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Abstract

We examine n×nmatrices over Zm, with 0’s in the diagonal and nonzeros elsewhere.
If m is a prime, then such matrices have large rank (i.e., n1/(p−1) − O(1) ). If m is
a non-prime-power integer, then we show that their rank can be much smaller. For
m = 6 we construct a matrix of rank exp(c

√
log n log log n). We also show, that explicit

constructions of such low rank matrices imply explicit constructions of Ramsey graphs.

Keywords: composite modulus, explicit Ramsey-graph constructions, matrices over rings,
co-diagonal matrices

1 Introduction

In this work we examine matrices over a ring R, such that the diagonal elements of the
matrix are all 0’s, but the elements off the diagonal are not zero (we shall call these matrices
co-diagonal over R). We define the rank of a matrix over a ring, and show that low rank co-
diagonal matrices over Z6 naturally correspond to graphs with small homogenous vertex sets
(i.e., cliques and anti-cliques). Consequently, explicitly constructible low rank co-diagonal
matrices over Z6 imply explicit Ramsey graph constructions. Our best construction repro-
duces the logarithmic order of magnitude of the Ramsey-graph of Frankl and Wilson [5],
continuing the sequence of results on new explicit Ramsey graph constructions of Alon [1]
and Grolmusz [6]. Our present result, analogously to the constructions of [6] and [1], can be
generalized to more than one color.
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Our results give a recipe for constructing explicit Ramsey graphs from explicit low rank
co-diagonal matrices over Z6, analogously to the way that our results gave a method for
constructing explicit Ramsey graphs from certain low degree polynomials over Z6 in [6].
In this sense, our results may lead to improved Ramsey graph constructions, if lower rank
co-diagonal matrix constructions exist.

Definition 1 Let R be a ring and let n be a positive integer. We say, that n × n matrix
A = {aij} is a co-diagonal matrix over R, if aij ∈ R, i, j = 1, 2, . . . , n and aii = 0, aij 6= 0,
for all i, j = 1, 2, . . . , n, i 6= j.

We say, that A is an upper co-triangle matrix over R, if aij ∈ R, i, j = 1, 2, . . . , n
and aii = 0, aij 6= 0, for all 1 ≤ i < j ≤ n. A is a lower co-triangle matrix over R, if
aij ∈ R, i, j = 1, 2, . . . , n and aii = 0, aij 6= 0, for all 1 ≤ j < i ≤ n. A matrix is co-triangle,
if it is either lower- or upper co-triangle.

We will also need the definition of the rank of a matrix with elements in a ring. The
following definition is a generalization of the matrix rank over fields to matrices over rings:

Definition 2 Let R be a ring and let n be a positive integer. We say, that n× n matrix A
over R has rank 0 if all of the elements of A are 0. Otherwise, the rank over the ring R of
matrix A is the smallest r, such that A can be written as

A = BC

over R, where B is an n× r and C is an r× n matrix. The rank of A over R is denoted by
rankR(A).

It is easy to see, that this definition of the matrix rank coincides with the usual matrix-
rank over R, when R is a field. The following property of the usual matrix rank also holds:

Lemma 3 Let R be a ring and let A and A′ be two n× n matrices. Then rankR(A+A′) ≤
rankR(A) + rankR(A′).

Proof: Let A = BC and A′ = B′C ′, where B is an n× r and C is an r×n matrix, while
B′ is an n × r′ and C ′ is an r′ × n matrix. Then A + A′ can be given as B′′C ′′, where B′′

is an n× (r + r′) matrix, formed from the union of the columns of B and B′, and C ′′ is an
(r + r′)× n matrix, formed from the union of rows of C and C ′. 2

The following theorem shows, that for any prime p, the co-triangle (and, consequently,
the co-diagonal) matrices over the p-element field have large rank:

Theorem 4 Let p be a prime, and let A be an n× n co-triangle matrix over GFp. Then

rankGFp(A) ≥ n1/(p−1) − p.
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Proof: We may assume that A is a lower co-triangle matrix. Let r = rankGFp(A), and
let B = {bij} be an n× r, C = {cij} be an r × n matrix over GFp, such that:

A = BC. (1)

For i = 1, 2, . . . , n let us consider the following polynomials:

Pi(x1, x2, . . . , xr) =
r∑

k=1

bikxj . (2)

From (1),

Pi(c1j , c2j , . . . , crj) =
{

0, if i = j,
6= 0, if i > j.

Consequently, by the triangle criterion [2], polynomials

Qi(x1, x2, . . . , xr) = 1− P p−1
i (x1, x2, . . . , xr),

for i = 1, 2, . . . , n, form a linearly independent set in the vector space of dimension(
r + p− 2

p− 1

)
+ 1

of polynomials of form Q + α, where Q is an r-variable homogeneous polynomial of degree
p − 1 and α ∈GFp. (To prove this without the triangle criterion of [2], one should observe
that Qk is zero on column i of matrix C for i < k, and it is 1 for column k of C; so Qi cannot
be given as a linear combination of some Qkj ’s, each kj > i.) Consequently,

n ≤
(
r + p− 2

p− 1

)
+ 1 ≤ (r + p)p−1. (3).

2

We are interested in the following question:

Question. Let R = Zm, what is the minimum rank of an n×n co-triangle (or co-diagonal)
matrix over R?

If m = p a prime, then by Theorem 4 we have that the rank should be at least n1/p−1−p.
What can we say for non-prime m’s?

The main motivation of this question is the following theorem:

Theorem 5 Let A = {aij} be an n×n co-triangle matrix over R = Z6, with r = rankZ6(A).
Then there exists an n-vertex graph G, containing neither a clique of size r + 2 nor an
anti-clique of size (

r + 1

2

)
+ 2.
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Proof: Suppose, that A is a lower co-triangle matrix. If the Z6 rank of A is r, then both
the GF2 and GF3 ranks of A are at most r. Let V = {v1, v2, . . . , vn}. For any i > j, let us
connect vi and vj with an edge, if aij is odd. Then any clique of size t will correspond to a
t× t lower co-triangle minor over GF2, so from (3),

t ≤ r + 1.

Any anti-clique of size t will correspond to a t× t lower co-triangle minor over GF3, so from
(3),

t ≤
(
r + 1

2

)
+ 1. (4)

2

From Theorem 5 one can get a lower bound for the rank, using estimations for the Ramsey
numbers. Our original bound was significantly improved by Noga Alon, who allowed us to
include his proof here.

Theorem 6 Let A = {aij} be an n× n co-triangle matrix over R = Z6. Then

rankZ6(A) ≥ log n

2 log log n
− 2.

Proof: By the result of Ramsey [7] and Erdős and Szekeres [4], every n-vertex graph has
either a clique on k, or an anti-clique on ` vertices, if

n ≥
(
k + `− 2

k − 1

)
.

If we set k = b1
2

logn
log logn

c, and ` = blog2 nc, then we get from Theorem 5, that both r+ 2 ≤ k

and
(
r+1

2

)
+ 2 ≤ ` cannot be satisfied, and this completes the proof. 2

The proof of Theorem 5 also proves

Theorem 7 Suppose, that there exists an explicitly constructible n × n co-triangle matrix
A = {aij} over R = Z6, with r = rankZ6(A). Then one can explicitly construct an n-vertex
Ramsey-graph, without homogenous vertex-sets of size(

r + 1

2

)
+ 2.

2

Our main result is that there do exist explicitly constructible low-rank co-diagonal ma-
trices over Z6, implying explicit Ramsey-graph constructions.
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Theorem 8 There exists a c > 0 such that for all positive integer n, there exists an explicitly
constructible n× n co-diagonal matrix A = {aij} over R = Z6, with

rankZ6(A) ≤ 2c
√

logn log logn.

Theorem 8 together with Theorem 5, gives an explicit Ramsey-graph construction on n

vertices, without a homogeneous vertex-set of size 2c
′
√

logn log logn, for some c′ > 0, or in other
words, an explicit Ramsey-graph construction on

2
c′′ log2 t
log log t

vertices, without homogeneous vertex-set of size t, for some c′′ > 0. This bound was
first proven by Frankl and Wilson [5] with a larger (better) constant than our c′′, using the
famous Frankl-Wilson theorem [5]. We also gave a construction, using the BBR polynomial
[3] and also the Frankl-Wilson theorem in [6].

A generalization of our main result for ring Zm, where m has more than two prime
divisors:

Theorem 9 For any m = pα1
1 p

α2
2 ...p

α`
` , where the pi’s are distinct primes, there exists a

c = cm > 0 such that for all positive integer n, there exists an explicitly constructible n× n
co-diagonal matrix A = {aij} over R = Zm, with

rankZm(A) ≤ 2c
√̀

logn(log logn)`−1
.

2 Constructing Low Rank mod 6 Co-Diagonal Matri-

ces

In this section we prove Theorems 8 and 9.
Our main tool is the following theorem (choosing m = 6 and ` = 2):

Theorem 10 (Barrington, Beigel, Rudich[3]) Given m = pα1
1 p

α2
2 ...p

α`
` where the pi are

distinct primes, then there exists an explicitly constructible multi-linear polynomial P with
integer coefficients, with k variables, and of degree O(k1/`) which satisfies for x ∈ {0, 1}k,
that P (x) = 0 over Zm iff x = (0, 0, . . . , 0).

2

Let k be the smallest integer such that n ≤ kk. Let B = {0, 1, 2, . . . , k−1}. Let us define
δ : B ×B → {0, 1} as follows:

δ(u, v) =
{

1, if u = v,
0 otherwise.
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Then matrix Ā is defined as follows: both the rows and the columns of Ā correspond to the
elements of the set Bk. The entry of matrix Ā in the intersection of a row, corresponding to
u = (u1, u2, . . . , uk) ∈ Bk and of a column, corresponding to v = (v1, v2, . . . , vk) ∈ Bk is the
number:

P (1− δ(u1, v1), 1− δ(u2, v2), . . . , 1− δ(uk, vk)). (5)

If u = v, then all of the δ(ui, vi)’s are 1, so the value of P is 0. So the diagonal of Ā is
all-0, but no other elements of the matrix are 0 over Z6, consequently, Ā is co-diagonal over
Z6.

Multi-linear polynomial P has degree O(
√
k), so (5) can be written as the sum of

(
k

≤ cb
√
kc

)
=

cb
√
kc∑

i=0

(
k

i

)
< kc

√
k (6)

monomials of the form:

ai1,i2,...,isδ(ui1, vi1)δ(ui2, vi2), . . . δ(uis, vis), (7)

where c is positive, (in fact, c < 3 is also satisfied), ai1,i2,...,is is an integer between 0 and 5,
and s ≤ c

√
k.

Since the (u, v) entry of Ā is the value (5), and (5) can be written as the sum of monomials
in (7), matrix Ā can be written as the sum of matrices Di1,i2,...,is, where the entry of matrix
Di1,i2,...,is in the intersection of a row, corresponding to u = (u1, u2, . . . , uk) ∈ Bk and of a
column, corresponding to v = (v1, v2, . . . , vk) ∈ Bk is equal to the value of (7).

It is easy to verify that Di1,i2,...,is can be written into the following form (applying the
same, suitable permutation to the rows and columns):

Di1,i2,...,is = ai1,i2,...,is



1 1 1 1 0 0 0 0 . . . 0 0 0 0
1 1 1 1 0 0 0 0 . . . 0 0 0 0
1 1 1 1 0 0 0 0 . . . 0 0 0 0
1 1 1 1 0 0 0 0 . . . 0 0 0 0
0 0 0 0 1 1 1 1 . . . 0 0 0 0
0 0 0 0 1 1 1 1 . . . 0 0 0 0
0 0 0 0 1 1 1 1 . . . 0 0 0 0
0 0 0 0 1 1 1 1 . . . 0 0 0 0
...

...
...

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 0 0 0 0 . . . 1 1 1 1
0 0 0 0 0 0 0 0 . . . 1 1 1 1
0 0 0 0 0 0 0 0 . . . 1 1 1 1
0 0 0 0 0 0 0 0 . . . 1 1 1 1


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Let us observe, that the number of all-1 square minors, covering the diagonal is ks. Then,
from Lemma 3 the rank of Di1,i2,...,is is ks, s ≤ c

√
k. It follows from this and from (6), that

the rank of Ā is at most k2c
√
k.

Let matrix A be defined as the n× n upper left minor of matrix Ā. Obviously, A is also
a co-diagonal matrix, and its rank is at most k2c

√
k. Due to the choice of k the statement

follows. 2

The proof of Theorem 9 follows the same steps as the proof of Theorem 8. If m has
` prime divisors, then polynomial P has degree O(k1/`), so matrix Di1,i2,...,is has rank at

most ks, s ≤ ck1/`, and co-diagonal matrix A has rank at most k2ck1/`
, and this proves the

theorem.
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