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Abstract
A λ − Triple System(v), or a λ–TS(V,B), is a pair (V, B) where V is a

set and B is a subset of the 3-subsets of V so that every pair is in exactly
λ elements of B. A regular configuration on p points with regularity ρ on l
blocks is a pair (P,L) where L is a collection of 3-subsets of a (usually small)
set P so that every p in P is in exactly ρ elements of L, and |L| = l. The Pasch
configuration ({0, 1, 2, 3, 4, 5}, {012, 035, 245, 134}) has p=6, l=4, and ρ=2. A
λ–TS(V,B), is resolvable into a regular configuration C=(P,L), or C–resolvable,
if B can be partitioned into sets Πi so that for each i, (V,Πi) is isomorphic to
a set of vertex disjoint copies of (P,L). If the configuration is a single block on
three points this corresponds to ordinary resolvability of a Triple System.

In this paper we examine all regular configurations C on 6 or fewer blocks
and construct C–resolvable λ–Triple Systems of order v for many values of v
and λ. These conditions are also sufficient for each C having 4 blocks or fewer.
For example for the Pasch configuration λ ≡ 0 (mod 4) and v ≡ 0 (mod 6) are
necessary and sufficient. MRSC #05B07

1 Introduction

The study of the way in which small configurations are germane to analysing the
structure of combinatorial objects has progressed from the study of finite geometries
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[7] (for example Desargues and Pappus configurations) to using small configurations
in the analysis of other designs. The concepts of avoidance of[1, 13] , ubiquity of [16],
decomposability into[10] , and bases for[9],small configurations , have all provided
insights into the structure of designs.

On the other hand resolvability and λ–resolvability have had a similar but much
longer history starting from Euclid’s fifth postulate to through the end of the Euler
conjecture and to the present.[6]

In this work we shall combine the two ideas into the concept of C–Resolvable
triple systems. We start with the following basic definitions:

Definition 1.1 A λ–Triple System(v), a λ − TS(V,B), is a pair (V, B) where V
is a v–set and B is a subset of the 3-subsets of V so that every pair is in exactly λ
elements of B.

Definition 1.2 A regular configuration on p points with regularity ρ on b blocks
is a pair (P,L) where L is a collection of 3-subsets of a (usually small) set P so that
every p in P is in exactly ρ elements of L, and |L| = l.

The Pasch configuration ({0, 1, 2, 3, 4, 5}, {012, 035, 125, 134}) has p=6, l=4, and ρ=2.

Definition 1.3 A C–parallel (or resolution ) class of size v = pt is a set of v points
together with a collection of lt lines which is isomorphic to t vertex disjoint copies of
C

Definition 1.4 A λ-TS(V,B), is resolvable into a regular configuration C= (P,L) if
B can be partitioned into sets Πi parallel classes i = 1, 2, · · · b

lt
, or more simply, a triple

system is called C–resolvable iff its blocks can be partitioned into disjoint C–parallel
classes.

If the configuration is a single block on three points this corresponds to ordi-
nary resolvability of a triple system. On the other hand if C is itself a λ–TS(k),
the existence of C-resolvable resolvable λ × µ–TS(v) is equivalent to the existence
of a resolvable balanced incomplete block design RBIBD(v, k, µ). This frames the
existence problem for C–resolvable triple systems between the concept of resolvable
triple systems and resolvable block designs of other block sizes. Since not much is
known about resolvable block designs with k ≥ 7 perhaps the intermediate problem
of C–resolvable triple systems with a small number of lines will shed some light on
the general problem.

We shall use C for a configuration with p for the number of points and l for the
number of lines and regularity ρ . Further we define λmax to be the maximal number
of lines that any pair occurs in. Similarly repmax will denote the maximal number of
times a block is repeated.

Lemma 1.1 The necessary conditions for a λ–TS(v) to be C–resolvable are
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1. v ≡ 0 (mod p)

2. λ(v − 1) ≡ 0 (mod 2)

3. λ ≥ λmax

4. Let v = tp then λp(pt− 1) ≡ 0 (mod 6l)

5. If C=(P,L) where L consists of m copies of the set L’ then necessary (and suf-
ficient) conditions for C are those of C’ with “λ” replaced by “mλ”

Proof: 1 , 2 , 3 and 5 are trivial. The number of blocks in the λ–TS(v) is λpt(pt−1)
6

which must be divisible by the number of blocks in a parallel class which is tl.

The solutions to the equation
3l = pρ

will be useful in classifying the regular configurations.

2 C–Resolvable Group Divisible Designs

In order to construct the desired triple systems we shall need two auxiliary concepts.
We recall the standard definition of a k −GDDλ(g, n).

Definition 2.1 A k − GDDλ(g, n) is a set V partitioned into n, g-sets Gi called
groups together with a collection B of k-subsets called blocks so that

1. every 2-subset (pair) of elements of V which are from different groups are a
subset of exactly λ blocks

2. and no block contains two elements from the same group.

Definition 2.2 A resolvable k − GDDλ(g, n) is a k − GDDλ(g, n) where B can be
partitioned into parallel classes i.e each class contains every point exactly once.

Definition 2.3 A k − GDDλ(g, n) is C–resolvable when B can be partitioned into
C–parallel classes.
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For this paper, we shall always have k = 3 and may omit it from the notation; we
may also omit λ when λ = 1.

The constructions will be based on the following variants of Wilson’s Theorem.

Theorem 2.1 (Master by Ingredient) Let (VM ,BM) be a resolvable
3–GDDλ(g, n), (called the master) and (VI ,BI) be a C–resolvable
3–GDDµ(h, 3) (called the ingredient) then there exists a C–resolvable
3–GDDλ×µ(gh, n).

Theorem 2.2 (Filling in groups) Let (V,B) be a C–resolvable
3–GDDλ(g, n) and (D,BD) be C–resolvable λ–TS with |D| = g. Then there exists a
C–resolvable λ–TS(gn) there exists.

The proofs of the above theorems are routine exercises based on the proofs of the
original theorems found in the introductory chapter of [8].

Sometimes we have the fortuitous situation of what we shall call an µ–auto in-
gredient configuration. That is a situation where the configuration C = (P,L) is a
C–parallel class of a C–resolvable 3–GDDµ(g, 3), 3g = |P |. We give 3 examples:

Example 2.1 The trivial examples of the r–repeated block

C = ({1, 2, 3}, {123, 123 · · ·123}︸ ︷︷ ︸
r times

)

is a C–resolvable 3–GDDr(1, 3).

Example 2.2 C4.6.2 or Pasch

P = {1, 2, 3, 4, 5, 6} and L = {125, 146, 326, 345}

This is also a C–resolvable 3–GDD1(2, 3) with groups {1, 3}, {2, 4}, {5, 6}.

Example 2.3 C4.6.3 or FIFA

P = {1, 2, 3, 4, 5, 6} and L = {125, 126, 346, 345}

This forms one C–resolvable class of 3–GDD2(2, 3) with groups {1, 3}, {2, 4}, {5, 6}.
The other is {145, 146, 236, 235}.

Corollary 2.1 If C is an µ auto-ingredient configuration (P,L) with |P | = 3g and
there exist a resolvable λ–TS(w) and a C–resolvable µ–TS(3g), then there exists a
C–resolvable λ× µ–TS(gw).
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3 The regular configurations on 6 or fewer lines

3.1 Enumeration and Necessity

We shall now enumerate all regular configurations on six or fewer lines and give
necessary conditions for the existence of a C–resolvable λ–TS(v).

We shall number the configurations by Cl.p.n, where l is the number of lines, p the
number of points, and n the number of the configuration.

Lemma 3.1 The enumeration of the regular configurations with l ≤ 3 lines is as
follows

The case l=1

C1.3.1 P = {1, 2, 3} and L = {123}.
A C1.3.1-resolvable λ–TS(v) is just a resolvable triple system for which the nec-
essary conditions are v ≡ 0 (mod 3) and λ even if v is even .

The case l=2. In this case there are two configurations

C2.3.1 P = {1, 2, 3} and L = {123, 123}
A C2.3.1–resolvable λ–TS(v) is just a resolvable triple system with every block
repeated. The necessary conditions are v ≡ 0 (mod 3) and λ ≡ 0 (mod 2) if v
is odd and λ ≡ 0 (mod 4) if v is even.

C2.6.1 P = {1, 2, 3, 4, 5, 6} and L = {123, 456}
A C2.6.1–resolvable λ–TS(v) is just a resolvable triple system with an even num-
ber of blocks and the necessary conditions are v ≡ 0 (mod 6) and λ ≡ 0
(mod 2).

The case l=3

C3.3.1 P = {1, 2, 3} and L = {123, 123, 123} A C3.3.1–resolvable λ–TS(v) is just
a resolvable triple system with every block repeated 3 times. The necessary
conditions are v ≡ 0 (mod 3) and λ ≡ 0 (mod 3) if v is odd and λ ≡ 0
(mod 6) if v is even.

C3.9.1 P = {1, 2, 3, 4, 5, 6, 7, 8, 9} and L = {123, 456, 789}
A C3.9.1–resolvable λ–TS(v) is just a resolvable triple system whose number of
blocks is divisible by 3. The necessary conditions are v ≡ 0 (mod 9).

Lemma 3.2 There are six regular configurations with four lines and the necessary
conditions for the existence of a C4.x–resolvable λ–TS(v), say B4.x, are as follows:
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C4.3.1

P = {1, 2, 3} and L = {123, 123, 123, 123}

v ≡ 0 (mod 3) and λ ≡ 0 (mod 4) if v odd, λ ≡ 0 (mod 8) if v even.

C4.4.1 or 2K4

P = {1, 2, 3, 4} and L = {123, 234, 341, 412}

v ≡ 4 (mod 12), λ ≡ 2, 4 (mod 6) and v ≡ 0 (mod 4), λ ≡ 0 (mod 6)

C4.6.1

P = {1, 2, 3, 4, 5, 6} and L = {123, 123, 456, 456}

v ≡ 0 (mod 6), λ ≡ 0 (mod 4)

C4.6.2 or Pasch

P = {1, 2, 3, 4, 5, 6} and L = {125, 146, 326, 345}

v ≡ 0 (mod 6), λ ≡ 0 (mod 4)

C4.6.3 or FIFA

P = {1, 2, 3, 4, 5, 6} and L = {125, 126, 346, 345}

v ≡ 0 (mod 6), λ ≡ 0 (mod 4)

C4.12.1

P = {1, 2, 3, 4, 5, 6, 7, 8, 9, A,B, C} and L = {123, 456, 789, ABC}

v ≡ 0 (mod 12) , λ ≡ 0 (mod 2)

Lemma 3.3 There are four regular configurations with five lines and the necessary
conditions for the existence of a C5.x–resolvable λ–TS(v), say B5.x, are as follows:

C5.3.1

P = {1, 2, 3} and L = {123, 123, 123, 123, 123}
v ≡ 0 (mod 6), λ ≡ 0 (mod 10) and v ≡ 3 (mod 6), λ ≡ 0 (mod 5)
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C5.5.1

P = {1, 2, 3, 4, 5} and L = {123, 123, 145, 245, 345}
v ≡ 0 (mod 5), λ ≡ 0 (mod 6);
v ≡ 10 (mod 15), λ ≡ 2, 4 (mod 6), λ ≥ 3;
v ≡ 5 (mod 10), λ ≡ 3 (mod 6);
v ≡ 10 (mod 15), λ ≡ 1, 5 (mod 6), λ ≥ 3.

C5.5.2

P = {1, 2, 3, 4, 5} and L = {123, 124, 135, 245, 345}
v ≡ 0 (mod 5), λ ≡ 0 (mod 6); v ≡ 10 (mod 15), λ ≡ 2, 4 (mod 6); v ≡ 5
(mod 10), λ ≡ 3 (mod 6);
v ≡ 10 (mod 15), λ ≡ 1, 5 (mod 6), λ ≥ 2.

C5.15.1

P = {1, 2, 3, 4, 5, 6, 7, 8, 9, A,B, C,D,E,F}
and

L = {123, 456, 789, ABC,DEF}
v ≡ 15 (mod 30), any λ, and v ≡ 0 (mod 30), λ ≡ 0 (mod 2)

In order to distinguish the isomorphism classes for C6.6.x and C6.9.x , we shall
use the invariants of number of repeated blocks, number of repeated pairs and the
maximal number of disjoint blocks in the configuration.

Lemma 3.4 There are 18 regular configurations with six lines and the necessary
conditions for the existence of a C6.x–resolvable λ–TS(v), say B6.x, are as follows:

C6.3.1

P = {1, 2, 3} and L = {123, 123, 123, 123, 123, 123}
v ≡ 0 (mod 3), λ ≡ 0 (mod 6)

C6.6.1

P = {1, 2, 3, 4, 5, 6} and L = {123, 123, 123, 456, 456, 456}

v ≡ 0 (mod 6), λ ≡ 0 (mod 6)
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C6.6.2

P = {1, 2, 3, 4, 5, 6} and L = {123, 123, 134, 256, 456, 456}

v ≡ 0 (mod 6), λ ≡ 0 (mod 6)

C6.6.3

P = {1, 2, 3, 4, 5, 6} and L = {123, 124, 135, 236, 456, 456}

v ≡ 0 (mod 6), λ ≡ 0 (mod 6)

C6.6.4

P = {1, 2, 3, 4, 5, 6} and L = {123, 124, 134, 256, 356, 456}

v ≡ 0 (mod 6), λ ≡ 0 (mod 6)

C6.6.5

P = {1, 2, 3, 4, 5, 6} and L = {123, 124, 135, 246, 356, 456}

v ≡ 0 (mod 6), λ ≡ 0 (mod 6)

C6.6.6

P = {1, 2, 3, 4, 5, 6} and L = {123, 124, 135, 346, 256, 456}

v ≡ 0 (mod 6), λ ≡ 0 (mod 6)

C6.6.7

P = {1, 2, 3, 4, 5, 6} and L = {123, 124, 156, 256, 345, 346}

v ≡ 0 (mod 6), λ ≡ 0 (mod 6)

C6.9.1

P = {1, 2, 3, 4, 5, 6, 7, 8, 9} and L = {123, 123, 456, 456, 789, 789}

v ≡ 0 (mod 9), λ ≡ 0 (mod 4) and
v ≡ 9 (mod 18), λ ≡ 2 (mod 4)
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C6.9.2

P = {1, 2, 3, 4, 5, 6, 7, 8, 9} and L = {123, 123, 456, 457, 689, 789}

v ≡ 9s (mod 36) λ ≡ 0 (mod 4), s = 0, 2;
λ ≡ 0 (mod 2), s = 3;λ ≥ 2, s = 1

C6.9.3

P = {1, 2, 3, 4, 5, 6, 7, 8, 9} and L = {123, 124, 356, 457, 689, 789}

v ≡ 9s (mod 36) λ ≡ 0 (mod 4), s = 0, 2;
λ ≡ 0 (mod 2), s = 3;λ ≥ 2, s = 1

C6.9.4

P = {1, 2, 3, 4, 5, 6, 7, 8, 9} and L = {123, 124, 367, 489, 567, 589}

v ≡ 9s (mod 36) λ ≡ 0 (mod 4), s = 0, 2;
λ ≡ 0 (mod 2), s = 3;λ ≥ 2, s = 1

C6.9.5

P = {1, 2, 3, 4, 5, 6, 7, 8, 9} and L = {123, 124, 367, 489, 568, 579}

v ≡ 9s (mod 36) λ ≡ 0 (mod 4), s = 0, 2;
λ ≡ 0 (mod 2), s = 3;λ ≥ 2, s = 1

C6.9.6

P = {1, 2, 3, 4, 5, 6, 7, 8, 9} and L = {123, 145, 246, 379, 578, 689}

v ≡ 9s (mod 36) λ ≡ 0 (mod 4), s = 0, 2;
λ ≡ 0 (mod 2), s = 3; any λ, s = 1

C6.9.7

P = {1, 2, 3, 4, 5, 6, 7, 8, 9} and L = {123, 145, 267, 367, 489, 589}

v ≡ 9s (mod 36) λ ≡ 0 (mod 4), s = 0, 2;
λ ≡ 0 (mod 2), s = 3;λ ≥ 2, s = 1

C6.9.8

P = {1, 2, 3, 4, 5, 6, 7, 8, 9} and L = {123, 145, 267, 389, 468, 579}

v ≡ 9s (mod 36) λ ≡ 0 (mod 4), s = 0, 2;
λ ≡ 0 (mod 2), s = 3; any λ, s = 1



the electronic journal of combinatorics 7 (2000), #R2 10

C6.9.9

P = {1, 2, 3, 4, 5, 6, 7, 8, 9} and L = {123, 123, 456, 478, 579, 689}

v ≡ 9s (mod 36) λ ≡ 0 (mod 4), s = 0, 2;
λ ≡ 0 (mod 2), s = 3;λ ≥ 2, s = 1

C6.18.1

P = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r} and
L = {abc, def, ghi, jkl,mno, pqr}

v ≡ 0 (mod 18), λ ≡ 0 (mod 2)

3.2 Necessary and Sufficient conditions for all l ≤ 4 and some
l = 5, 6

Theorem 3.1 The necessary conditions for the following C–resolvable designs to ex-
ist are sufficient with the addition of v 6= 6, v 6= 6 and λ ≡ 2 (mod 4), v 6= 6 and
λ ≡ 6 (mod 12) to those marked respectively with a “*”, “**”,“***”:

Configuration Note Configuration Note Configuration Note

B1.3.1* 1 B2.3.1* 3 B2.6.1** 2,3
B3.3.1* 1 B3.9.1 2 B4.3.1* 2
B4.4.1 2 B4.6.1 2,3 B4.12.1 1
B5.3.1* 3 B5.15.1 1 B6.3.1* 3
B6.6.1*** 2,3 B6.9.1 2,3 B6.18.1 1

Proof: The desired C–resolvable design is equivalent to the existence of a RBIBD
whose number of blocks is a multiple of the number of blocks in the former and
whose λ is a divisor of the former because

1. A parallel class of the RBIBD can be partitioned to form a C–resolvable parallel
class.

2. Some multiple of each of the RBIBD can be partitioned into copies of C.

3. A C parallel class is just an RBIBD parallel class with each block repeated µ
times.

The “Note” indicates which reason(s) should be used for the given configuration.

Theorem 3.2 The necessary conditions for the existence of a B4.6.2 and a B4.6.3 are
sufficient except possibly if v = 12.
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Proof: It is well-known that a 3–RGDD(3, n) (or a Kirkman triple system of order
3n) exists if and only if n ≡ 1 (mod 2) and also that a 3–RGDD2(3, n) exists for all
integers n 6= 2. We use the master by ingredient construction using for a master a
3–RGDD(3, n) if v ≡ 6 (mod 12) and a 3–RGDD2(3, n) if v ≡ 0 (mod 12), v ≥ 24.
For auto-ingredient use example 2.2 (taken 4 times in the first case and 2 times in
the second one) for the Pasch and example 2.3 (taken twice in the first case and 1
time in the second one) for the FIFA.

In order to fill in groups we need C4.6.2 and .3 resolvable designs:

B4.6.2, V = Z5 ∪ {∞}, λ = 4 . The 5 C–parallel classes are:{
{∞, 1 + i, 3 + i}, {∞, 2 + i, 4 + i}, {0 + i, 1 + i, 2 + i},
{0 + i, 3 + i, 4 + i} mod 5

}
, i ∈ Z5

B4.6.3, V = Z5 ∪ {∞}, λ = 4 . The 5 C–parallel classes are{
{∞, 0 + i, 1 + i}, {∞, 2 + i, 4 + i}, {0 + i, 1 + i, 4 + i},
{0 + i, 2 + i, 4 + i} mod 5

}
, i ∈ Z5

Theorem 3.3 If there is a RBIBD(v, 5, µ) then there is a B5.5.x for the following
values of x and lambda: x = 1 and λ ≡ 0 (mod 6µ); x = 2 and λ ≡ 0 (mod 3µ).

Proof: The existence of a RBIBD(v, 5, µ) is known in many cases, see [6] for a
survey of the results. The proof follows from the existence of a B5.5.x,and using one
parallel class of blocks as the groups to create the master RGDD needed. x = 1 and
λ = 6, x = 2 and λ = 3.

B6.5.1, V = Z5, λ = 6 . The 4 C–parallel classes are:

{032, 032, 014, 214, 314},

{012, 012, 034, 134, 234},
{123, 123, 104, 204, 304},
{013, 013, 024, 124, 324}.

B6.5.2, V = Z5, λ = 3 . The 2 C–parallel classes are:

{032, 034, 021, 341, 241},

{041, 042, 013, 423, 123}.
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3.3 Further sufficient conditions for l = 6

In this ,section we examine some sufficient conditions which fall short of the necessary
conditions. In each case there is a range of uncertainty which further woek may
narrow.

Theorem 3.4 For each v ≡ 6 (mod 12), λ ≡ 0 (mod 6) and
v ≡ 0 (mod 12), v ≥ 24, λ ≡ 0 (mod 12), there exists a B6.6.3.

Proof: We proceed as in Theorem 3.2 by using the same master, the following
6-auto ingredient configuration and B6.6.3 with v = 6, λ = 6.

A 6-auto ingredient configuration C6.6.3:
V = Z6. The groups are: {0, 3}, {1, 4}, {2, 5}. The 4 C–parallel classes are:

{012, 015, 024, 123, 534, 534},

{312, 315, 324, 120, 045, 045},
{315, 312, 354, 150, 024, 024},
{015, 012, 054, 153, 234, 234}.

B6.6.3, V = Z5 ∪ {∞}, λ = 6 . The 5 C–parallel classes are:{
{∞, 0 + i, 1 + i}, {∞, 0 + i, 2 + i}, {∞, 1 + i, 4 + i},
{0 + i, 1 + i, 3 + i}, {2 + i, 3 + i, 4 + i},
{2 + i, 3 + i, 4 + i} mod 5

}
, i ∈ Z5

Theorem 3.5 For each v ≡ 0 (mod 6), λ ≡ 0 (mod 12), v 6= 24, there exists a B6.6.2

and a B6.6.5.

Proof: A 6-auto ingredient configuration C6.6.2:
V = Z6. The groups are: {0, 3}, {1, 4}, {2, 5}. The 4 C–parallel classes are:

{012, 012, 024, 135, 435, 435},

{312, 312, 324, 105, 405, 405},
{015, 015, 054, 123, 423, 423},
{315, 315, 354, 102, 402, 402}.
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B6.6.2, V = Z5 ∪ {∞}, λ = 12. The 10 C–parallel classes are:{
{∞, 0 + i, 1 + i}, {∞, 0 + i, 1 + i}, {∞, 1 + i, 3 + i},
{0 + i, 2 + i, 4 + i}, {2 + i, 3 + i, 4 + i},
{2 + i, 3 + i, 4 + i} mod 5

}
, i ∈ Z5{

{∞, 0 + i, 2 + i}, {∞, 0 + i, 2 + i}, {∞, 2 + i, 3 + i},
{0 + i, 1 + i, 4 + i}, {1 + i, 3 + i, 4 + i},
{1 + i, 3 + i, 4 + i} mod 5

}
, i ∈ Z5

A 6-auto ingredient configuration C6.6.5:
V = Z6. The groups are: {0, 3}, {1, 4}, {2, 5}. The 4 C–parallel classes are:

{012, 015, 024, 153, 243, 543},

{045, 042, 051, 423, 513, 213},
{342, 345, 321, 450, 210, 510},
{042, 045, 021, 453, 213, 513}.

B6.6.5, V = Z5 ∪ {∞}, λ = 12 The 10 C–parallel classes are:{
{∞, 0 + i, 1 + i}, {∞, 0 + i, 2 + i}, {∞, 1 + i, 3 + i},
{0 + i, 2 + i, 4 + i}, {1 + i, 3 + i, 4 + i},
{2 + i, 3 + i, 4 + i} mod 5

}
, i ∈ Z5{

{∞, 0 + i, 4 + i}, {∞, 0 + i, 2 + i}, {∞, 4 + i, 3 + i},
{0 + i, 2 + i, 1 + i}, {4 + i, 3 + i, 1 + i},
{2 + i, 3 + i, 1 + i} mod 5

}
, i ∈ Z5

Theorem 3.6 Let λ be even. The necessary conditions for a C–resolvable B6.9.x,
x = 2, 3, 4, 8, to exist are sufficient with the addition of v 6= 18.

Proof: A 2-auto ingredient configuration C6.9.2:
V = Z9. The groups are: {1, 3, 0}, {2, 5, 7}, {4, 6, 8}. The 3 C–parallel classes

are:
{176, 176, 432, 435, 280, 580},
{378, 378, 415, 412, 560, 260},
{470, 470, 182, 185, 236, 536}.

B6.9.2, V = Z9, λ = 2 . The 4 C–parallel classes are:

{123, 123, 705, 708, 564, 864},

{247, 247, 180, 186, 053, 653},
{258, 258, 673, 671, 340, 140},
{260, 260, 387, 384, 715, 415}.
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A 2-auto ingredient configuration C6.9.3:
V = Z9. The groups are: {0, 1, 3}, {2, 5, 7}, {4, 6, 8}. The 3 C–parallel classes

are:
{124, 128, 470, 873, 563, 560},
{541, 543, 176, 378, 620, 820},
{580, 581, 047, 176, 423, 623}.

B6.9.3, V = Z9, λ = 2 . The 4 C–parallel classes are:

{130, 134, 085, 486, 627, 527},
{120, 124, 056, 457, 638, 738},
{178, 176, 802, 604, 453, 253},
{704, 703, 428, 326, 851, 651}.

A 2-auto ingredient configuration C6.9.4:
V = Z9. The groups are: {1, 2, 3}, {4, 6, 8}, {0, 5, 7}. The 3 C–parallel classes

are:
{145, 147, 526, 738, 026, 038},
{167, 160, 728, 034, 528, 534},
{365, 367, 518, 724, 018, 024}.

B6.9.4, V = Z9, λ = 2 . The 4 C–parallel classes are:

{374, 378, 124, 125, 608, 605},
{167, 163, 287, 280, 453, 450},
{301, 302, 481, 486, 752, 756},
{701, 704, 851, 853, 623, 264}.

A 2-auto ingredient configuration C6.9.8:
V = Z9. The groups are: {1, 2, 3}, {4, 5, 6}, {0, 7, 8}. The 3 C–parallel classes

are:
{147, 160, 428, 735, 638, 025},
{160, 158, 627, 034, 537, 824},
{158, 147, 520, 836, 430, 726}.

For a B6.9.8 with λ = 2 take two copies of the following Kirkman triple system of
order 9:

B6.9.8, V = Z9, λ = 1 . The 2 C–parallel classes are:

{023, 067, 245, 318, 658, 741},
{162, 150, 287, 634, 537, 048}.
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4 Conclusions

B6.6.4, V = Z5 ∪ {∞}, λ = 12 . The 10 C–parallel classes are:{
{∞, 0 + i, 1 + i}, {∞, 0 + i, 2 + i}, {∞, 1 + i, 2 + i},
{0 + i, 3 + i, 4 + i}, {1 + i, 3 + i, 4 + i},
{2 + i, 3 + i, 4 + i} mod 5

}
, i ∈ Z5{

{∞, 0 + i, 3 + i}, {∞, 0 + i, 2 + i}, {∞, 3 + i, 2 + i},
{0 + i, 1 + i, 4 + i}, {3 + i, 1 + i, 4 + i},
{2 + i, 1 + i, 4 + i} mod 5

}
, i ∈ Z5

B6.6.6, V = Z5 ∪ {∞}, λ = 6 . The 5 C–parallel classes are:{
{∞, 0 + i, 1 + i}, {∞, 0 + i, 4 + i}, {∞, 1 + i, 3 + i},
{1 + i, 4 + i, 2 + i}, {0 + i, 3 + i, 2 + i},
{2 + i, 3 + i, 4 + i} mod 5

}
, i ∈ Z5

B6.6.7, V = Z5 ∪ {∞}, λ = 12 . The 10 C–parallel classes are:{
{∞, 0 + i, 1 + i}, {∞, 0 + i, 3 + i}, {∞, 4 + i, 2 + i},
{0 + i, 2 + i, 4 + i}, {1 + i, 3 + i, 2 + i},
{1 + i, 3 + i, 4 + i} mod 5

}
, i ∈ Z5{

{∞, 0 + i, 1 + i}, {∞, 1 + i, 4 + i}, {∞, 3 + i, 2 + i},
{1 + i, 2 + i, 3 + i}, {0 + i, 2 + i, 4 + i},
{0 + i, 3 + i, 4 + i} mod 5

}
, i ∈ Z5

B6.9.2, V = Z9, λ = 3 . The 6 C–parallel classes are:

{123, 123, 470, 478, 650, 658},

{268, 268, 174, 170, 354, 350},
{348, 348, 157, 152, 607, 602},
{108, 108, 452, 456, 372, 376},
{146, 146, 278, 275, 308, 305},
{240, 240, 361, 367, 581, 587}.

B6.9.9, V = Z9, λ = 2 . The 4 C–parallel classes are:

{123, 123, 465, 478, 570, 680},

{158, 158, 246, 270, 347, 360},
{140, 140, 256, 287, 357, 368},
{167, 167, 245, 280, 348, 350}.
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Definition 4.1 A configuration C= (P,L) is strongly 3-colorable if and only the ver-
tices of P can be colored such that each l ∈ L receives one vertex of each color.[2]

Definition 4.2 A coloring of a configuration C= (P,L) is equitable if and only if all
color classes have the same size.[3]

Definition 4.3 A regular configuration is uniform if it has a strong equitable color-
ing.

For example C6.9.2 and C6.9.9 is uniform, C5.5.1 and C5.5.2 is not uniform.
Let C be a uniform configuration, and let (V,B) be a C–resolvable λ–TS. We will

suppose that the blocks of B are colored by inheriting the colors of C. Further we
will always write the blocks as {a1, a2, a3} where the color of ai = i.

Theorem 4.1 Let C be uniform configuration. Suppose there exist: a C–resolvable
λ–TS(v), (V, B); a C–resolvable λ–TS(w); two orthogonal quasigroups of order w,
(Zw, ·) and (Zw, ◦). Then there is a C–resolvable λ–TS(vw).

Proof: For each α ∈ Zw let Tα = {(i, j, i ◦ j) | i, j ∈ Zw i · j = α} be a transversal
of (Zw, ◦). Let W=(V×Zw) ∪ T and construct a C–resolvable λ–TS(vw), (W,D) in
the following way:

For each C–parallel class Bx of (V, B), construct the following w C–parallel
classes of (W,D),

Bαx =
{
{ai, bj, ci◦j} | {a, b, c} ∈ Bx and (i, j, i ◦ j) ∈ Tα

}
.

For each a ∈V let (a × Zw, Ea) be a C–resolvable λ–TS(w). Clearly ∪a∈V Ea is a
C–parallel class of (W,D).

Corollary 4.1 For each v=9n there is a B6,9,2 with λ = 3 and a B6,9,9 with λ = 2.

Proof: The proof follows from Theorem 4.1 and the existence of above B6,9,2 with
v = 9, λ = 3 and B6,9,9 with v = 9, λ = 2.
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