 288 values of
B(Q1(8)) plus portions of the range for the first 1648 values, as annonunced in Section 6.

Key to Table A.1.
Code Result Authority Code Result Authority
A/a m.n 17m+ n Lemma 5.14 P Prime
B m.n 17m+ n Lemma 5.16 PP Prime power
BD m.n 10m− n Lemma 5.8 R v.n v + n Lemma 5.10
C/c m.n 15m+ n Lemma 5.17 RB m m Lemma 6.2
D/d m.n 17m+ n Lemma 5.18 T/t m.n 9m+ n Lemma 5.5
E m.n 16m+ 16 + n Lemma 5.19 Table Table 6.2
F m.n 18m− 16 + n Lemma 5.21 X Tables 6.3, 6.4
Ir m.n 63m+ 9 + n Lemma 5.23 ZZ Lemma 6.3
L m.n 9m+ n− 9 Lemma 5.7
Ls m.n 9m+ n− 9 Lemma 5.6 ** n ** Unconstructed
Lower case versions of construction codes (and their m and n) are from Table 6.5.

Table A.1.

Table of Constructions for U1(8).
0 1 2 3 4 5 6 7 8

0 0 PP P PP ***4** P PP ***7** ***8**
9 1 P PP P P **13** P PP **16** P

18 2 Table Table **20** PP **22** **23** P **25** **26**
27 3 **27** Table P P **31** P **33** Table P
36 4 PP **37** **38** P **40** RB 41 P **43** P
45 5 PP Table **47** **48** RB 49 P P **52** Table
54 6 P Table P P **58** **59** **60** **61** **62**
63 7 **63** Table P PP **67** **68** **69** **70** P
72 8 P Table P P **76** P PP **79** P
81 9 T 9.0 T 9.1 T 9.2 P **85** T 9.5 T 9.6 **88** **89**
90 10 T 9.9 PP **92** **93** **94** P P RB 97 **98**
99 11 T 11.0 T 11.1 P T 11.3 *103** T 11.5 PP *106** P

108 12 T 11.9 T 11.10 P ZZ *112** RB 113 *114** *115** P
117 13 P *118** P PP RB 121 P *123** *124** *125**
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126 14 P Table Table P *130** P *132** *133** *134**
135 15 Table Table P Table *139** *140** P *142** *143**
144 16 P t 16.1 t 16.2 t 16.3 *148** P P *151** P
153 17 T 17.0 T 17.1 T 17.2 P *157** T 17.5 T 17.6 *160** P
162 18 P T 17.10 T 17.11 P *166** T 17.14 T 17.15 RB 169 P
171 19 PP T 19.1 T 19.2 T 19.3 *175** P T 19.6 *178** P
180 20 T 19.9 T 19.10 T 19.11 T 19.12 *184** P P *187** T 19.17
189 21 T 19.18 T 19.19 *191** *192** RB 193 P *195** *196** *197**
198 22 ZZ *199** P P *202** *203** *204** *205** Table
207 23 P *208** *209** PP *211** P *213** *214** P
216 24 Table Table *218** P *220** *221** P *223** *224**
225 25 P *226** *227** t 25.3 *229** t 25.5 PP *232** RB 233
234 26 P t 25.10 P t 25.12 *238** P t 25.15 RB 241 t 25.17
243 27 t 25.18 t 27.1 t 27.2 t 27.3 *247** t 27.5 P *250** Table
252 28 P t 27.10 t 27.11 t 27.12 *256** t 27.14 t 27.15 *259** P
261 29 P T 29.1 T 29.2 P *265** P P *268** P
270 30 P T 29.10 T 29.11 T 29.12 a 16.2 T 29.14 PP a 16.5 T 29.17
279 31 T 29.18 T 29.19 a 16.9 T 29.21 a 16.11 P P a 16.14 P
288 32 T 32.0 X X X X X X X X
For 289 – 321; use construction A with m = 17.

315 35 X X X X X X X t 32.34 X
324 36 a 17.35 X P X X B 19.6 X B 19.8 X
For 323 – 357 (with gaps); use construction C with m = 19.

351 39 X X X X X X X Ir 5.34 Ir 5.35
360 40 Ir 5.36 RB 361 P Ir 5.39 *364** Ir 5.41 Ir 5.42 *367** *368**
369 41 T 41.0 T 41.1 T 41.2 T 41.3 *373** T 41.5 T 41.6 *376** L 41.17
378 42 T 41.9 T 41.10 T 41.11 T 41.12 *382** T 41.14 T 41.15 *385** T 41.17
387 43 T 41.18 T 41.19 L 41.29 T 41.21 *391** L 41.32 T 41.24 L 41.34 L 41.35
396 44 t 43.9 T 41.28 T 41.29 T 41.30 *400** T 41.32 t 43.15 T 41.34 T 41.35
405 45 T 41.36 t 43.19 P T 41.39 RB 409 T 41.41 t 43.24 E 23.28 E 23.29
414 46 E 23.30 t 43.28 t 43.29 t 43.30 E 23.34 t 43.32 E 23.36 t 43.34 t 43.35
423 47 t 43.36 *424** E 23.41 t 43.39 *427** t 43.41 t 43.42 E 23.46 t 43.44
432 48 t 43.45 t 43.46 F 25.0 F 25.1 t 43.49 F 25.3 *438** F 25.5 F 25.6
441 49 T 49.0 T 49.1 T 49.2 T 49.3 F 25.11 T 49.5 T 49.6 F 25.14 F 25.15
450 50 T 49.9 T 49.10 T 49.11 T 49.12 d 25.29 T 49.14 T 49.15 d 25.32 T 49.17
459 51 T 49.18 T 49.19 L 49.29 T 49.21 *463** L 49.32 T 49.24 L 49.34 L 49.35
468 52 L 49.36 T 49.28 T 49.29 T 49.30 a 27.5 T 49.32 L 49.42 T 49.34 T 49.35
477 53 T 53.0 T 53.1 T 53.2 T 53.3 L 49.49 T 53.5 T 53.6 E 27.36 T 49.44
486 54 T 53.9 T 53.10 T 53.11 T 53.12 T 49.49 T 53.14 T 53.15 X X
For 493 – 606, 608; use constructions A, C with m = 29, 32.

603 67 X X X X *607** X R585.24 T 64.34 T 64.35
612 68 T 64.36 R585.28 R585.29 T 64.39 Ls64.49 T 64.41 T 64.42 R585.34 T 64.44
621 69 T 64.45 T 64.46 *623** R585.39 T 64.49 T 64.50 T 64.51 *628** T 64.53
630 70 T 64.54 T 64.55 T 64.56 T 64.57 R585.49 R585.50 R585.51 *637** R585.53
639 71 T 71.0 T 71.1 T 71.2 T 71.3 *643** T 71.5 T 71.6 *646** Ls71.17
648 72 T 71.9 T 71.10 T 71.11 T 71.12 F 37.2 T 71.14 T 71.15 F 37.5 T 71.17
657 73 T 71.18 T 71.19 T 73.2 T 71.21 F 37.11 T 73.5 T 71.24 F 37.14 F 37.15
666 74 T 73.9 T 71.28 T 71.29 T 71.30 *670** T 71.32 T 73.15 T 71.34 T 71.35
675 75 T 71.36 T 73.19 L 73.29 T 71.39 F 37.29 T 71.41 T 71.42 F 37.32 T 71.44
684 76 T 71.45 T 71.46 T 73.29 T 73.30 T 71.49 T 71.50 T 71.51 T 73.34 T 71.53
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693 77 T 71.54 T 71.55 T 71.56 T 71.57 X X X X X
For 697 – 779; use constructions A, C with m = 41.

774 86 X X X X X X T 81.51 T 83.34 T 82.44
783 87 T 81.54 T 81.55 T 81.56 T 81.57 T 82.49 T 82.50 T 82.51 F 43.32 T 83.44
792 88 T 82.54 T 81.64 T 81.65 T 81.66 T 83.49 T 83.50 T 83.51 F 43.41 T 81.71
801 89 T 81.72 T 81.73 T 81.74 T 81.75 ZZ T 81.77 T 81.78 c 43.82 T 81.80
810 90 T 81.81 T 82.73 T 82.74 T 82.75 ZZ T 82.77 T 82.78 c 43.91 T 82.80
819 91 T 82.81 T 82.82 T 83.74 T 83.75 *823** T 83.77 T 83.78 ZZ T 83.80
828 92 T 83.81 T 83.82 T 83.83 t 83.84 *832** X X X X
For 833 – 1006; use construction C with m = 49, 53.

999 111 X X X X X X X T101.97 T107.44
1008 112 T107.45 T107.46 T109.29 T109.30 T107.49 T107.50 T107.51 T109.34 T109.35
1017 113 T 113.0 T 113.1 T 113.2 T109.39 Ls109.49 T 113.5 T 113.6 *1024* T109.44
1026 114 T 113.9 T113.10 T107.65 T113.12 T109.49 T113.14 T113.15 RB 1033 T113.17
1035 115 T113.18 T113.19 T109.56 T113.21 *1039* T107.77 T113.24 L113.34 T107.80
1044 116 T107.81 T109.64 T113.29 T113.30 *1048* T113.32 T107.87 T113.34 T113.35
1053 117 T113.36 T109.73 T109.74 T113.39 L113.49 T113.41 T113.42 T107.97 T113.44
1062 118 T113.45 T113.46 T109.83 T109.84 T113.49 T113.50 T113.51 Ls109.97 T113.53
1071 119 T113.54 T113.55 T113.56 T113.57 Ir15.121 T109.95 T109.96 T109.97 L113.71
1080 120 T109.99 T113.64 T113.65 T113.66 *1084* T117.32 T109.105 T117.34 X

For 1088 – 1575; use constructions A, C with m = 64, 71, 73, 81, 83.
1575 175 X T173.19 T169.56 T173.21 Ls163.121 T171.41 T173.24 c89.158 T171.44
1584 176 T 176.0 T 176.1 T 176.2 T 176.3 T171.49 T 176.5 T 176.6 T173.34 T173.35
1593 177 T 177.0 T 177.1 T 177.2 T 177.3 Ls173.49 T 177.5 T 177.6 T167.97 T176.17
1602 178 T 177.9 T177.10 T177.11 T177.12 T173.49 T177.14 T177.15 L169.97 T177.17
1611 179 T 179.0 T 179.1 T 179.2 T 179.3 Ls167.121 T 179.5 T 179.6 T176.34 T176.35
1620 180 T 179.9 T179.10 T179.11 T179.12 T167.121 T179.14 T179.15 T177.34 T179.17
1629 181 T 181.0 T 181.1 T 181.2 T 181.3 T176.49 T 181.5 T 181.6 T171.97 T177.44
1638 182 T 181.9 T181.10 T181.11 T181.12 T177.49 T181.14 T181.15 T179.34 T181.17
1647 183 T181.18 T181.19 X X X X X X X
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