Interchangeability of Relevant Cycles in Graphs:
 Erratum

Petra M. Gleiss ${ }^{a}$, Josef Leydold ${ }^{b, *}$ and Peter F. Stadler ${ }^{a, c}$

${ }^{a}$ Institute for Theoretical Chemistry and Molecular Structural Biology, University of Vienna, Währingerstrasse 17, A-1090 Vienna, Austria

Phone: ${ }^{* *} 431$ 4277-52737 Fax: ${ }^{* *} 431$ 4277-52793
E-Mail: \{pmg,studla\}@tbi.univie.ac.at
URL: http://www.tbi.univie.ac.at/~\{pmg, studla\}
${ }^{b}$ Dept. for Applied Statistics and Data Processing
University of Economics and Business Administration
Augasse 2-6, A-1090 Wien, Austria
Phone: **43 1 31336-4695 Fax: **43 1 31336-738
E-Mail: Josef.Leydold@statistik.wu-wien.ac.at
URL: http://statistik.wu-wien.ac.at/staff/leydold
*Address for correspondence
${ }^{c}$ The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
Phone: (505) 9848800 Fax: (505) 9820565
E-Mail: stadler@santafe.edu
URL: http://www.tbi.univie.ac.at/~studla

Abstract

We provide a correction for the incomplete proof of Lemma 7 of Interchangeability of Relevant Cycles in Graphs, Elec. J. Comb. 7 (2000), \#R16.

Keywords: Minimum Cycle Basis, Relevant Cycles
AMS Subject Classification: Primary 05C38. Secondary 05C85, 92D20, 92E10.

We consider unweighted simple undirect connected graphs G. A cycle C in G is identified with its edge set and considered as an element the cycle vector space defined over $\mathrm{GF}(2)$. We write $X \oplus Y$ for the symmetric difference of the edge sets X and Y. The length $|C|$ of a cycle is the number of its edges. A cycle is relevant if it cannot be represented as a \oplus-sum of strictly shorter cycles. The set of relevant cycles is denoted by \mathcal{R}. For a given length l define $\mathcal{R}_{<}=\{C \in \mathcal{R}| | C \mid<l\}$ and $\mathcal{R}_{=}=\{C \in \mathcal{R}| | C \mid=l\}$.

For further definitions and references we refer to the main text Elec. J. Comb. 7 (2000), \#R16.

For the purpose of this erratum it is convenient to reformulate Definition 6 in the form:
Definition 1. Two relevant cycles $C^{\prime}, C^{\prime \prime} \in \mathcal{R}$ are interchangeable, $C^{\prime} \leftrightarrow C^{\prime \prime}$, if (i) $\left|C^{\prime}\right|=\left|C^{\prime \prime}\right|$ and (ii) there exists a minimal linearly dependent set of relevant cycles that contains C^{\prime} and $C^{\prime \prime}$ and with each of its elements not longer than C^{\prime}.

We claimed that \leftrightarrow is an equivalence relation. The proof of this statement in the main text, however, is incomplete.

Let us fix a length l. Then two cycles $C_{j_{1}}$ and $C_{j_{2}}$ of length l are interchangeable if and only if the equation

$$
\begin{equation*}
x_{1} C_{1} \oplus \cdots \oplus x_{M} C_{M} \oplus \cdots \oplus x_{j_{1}} C_{j_{1}} \oplus \cdots \oplus x_{j_{2}} C_{j_{2}} \oplus \cdots \oplus x_{N} C_{N}=0 \tag{1}
\end{equation*}
$$

has a solution with $x_{j_{1}}=x_{j_{2}}=1$ and with the following properties:
(1) $\left\{C_{1}, \ldots C_{M}\right\}$ is the intersection of $\mathcal{R}_{<}$with an arbitrary but fixed minimal cycle basis, and $\left\{C_{M+1}, \ldots, C_{N}\right\}=\mathcal{R}_{=}$. The fact that instead of $\mathcal{R}_{<}$we can restrict ourselves to a subset of a minimal cycle basis follows from the matroid property.
(2) The solution is minimal in the following sense: if we take any strict subset of the coefficients with $x_{k}=1$ then there is no solution with exactly these coefficients being nonzero. This is equivalent to the fact that we have a minimally linearly dependent set of cycles.

Let $A=\left(C_{1}, \ldots, C_{M}, C_{M+1}, \ldots, C_{N}\right)$ be the $(|E| \times N)$-matrix with the cycles C_{k} represented as column vectors. A can be transformed into the reduced row echelon form \tilde{A} by Gauß-Jordan elimination. Then exactly the first $R=\operatorname{rank}(A)$ rows of \tilde{A} are nonzero. Notice that the upper-left $M \times M$-matrix of \tilde{A} is the identity matrix since $\left\{C_{1}, \ldots, C_{M}\right\}$ is a subset of a cycle basis by construction, see Fig. 1.

We introduce a coloring of the columns $M+1, \ldots, N$ of \tilde{A} :
(1) Two columns j^{\prime} and $j^{\prime \prime}(>M)$ have the same color if there exists a row i such that $\tilde{A}_{i j^{\prime}}=\tilde{A}_{i j^{\prime \prime}}=1$.
(2) Use as many colors as possible.

Definition 2. Two relevant cycles $C^{\prime}, C^{\prime \prime} \in \mathcal{R}$ are color-related, if (i) $\left|C^{\prime}\right|=\left|C^{\prime \prime}\right|$ and (ii) they have the same color (as described above).

It is clear from the definition that color-related is an equivalence relation. The definition of color-relatedness, however, depends explicitly on a prescribed ordering of the cycles C_{M+1}, \ldots, C_{N}. We proceed by showing that color-relatedness is in fact independent of this ordering and that it is equivalent to interchangeability.
Lemma 3. If two cycles $C_{j_{1}}$ and $C_{j_{2}}$ are interchangeable w.r.t. any ordering of the cycles then $C_{j_{1}}$ and $C_{j_{2}}$ are color-related.

Proof. Fix an arbitrary ordering of the cycles and assume that two interchangeable cycles $C_{j_{1}}$ and $C_{j_{2}}$ are not color-related. Let \mathcal{J}_{1} and \mathcal{J}_{2} such that $\left\{C_{i}: i \in \mathcal{J}_{1}\right\}$ and $\left\{C_{i}: i \in \mathcal{J}_{2}\right\}$ are the respective color-equivalence classes of $C_{j_{1}}$ and $C_{j_{2}}$. Then there

Figure 1. Example of a reduced echelon form \tilde{A} for the special case where the cycles of each color-equivalence class are consecutive in the chosen ordering. For the general case the situation is analogous with columns and rows permutated.
is no row r in \tilde{A} with two coefficients $\tilde{A}_{r k_{1}}=\tilde{A}_{r k_{2}}=1$ such that $k_{1} \in \mathcal{J}_{1}$ and $k_{2} \in \mathcal{J}_{2}$, see Fig. 1.

Now suppose $C_{j_{1}}$ and $C_{j_{2}}$ are interchangeable. Then there exists a minimal solution of equ. (1) with $x_{j_{1}}=x_{j_{2}}=1$. Set $x_{k}=0$ for all $k \in \mathcal{J}_{2}$ in this solution (this includes $x_{j_{2}}=0$). If the resulting vector $\left(x_{i}^{\prime}\right)$ is a solution of equ. (1), the original solution was not minimal, contradicting the assumption that $C_{j_{1}}$ and $C_{j_{2}}$ were interchangeable.

Hence we assume that the resulting vector $\left(x_{i}^{\prime}\right)$ may not be a solution any more. This happens when there is a row r with an odd number of coefficients $\tilde{A}_{r n}$ for which $x_{n}^{\prime} \tilde{A}_{r n}=1$. In this case, however, we must have $r \leq M$ and $x_{r}^{\prime} \tilde{A}_{r r}=1$. Hence we can set $x_{r}^{\prime}=0$, since the upper-left $M \times M$-matrix is the identity matrix. Since this holds for every such row r we end up with a new solution ($x_{i}^{\prime \prime}$) of equ. (1) with $x_{j_{1}}^{\prime \prime}=1$ and $x_{j_{2}}^{\prime \prime}=0$. Again the original solution $\left(x_{i}\right)$ was not minimal, a contradiction to our assumption.

Lemma 4. If two cycles $C_{j_{1}}$ and $C_{j_{2}}$ are color-related w.r.t. a given ordering of the cycles, then $C_{j_{1}}$ and $C_{j_{2}}$ are interchangeable.

Proof. Assume $C_{j_{1}}$ and $C_{j_{2}}$ are color-related and let \mathcal{J} denote the set of indices of the cycles C_{i} in the color-equivalence class of $C_{j_{1}}$. Then there exists a sequence $\sigma=\left\{j_{1}=k_{0}, k_{1}, \ldots, k_{m}=j_{2}\right\} \subseteq \mathcal{J}$, such that for each $i=0, \ldots, m-1$ there exists a row r with $\tilde{A}_{r, k_{i}}=\tilde{A}_{r, k_{i+1}}=1$ (otherwise the cycles $C_{k_{i}}$ would not be color-related). Assume that our sequence is minimal (in the sense that no other sequence connecting j_{1} and j_{2} consists of fewer elements).

Set all $x_{k_{i}}=1$ for $k_{i} \in \sigma$ and $x_{p}=0$ for all other $p>M$. Then for each row $r>M$ there are only two (or zero) columns with $x_{k} \tilde{A}_{r k}=1$ (i.e., $\neq 0$). If there were more such columns, say at k_{1}, k_{3}, k_{9}, then σ would not be minimal, since we could then remove k_{2}, \ldots, k_{8} from σ. By the same argument there are at most two columns with $x_{k} \tilde{A}_{r k}=1$ for $r \leq M$. For the rows $r \leq M$ with only one such column we set $x_{r}=1$ and $x_{r}=0$ otherwise. Thus $\left(x_{i}\right)$ is a solution of equ. (1). Moreover $\left(x_{i}\right)$ has the property that for each row r there are either 2 or 0 columns with $x_{k} \tilde{A}_{r k}=1$ and for each column k there are either 2 or 0 rows with $x_{k} \tilde{A}_{r k}=1$.

Now we show that this solution is minimal. If we change one of these x_{k} from 1 to 0 then we obtain a row r with an odd number of coefficients with $x_{k} \tilde{A}_{r k}=1$, i.e., we do not have a solution any more. Thus, if we want to construct a new solution (x_{i}^{\prime}) of equ. (1) by changing x_{j} from 1 to 0 we have to change the other x_{i} in row r with $x_{i} \tilde{A}_{r i}=1$ from 1 to 0 as well. If we still find a row r^{\prime} with an odd number of coefficients with $x_{n} \tilde{A}_{r^{\prime} n}=1$ we have to repeat this procedure. As a consequence, if $\tilde{A}_{r, k_{i}}=\tilde{A}_{r, k_{i+1}}=1$ and $x_{k_{i}}=x_{k_{i+1}}=1$ then any modified solution $\left(x_{i}^{\prime}\right)$ must satisfy $x_{k_{i}}^{\prime}=x_{k_{i+1}}^{\prime}$ and therefore all coordinates x_{k} for $k \in \sigma$ must be equal, i.e., either $\left(x_{i}^{\prime}\right)=\left(x_{i}\right)$ or $\left(x_{i}^{\prime}\right)$ is the trivial solution. Hence the original solution was minimal.

It follows that color-relatedness is independent of the ordering the cycles and the particular reduced echelon form \tilde{A} that we have obtained by Gauß-Jordan elimination. Furthermore, color-relatedness and interchangeability are equivalent. Hence we have
Corollary 5. Interchangeability is an equivalence relation on \mathcal{R}.
Remark. Lemmata 3 and 4 replace the longer proof of lemma 22 in the main text.
Remark. The proofs of lemmata 3 and 4 explicitly uses the properties of a vector space over GF(2).

