Interchangeability of Relevant Cycles in Graphs: Erratum

PETRA M. GLEISS^a, JOSEF LEYDOLD^{b,*} AND PETER F. STADLER^{a,c}

^aInstitute for Theoretical Chemistry and Molecular Structural Biology, University of Vienna, Währingerstrasse 17, A-1090 Vienna, Austria Phone: **43 1 4277-52737 Fax: **43 1 4277-52793 E-Mail: {pmg,studla}@tbi.univie.ac.at URL: http://www.tbi.univie.ac.at/~{pmg,studla}

^bDept. for Applied Statistics and Data Processing University of Economics and Business Administration Augasse 2-6, A-1090 Wien, Austria Phone: **43 1 31336-4695 Fax: **43 1 31336-738 E-Mail: Josef.Leydold@statistik.wu-wien.ac.at
URL: http://statistik.wu-wien.ac.at/staff/leydold *Address for correspondence

^cThe Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA Phone: (505) 984 8800 Fax: (505) 982 0565 E-Mail: stadler@santafe.edu URL: http://www.tbi.univie.ac.at/~studla

Abstract

We provide a correction for the incomplete proof of Lemma 7 of Interchangeability of Relevant Cycles in Graphs, Elec. J. Comb. 7 (2000), #R16.

Keywords: Minimum Cycle Basis, Relevant Cycles

AMS Subject Classification: Primary 05C38. Secondary 05C85, 92D20, 92E10.

We consider unweighted simple undirect connected graphs G. A cycle C in G is identified with its edge set and considered as an element the cycle vector space defined over GF(2). We write $X \oplus Y$ for the symmetric difference of the edge sets X and Y. The length |C| of a cycle is the number of its edges. A cycle is *relevant* if it cannot be represented as a \oplus -sum of strictly shorter cycles. The set of relevant cycles is denoted by \mathcal{R} . For a given length l define $\mathcal{R}_{<} = \{C \in \mathcal{R} | |C| < l\}$ and $\mathcal{R}_{=} = \{C \in \mathcal{R} | |C| = l\}$.

April 27, 2001.

For further definitions and references we refer to the main text *Elec. J. Comb.* 7 (2000), #R16.

For the purpose of this erratum it is convenient to reformulate Definition 6 in the form:

Definition 1. Two relevant cycles $C', C'' \in \mathcal{R}$ are interchangeable, $C' \leftrightarrow C''$, if (i) |C'| = |C''| and (ii) there exists a minimal linearly dependent set of relevant cycles that contains C' and C'' and with each of its elements not longer than C'.

We claimed that \leftrightarrow is an equivalence relation. The proof of this statement in the main text, however, is incomplete.

Let us fix a length l. Then two cycles C_{j_1} and C_{j_2} of length l are interchangeable if and only if the equation

$$x_1C_1 \oplus \cdots \oplus x_MC_M \oplus \cdots \oplus x_{j_1}C_{j_1} \oplus \cdots \oplus x_{j_2}C_{j_2} \oplus \cdots \oplus x_NC_N = 0$$
(1)

has a solution with $x_{j_1} = x_{j_2} = 1$ and with the following properties:

(1) $\{C_1, \ldots, C_M\}$ is the intersection of $\mathcal{R}_<$ with an arbitrary but fixed minimal cycle basis, and $\{C_{M+1}, \ldots, C_N\} = \mathcal{R}_=$. The fact that instead of $\mathcal{R}_<$ we can restrict ourselves to a subset of a minimal cycle basis follows from the *matroid property*.

(2) The solution is minimal in the following sense: if we take any strict subset of the coefficients with $x_k = 1$ then there is no solution with exactly these coefficients being nonzero. This is equivalent to the fact that we have a minimally linearly dependent set of cycles.

Let $A = (C_1, \ldots, C_M, C_{M+1}, \ldots, C_N)$ be the $(|E| \times N)$ -matrix with the cycles C_k represented as column vectors. A can be transformed into the reduced row echelon form \tilde{A} by Gauß-Jordan elimination. Then exactly the first $R = \operatorname{rank}(A)$ rows of \tilde{A} are nonzero. Notice that the upper-left $M \times M$ -matrix of \tilde{A} is the identity matrix since $\{C_1, \ldots, C_M\}$ is a subset of a cycle basis by construction, see Fig. 1.

We introduce a coloring of the columns M + 1, ..., N of A:

(1) Two columns j' and j'' (> M) have the same color if there exists a row i such that $\tilde{A}_{ij'} = \tilde{A}_{ij''} = 1$.

(2) Use as many colors as possible.

Definition 2. Two relevant cycles $C', C'' \in \mathcal{R}$ are color-related, if (i) |C'| = |C''|and (ii) they have the same color (as described above).

It is clear from the definition that color-related is an equivalence relation. The definition of color-relatedness, however, depends explicitly on a prescribed ordering of the cycles C_{M+1}, \ldots, C_N . We proceed by showing that color-relatedness is in fact independent of this ordering and that it is equivalent to interchangeability.

Lemma 3. If two cycles C_{j_1} and C_{j_2} are interchangeable w.r.t. any ordering of the cycles then C_{j_1} and C_{j_2} are color-related.

Proof. Fix an arbitrary ordering of the cycles and assume that two interchangeable cycles C_{j_1} and C_{j_2} are not color-related. Let \mathcal{J}_1 and \mathcal{J}_2 such that $\{C_i: i \in \mathcal{J}_1\}$ and $\{C_i: i \in \mathcal{J}_2\}$ are the respective color-equivalence classes of C_{j_1} and C_{j_2} . Then there

C_1					C_M					C_{j_1}						C_{j_2}			
1	0	0	0	0	0	0	0	0	1	1	0	0	0						
0	1	0	0	0	0	0	0	0	0	1	0	1	0	0					
0	0	1	0	0	0	0	0	0	1	1	0	1	0						
0	0	0	1	0	0									0	0	0	1	0	1
0	0	0	0	1	0	0								0	0	0	1	1	1
0	0	0	0	0	1									0	0	0	1	0	0
						1	0	0	0	1	0	1	0						
							1	0	1	1	0	0	0						
0						0	0	1	1	0	0	1	0			0			
							0	0	0	0	1	1	0						
						0	0	0	0	0	0	0	1						
														1	0	0	1	1	0
0							0							0	1	0	0	1	1
														0	0	1	1	1	1

Figure 1. Example of a reduced echelon form \tilde{A} for the special case where the cycles of each color-equivalence class are consecutive in the chosen ordering. For the general case the situation is analogous with columns and rows permutated.

is no row r in \tilde{A} with two coefficients $\tilde{A}_{rk_1} = \tilde{A}_{rk_2} = 1$ such that $k_1 \in \mathcal{J}_1$ and $k_2 \in \mathcal{J}_2$, see Fig. 1.

Now suppose C_{j_1} and C_{j_2} are interchangeable. Then there exists a minimal solution of equ. (1) with $x_{j_1} = x_{j_2} = 1$. Set $x_k = 0$ for all $k \in \mathcal{J}_2$ in this solution (this includes $x_{j_2} = 0$). If the resulting vector (x'_i) is a solution of equ. (1), the original solution was not minimal, contradicting the assumption that C_{j_1} and C_{j_2} were interchangeable.

Hence we assume that the resulting vector (x'_i) may not be a solution any more. This happens when there is a row r with an odd number of coefficients \tilde{A}_{rn} for which $x'_n \tilde{A}_{rn} = 1$. In this case, however, we must have $r \leq M$ and $x'_r \tilde{A}_{rr} = 1$. Hence we can set $x'_r = 0$, since the upper-left $M \times M$ -matrix is the identity matrix. Since this holds for every such row r we end up with a new solution (x''_i) of equ. (1) with $x''_{j_1} = 1$ and $x''_{j_2} = 0$. Again the original solution (x_i) was not minimal, a contradiction to our assumption.

Lemma 4. If two cycles C_{j_1} and C_{j_2} are color-related w.r.t. a given ordering of the cycles, then C_{j_1} and C_{j_2} are interchangeable.

Proof. Assume C_{j_1} and C_{j_2} are color-related and let \mathcal{J} denote the set of indices of the cycles C_i in the color-equivalence class of C_{j_1} . Then there exists a sequence $\sigma = \{j_1 = k_0, k_1, \ldots, k_m = j_2\} \subseteq \mathcal{J}$, such that for each $i = 0, \ldots, m-1$ there exists a row r with $\tilde{A}_{r,k_i} = \tilde{A}_{r,k_{i+1}} = 1$ (otherwise the cycles C_{k_i} would not be color-related). Assume that our sequence is minimal (in the sense that no other sequence connecting j_1 and j_2 consists of fewer elements). Set all $x_{k_i} = 1$ for $k_i \in \sigma$ and $x_p = 0$ for all other p > M. Then for each row r > M there are only two (or zero) columns with $x_k \tilde{A}_{rk} = 1$ (i.e., $\neq 0$). If there were more such columns, say at k_1, k_3, k_9 , then σ would not be minimal, since we could then remove k_2, \ldots, k_8 from σ . By the same argument there are at most two columns with $x_k \tilde{A}_{rk} = 1$ for $r \leq M$. For the rows $r \leq M$ with only one such column we set $x_r = 1$ and $x_r = 0$ otherwise. Thus (x_i) is a solution of equ. (1). Moreover (x_i) has the property that for each row r there are either 2 or 0 columns with $x_k \tilde{A}_{rk} = 1$.

Now we show that this solution is minimal. If we change one of these x_k from 1 to 0 then we obtain a row r with an odd number of coefficients with $x_k \tilde{A}_{rk} = 1$, i.e., we do not have a solution any more. Thus, if we want to construct a new solution (x'_i) of equ. (1) by changing x_j from 1 to 0 we have to change the other x_i in row r with $x_i \tilde{A}_{ri} = 1$ from 1 to 0 as well. If we still find a row r' with an odd number of coefficients with $x_n \tilde{A}_{r'n} = 1$ we have to repeat this procedure. As a consequence, if $\tilde{A}_{r,k_i} = \tilde{A}_{r,k_{i+1}} = 1$ and $x_{k_i} = x_{k_{i+1}} = 1$ then any modified solution (x'_i) must satisfy $x'_{k_i} = x'_{k_{i+1}}$ and therefore all coordinates x_k for $k \in \sigma$ must be equal, i.e., either $(x'_i) = (x_i)$ or (x'_i) is the trivial solution. Hence the original solution was minimal.

It follows that color-relatedness is independent of the ordering the cycles and the particular reduced echelon form \tilde{A} that we have obtained by Gauß-Jordan elimination. Furthermore, color-relatedness and interchangeability are equivalent. Hence we have **Corollary 5.** Interchangeability is an equivalence relation on \mathcal{R} .

Remark. Lemmata 3 and 4 replace the longer proof of lemma 22 in the main text.

Remark. The proofs of lemmata 3 and 4 explicitly uses the properties of a vector space over GF(2).