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Abstract

It is shown in this note that with high probability it is enough to destroy

all triangles in order to get a cover graph from a random graph Gn,p with

p ≤ κ log n/n for any constant κ < 2/3. On the other hand, this is not true

for somewhat higher densities: If p ≥ λ(log n)3/(n log log n) with λ > 1/8 then

with high probability we need to delete more edges than one from every triangle.

Our result has a natural algorithmic interpretation.
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1 Cover Graphs

The (Hasse) diagram of the finite poset P = (V,≺) is the directed graph ~G = (V,A),

where (u, v) ∈ A iff u ≺ v and there is no z ∈ V such that u ≺ z ≺ v. The finite

undirected graph G = (V,E) is a cover graph iff there exists an orientation of its

edges ~E such that ~G = (V, ~E) is a diagram of some poset P = (V,≺). Clearly,

~G = (V,A) is the diagram of a poset iff it contains no directed cycles and no directed

quasicycles. A directed quasicycle is a cycle with oriented edges in which the reversal

of the orientation of a single edge creates a directed cycle.

The relationship between cover graphs and graph parameters has been investigated

in several papers. B. Descartes [5] (as noted in [2]) showed that there are cover graphs

with arbitrarily large chromatic number and this was strenghtened by B. Bollobás [2]

who showed that for every integer k there is a lattice whose diagram has chromatic

number at least k. Furthermore, it was proved by Nešetřil and Rödl [9] that there

exist graphs which are not cover graphs and have arbitrarily large girth.

The triangle is not a cover graph, since every orientation of its edges results in

either a directed cycle or quasicycle. However, after deleting an edge from it, we get a

path of length two, which is already a cover graph. Obviously, if we delete sufficiently

many edges from an arbitrary graph G it will become a cover graph. Therefore, it is

reasonable to ask, what is the minimum number c(G) such that after deleting c(G)

edges from G it will be a cover graph. This parameter was introduced by Bollobás,

Brightwell, and Nešetřil [4].

First consider dense random graphs. It is shown in [4] that for arbitrary integer

l ≥ 2 and p = p(n) = o
(
n(l−2)/(l−1)

)
, c(Gn,p) ≤ (1 + δ)pn2/2l whp1. Moreover, if

p = p(n) = n−1+η(n), where 0 < η0 ≤ η(n) ≤ 1, then whp one needs to delete a

positive proportion of edges from Gn,p in order to get a cover graph. The auhors

of [4] also conjectured that if pn(l−2)/(l−1) → 0 and pn(l−1)/l → ∞, then their upper

bound gives the right constant, i.e., whp c(Gn,p) ∼ pn2/2l. This has been recently

proved by Rödl and Thoma [10].

For sparse random graphs, the authors of [4] show that whp c(Gn,p) = o(e(Gn,p)).

Namely they prove the following two bounds. For every c ≥ 1 there is a b, b >

c log(1 + b), such that if p = p(n) ≤ c logn
n
, then c(Gn,p) ≤ pn2

2
· b
c logn

. Further, for

1A sequence of events En occurs with high probability, whp, if Pr(En) = 1− o(1) as n→∞
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every δ > 0 and for every function ω = ω(n), with ω → ∞ and ω = o(nν) for every

ν > 0, if p = p(n) ≤ ω logn
n

, then c(Gn,p) ≤ (1 + δ) · pn2

2
· logω

logn
.

For a graph G let τ(G) denote the minimum number of edges that must be deleted

in order to get a triangle-free graph. In this note we focus on the graph property

c(G) = τ(G). Since a cover graph may contain no triangles τ(G) ≤ c(G) always

holds. We will show in this note, that for any constant κ < 2/3 and p ≤ κ log n/n,

c(Gn,p) = τ(Gn,p) whp (Theorem 1.1) while for any constant λ > 1/8 and p ≥
λ(logn)3/(n log log n), c(Gn,p) > τ(Gn,p) whp (Theorem 1.2).

We may interpret our results in an algorithmic way. Consider a simple algorithm

which takes a graph G as input and deletes edges in copies of triangles as long as G

is not triangle-free. Then Theorem 1.1 implies that if the algorithm takes as input

Gn,p, p ≤ κ logn/n for a constant κ < 2/3, then it outputs a cover graph whp. Note

that the output graph will have whp girth equal to 4. On a related note we point to

[8] which surveys constructions of non cover graphs with a given girth. It is an open

problem to construct small examples of non cover graphs with girth greater then 4.

We will prove the following theorems:

Theorem 1.1 If κ < 2/3 is constant and p ≤ κ log n/n then c(G) = τ(G) whp.

Theorem 1.2 If λ > 1/8 is constant and p ≥ λ(log n)3/(n log log n) then c(Gn,p) >

τ(Gn,p) whp.

For p = c/n, c constant we know that the distribution of the number of triangles in

Gn,p is asymptotically Poisson with mean c3/6, [6]. So as an immediate corollary we

get that if p = cn/n then

Corollary 1.3

lim
n→∞

Pr(Gn,p is a cover graph) =


1 cn → −∞
e−c

3/6 cn → c

0 cn →∞

Theorem 1.2 follows from the following stronger theorem:

Theorem 1.4 Suppose λ > 1/8 is constant and p ≥ λ(logn)3/(n log logn) and g ≤
logn

4 log logn
. Let H be obtained from Gn,p by deleting all vertices which lie on a cycle of

length at most g. Then whp H is not a cover graph.
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Remark 1.5 Part of the results of [10] is based on a detailed analysis of the expansion

properties of the random graph Gn,p. Using the same analysis of the expansion

properties provides the same bound on p in Theorem 1.4.

2 Triangle-free graphs: proof of Theorem 1.1

We will need the following lemma. Let χ = χ(G) be the chromatic number of G. We

will call a cycle of G short if it contains ≤ χ(G) vertices and long otherwise. As usual

the distance between two sets V1 and V2 of vertices in G is the length of the shortest

path between u ∈ V1 and v ∈ V2.

Lemma 2.1 Let G having the following properties:

(a) The distance between any two short cycles is at least χ+ 1.

(b) No short cycle shares an edge with a cycle of length ≤ 2χ.

Then c(G) = τ(G).

Proof Let G′ = (V,E′) be a triangle-free subgraph of G which we get after

deleting one edge of each triangle of G. Let V1, . . . , Vχ be a proper coloring of G′

with χ colours. Define the orientation ~G′ = (V, ~E′) as follows. If u ∈ Vi, v ∈ Vj and

i < j then orient the edge {u, v} from u to v. Notice that ~G′ is acyclic, i.e., there are

no oriented cycles in ~G′. Also there are no long oriented quasicycles. Indeed, take

an arbitrary long cycle C in G′. Let k = max{i : C ∩ Vi 6= ∅} and let v ∈ C ∩ Vk.
Both edges of C incident to v are oriented in ~G′ towards v. So in order to get an

oriented cycle we must change the orientation of at least one of the arcs (u1, v), (u2, v)

of C which are incident with v. Assume we get an oriented cycle by reversing the arc

(u1, v), say. Then the remaining edges of the cycle form an oriented path from u1 to

v in ~G′ of length at least χ, a contradiction.

Of course, we still may have short oriented quasicycles. We will change the above

orientation as follows. If ~G′ contains no short quasicycles, then stop. If ~G′ contains a

short quasicycle ~C then reverse an arc (u, v) in ~C such that the resulting ~C ′ is neither

a directed cycle, nor a directed quasicycle. (Since G′ is triangle-free, we can always

do this.) Since G satisfies (a), i.e., in particular it contains vertex disjoint short cycles
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only, this process will terminate in at most n/χ steps and in the end there will be no

short quasicycles.

We show now that we have created neither long cycles nor long quasicycles. In-

deed, by (b), during the edge reversing process, we did not touch any long cycle

having ≤ 2χ vertices. So take a long cycle C having ≥ 2χ + 1 vertices. Let an edge

e ∈ C be short if it also lies on a short cycle and long otherwise. Long edges are

unaffected by the reversing process of the previous paragraph. Label each short edge

with the short cycle that produces it. Short edges with the same label form subpaths

of C. By (a) the distance between any two short edges of C with distinct labels is at

least χ and there will be two paths in C of length ≥ χ, made up long edges only. But

the longest oriented path in ~G′ is of length χ−1. So if there are two short edges with

distinct labels then there are at least two long edges in ~C in both directions along

the cycle. If the short edges of C all have the same label and they make up more

than one subpath then the paths of long edges in C between these subpaths are of

length at least χ, else (b) is violated. Hence, again, there are at least two long edges

in ~C in both directions along the cycle. Finally, suppose that the short edges of C all

have the same label and they make up one subpath P . If none of the edges of P are

reversed then by its length C will have at least three edges oriented in each direction

around C. In any case, at most one will be reversed and so we will create neither a

directed cycle nor a directed quasicycle by the reversing process. 2

We complete the proof of Theorem 1.1 with

Lemma 2.2 If κ < 2/3 is constant and p ≤ κ log n/n then Gn,p whp satisfies the

conditions of Lemma 2.1.

Proof It follows from  Luczak [7] that whp

χ(Gn,p) ≤ k0 = (κ
2

+ o(1))
log n

log logn
.

Assuming this we see that if the conditions of Lemma 2.1 are violated then there

exists a set of k ≤ 3k0 vertices which contain at least k+ 1 edges. The probability of
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this is at most

3k0∑
k=4

(
n

k

)( (
k
2

)
k + 1

)(
κ log n

n

)k+1

≤
3k0∑
k=4

(ne
k

)k (ke
2
· κ log n

n

)k+1

≤ eκ logn

2n

3k0∑
k=4

k((e2κ/2) logn)k

≤ 3k0((e
2κ/2) logn)3k0+1

n
= o(1).

2

2.1 Sparse Non Cover Graphs: proof of Theorem 1.4

For positive integers a, b, a partition V0, V1, . . . , Va of an n-set is called an (a, b)-

partition if |V0| = b and |Vi| = |Vj| for all i 6= j; i, j ∈ [a]. Thus we can only have an

(a, b)-partition if a divides |V | − b.
We choose functions d = d(n), ω = ω(n), and N = N(n) such that

N = n− γ = n− o(n)(
d

ω

)ω
= 2N logω

d = ω3(logω)2

where γ is the smallest integer larger than gdg such that n−γ is divisible by ω. Note

that this choice implies ω = (1 + o(1)) logn
2 log logn

and d = (1 + o(1)) (logn)3

8 log logn
.

Let p = d/n. Since the property in Theorem 1.4 is monotone decreasing it is

enough to prove Theorem 1.4 just for this choice of p.

We need the following lemma.

Lemma 2.3 Whp for every (ω, γ)-partition V0, V1, . . . , Vω of the vertex set of Gn,p,

there is a cycle C in Gn,p such that V (C) ∩ V0 = ∅ and |V (C)∩ Vi| = 1, i = 1, . . . , ω.

Proof To prove the lemma we are going to use the Janson inequality, cf. [1] for

notation. Note that the number of choices of (ω, γ)-partitions of an n-set is at most(
n
γ

)
(eω)N .
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Let V0, V1, . . . , Vω be a fixed (ω, γ)-partition. Let C1, . . . , Cl be an enumeration of

cycles satisfying V (Ci)∩ V0 = ∅ and |V (Ci)∩Vj| = 1, i = 1, . . . , l, j = 1, . . . , ω, in the

complete graph Kn with the partition V0, V1, . . . , Vω. Set Bi, i = 1, . . . , l, to be the

event that Ci exists in Gn,p. The expected number µ of such cycles in Gn,p satisfies

µ =
l∑

j=1

Pr (Bj) = (1 + o(1))

(
N

ω

)ω (
d

N

)ω
= (1 + o(1))

(
d

ω

)ω
= (1 + o(1))2N logω .

and

∆ =
∑

|E(Ci)∩E(Cj)|≥1

Pr (Bi ∧ Bj)

≤
∑
t≥1

2≤L<ω

∑
l1+···+lt=L

li≥2

(1 + o(1))ωt
(
N

ω

)L(
N

ω

)2ω−2L(
d

N

)2ω−(L−t)
(1)

= (1 + o(1))µ ·
∑
t,L

∑
l1,...,lt

(
d

ω

)ω
ωL+t

dL−tN t

≤ (1 + o(1))µ ·
∑
t,L

(
L− 1

t− 1

)
2N logω ·

(ω
d

)L(ωd
N

)t
= (1 + o(1))µ ·

∑
2≤L<ω

2N logω ·
(ω
d

)L ωd
N

(
1 +

ωd

N

)L−1

= o(µ) .

Note that the dominant term in the last sum is the term for L = 2.

Explanation of (1): The common edges of cycles Ci, Cj are asumed to form t

paths of lengths l1, l2, . . . , lt. ω
t estimates the number of choices for the start vertices

of these paths. (N/ω)L estimates the choices for the vertices of these paths and

(N/ω)2ω−2L estimates the choices for the vertices in Ci, Cj which are not on any

common path. (d/N)2ω−(L−t) is the probability that Ci, Cj exist.

Applying the Janson inequality we see that

Pr(∃ an (ω, γ)-partition without a cycle) ≤
(
n

γ

)
(eω)Ne−(1−o(1))µ ≤

(
n

n3/4

)
ω−(1−o(1))N = o(1).

2

We can assume g =
⌊

logn
4 log logn

⌋
and that the condition in Lemma 2.3 holds. Now
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the expected number of vertices ν on cycles of length g or less in Gn,p is given by

g∑
k=3

(
n

k

)
(k − 1)!pk ≤ dg

g∑
k=3

1

k
≤ dg log g.

So whp ν ≤ gdg.

Let V̂0 be the set of vertices of G incident to cycles of length g or less and V0 ⊇ V̂0

be arbitrarily chosen of size γ. Then G′ := G \ V0 is not a cover graph. Suppose it

is. Let
−→
G ′ be its orientation as a diagram of some poset. Thus, we can embed

−→
G ′

into a linear ordering π. Let V1, . . . , Vω, |Vi| = N/ω, be the partition of the vertex

set of G′ such that all vertices of Vi precede all vertices of Vi+1 in the linear ordering

π, i = 1, . . . , ω − 1. We have constructed an (ω, γ)-partition V0, V1, . . . , Vω of the

vertex set of G. By the lemma above we can assume that there is a cycle C such that

V (C)∩ V0 = ∅ and |V (C)∩ Vi| = 1, i = 1, . . . , ω. The cycle C induces a quasicycle in
−→
G ′ – contradiction. This completes the proof of Theorem 1.4. 2
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