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Abstract. We introduce color-signed permutations to obtain a very explicit com-
binatorial interpretation of the q-Eulerian identities of Brenti and some generaliza-
tions. In particular, we prove an identity involving the golden ratio, which allows
us to compute upper bounds on how high a checker can reach in a classical checker-
jumping problem, when the rules are relaxed to allow also diagonal jumps.

1. Introduction

This paper has two themes. First, we will present a notion of color-signed permuta-
tions, that is, signed permutations where the plus sign comes in p different colors and
the minus sign comes in q different colors. These permutations give a very explicit
combinatorial interpretation of the q-Eulerian identities of Brenti [2], and also provide
some generalizations of them.

Second, we will treat a variant of an old checker-jumping problem: When playing
checkers on the square grid, given that the lower half-plane is full of checkers and
the upper half-plane is empty, how high up in the upper half-plane can we place a
checker by playing the game? This problem was solved long ago (see Berlekamp,
Conway and Guy’s entertaining book on combinatorial games [1]). H. Eriksson and
Lindström generalized checker-jumping to higher dimensions [5]. In his M.Sc. thesis,
Eriksen [4] changed the rules to allow also diagonal checker-jumping moves, thereby
obtaining a harder problem for which we will here present an upper bound on how
high the checker can be placed.
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The connection between the two themes is the following identity: Let n be a positive
integer and let σ denote the golden ratio (

√
5− 1)/2. Then

∞∑
m=1

m (2m+ 1)n−1 σm+2 = σ−2n
n∑
k=1

bnkσ
k,(1)

where the numbers bnk are defined by b1,1 = 1, bnk = 0 for k ≤ 0 and for k > n, and
the recurrence relation

bnk = (2(n− k) + 1) bn−1,k−1 + (2k + 1) bn−1,k.

The first few values of bnk are:

k = 1 2 3 4
n = 1 1

2 3 1
3 9 14 1
4 27 115 49 1

The identity (1) is needed for computation of the upper bound in the checker-
jumping problem. Zeilberger (personal communication) told us how (1) could be
proved using induction. Our own search for a combinatorial proof led us to the idea
of color-signed permutations.

2. Preliminaries on Eulerian and q-Eulerian numbers

Let [n] denote the integer set {1, . . . , n}. Signed permutations on [n] define a
group denoted by Bn. The subgroup consisting of signed permutations with every
value plus-signed is isomorphic to the symmetric group Sn. We will describe a signed
permutation π by its sequence π1 . . . πn of values.

Two statistics on permutations will be important: the number of descents and
the number of minus signs. A descent is a position i where the permutation value
decreases: πi−1 > πi. When counting descents we always have the convention that
π0 = 0. Let d(π) denote the number of descents of a signed permutation π. The
number of minus signs (resp. plus signs) in a signed permutation π ∈ Bn is denoted
by N(π) (resp. P (π)). In other words,

N(π)
def
= #{i ∈ [n] : πi < 0} and P (π)

def
= n−N(π).

The well-known Eulerian numbers Ank count permutations in Sn with k descents.
Similarly, Eulerian numbers of type B are the numbers Bnk of signed permutations
in Bn with k descents. These numbers define the Eulerian polynomials:

An(x)
def
=

n∑
k=0

Ankx
k and Bn(x)

def
=

n∑
k=0

Bnkx
k.
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Refining also by the statistic N(π), Brenti [2] defined a q-analog to these polynomials,
called the q-Eulerian polynomial:

Bn(x; q)
def
=

n∑
k=0

Bnk(q)x
k def

=
∑
π∈Bn

qN(π)xd(π),

where the polynomials Bnk(q) are called q-Eulerian numbers. For q = 1 they reduce
to the Eulerian numbers of type B, and for q = 0 they reduce to the ordinary Eulerian
numbers.

3. Color-signed permutations

From the definition of the q-Eulerian numbers, it is clear that if the value of q is a
nonnegative integer, then so is Bnk(q). There is a simple combinatorial interpretation
of q, not mentioned by Brenti: If we color each minus sign by one of q colors, then
Bnk(q) is the number of such q-color signed permutations in Bn with k descents.
(Coloring does not affect what is meant by a descent.)

This interpretation allows an obvious generalization, namely, coloring the plus signs
by one of p colors. Define the pq-Eulerian number Bnk(p, q) as the number of pq-color
signed permutations in Bn with k descents. A first observation is that

n∑
k=0

Bnk(p, q) = (p+ q)nn!,

since there is a choice among p plus signs and q minus signs for every value of an
unsigned permutation.

The pq-Eulerian numbers are easily expressed in terms of Brenti’s q-Eulerian num-
bers.

Lemma 3.1. The pq-Eulerian numbers are related to the q-Eulerian numbers by

Bnk(p, q) = pnBnk(
q

p
).

Proof. Since this is a polynomial identity, it suffices to verify it for all integers p and
q such that q is divisible by p. Given one color for plus signs and q

p
colors for minus

signs, split every color into p different subcolors. This gives pn possible subcolorings
for every original coloring.

This simple relationship gives direct pq-analogues of all Brenti’s theorems for q-
Eulerian numbers in Section 3 of [2], dealing with recurrences, generating functions,
polynomial identities, log-concavity and unimodality. Using the generating function,
we obtain the following explicit formula for the pq-Eulerian numbers.
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Theorem 3.2. The pq-Eulerian numbers Bnk(p, q) satisfy

Bnk(p, q) =
k∑
j=0

(
n+ 1

j

)
(−1)j((p+ q)(k − j) + p)n

=
n+1∑
j=k+1

(
n+ 1

j

)
(−1)j+1((p+ q)(k − j) + p)n.

Proof. The proof follows the proof in Comtet [3], p. 243, for ordinary Eulerian num-
bers.

We shall now present new, combinatorial, proofs of two of the pq-analogues of
Brenti’s theorems, and then proceed with a further generalization.

Theorem 3.3. The pq-Eulerian numbers satisfy the recurrence relation

Bnk(p, q) = (p(k +1) + qk)Bn−1,k(p, q)

+ (p(n−k) + q(n−k +1))Bn−1,k−1(p, q)

and the boundary conditions B00 = 1 and Bnk = 0 for k < 0 and k > n.

Proof. The boundary conditions are obvious. The first term of the recurrence counts
ways to insert ±n into a signed [n − 1]-permutation with k descents, such that the
number of descents is unchanged. Either the ±n must go into an old descent or a +n
goes last; in all, this gives p(k+1) + qk possibilities. The second term has a similar
interpretation.

Theorem 3.4. As a polynomial in m,

(p(m+ 1) + qm)n =
n∑
k=0

Bnk(p, q)

(
m+ n− k

n

)
,

for positive integers n.

In order to make the idea as clear as possible, we shall present the combinatorial
proof of Theorem 3.4 in a series of three cases of increasing generality.

3.1. Splitting the hypercube, unsigned case. For p = 1 and q = 0, Theorem 3.4
specializes to the following well-known identity for Eulerian numbers (cf. Comtet [3],
p. 243):

(m+ 1)n =
n∑
k=0

Ank

(
m+ n− k

n

)
.(2)

For nonnegative integers m, the left-hand side can be interpreted as the number
of grid points in the n-dimensional hypercube {(x1, . . . , xn) ∈ [0,m]n}. We would
then like to find a similar interpretation of the right-hand side. Let us divide the
hypercube into n! simplices as follows: To every permutation π ∈ Sn corresponds a
simplex defined by the inequalities

0l xπ1 l xπ2 l . . .l xπn ≤ m.(3)
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The symbol l is defined in the following way:

xπk l xπk+1
=

{
xπk < xπk+1

, if πk > πk+1, i.e. a descent;

xπk ≤ xπk+1
, if πk < πk+1.

It is easy to see that these simplices are all disjoint and cover the hypercube.

Example 3.5. Let n = m = 2.
x2

x1

r

r

r

r

-

6

�
�
��

�
�

The picture shows a larger simplex 0 ≤ x1 ≤ x2 ≤ 2, corresponding to π = 12, and a
smaller simplex 0 ≤ x2 < x1 ≤ 2, corresponding to π = 21.

We remark that, apart from the rules about which region boundary points belong
to, the division of the hypercube is done by the well-known hyperplane arrangement
of type A.

The size of a simplex is the number of integral solutions to the inequalities. If k
of the inequalities are strict, then by a standard argument there are

(
m+n−k

n

)
inte-

gral solutions. Since there are Ank permutations of [n] with k descents, we have an
interpretation of the right hand side of (2).

3.2. Splitting the hypercube, signed case. For p = q = 1, Theorem 3.4 special-
izes to the Eulerian identity of type B:

(2m+ 1)n =
n∑
k=0

Bnk

(
m+ n− k

n

)
.(4)

We now interpret the left-hand side as the number of grid points in the n-dimensional
hypercube {(x1, . . . , xn) ∈ [−m,m]n}. The binomial part of the right-hand side
still signifies the size of a simplex, but the number of simplices of each size has
now changed. For a signed permutation π ∈ Bn, define the meaning of xπi to be
sgn(πi)x|πi|. This gives a well-defined meaning for signed permutations to the simplex-
defining inequalities (3), (now corresponding to the so called B-arrangement) and so
explains the identity in a similar way as before.

Example 3.6. Let n = m = 2.
x2
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For instance, the smallest simplex is defined by 0 < −x1 < −x2 ≤ 2, corresponding
to π = −1 − 2.

Observe that a consequence of the inequalities (3) is that in the simplex corre-
sponding to a signed permutation π, the sign of the coordinate x|πi| is always the sign
of πi.

3.3. Splitting the hypercube, color-signed case. The general identity, with p
colors of plus signs and q colors of minus signs, is

(p(m+ 1) + qm)n =
n∑
k=0

Bnk(p, q)

(
m+ n− k

n

)
.(5)

The left-hand side is the size of a hypercube with side length p(m+ 1) + qm. We
obtain this by letting the range of every coordinate be [−m,m] with p choices of color
for each nonnegative value and q choices of color for each negative value.

The simplex corresponding to a color-signed permutation π is defined by (3) to-
gether with the definition of the color of x|πi| to be the color of the sign of πi.

Example 3.7. Let n = m = 2, and let p = 1 and q = 2.
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For a color-signed permutation π, the color of the sign of x|πi| is the color of the
sign of πi.

3.4. Different colors for different positions. We can obtain other triangles of
numbers by allowing a different number of signs to some of the permutation values.
Say that we have p′ colors of plus signs and q′ colors of minus signs for the n′ first
values, and p resp. q colors for the remaining values. We would then get a relation
like this:

Theorem 3.8.

(p′(m+ 1) + q′m)n
′

(p(m+ 1) + qm)n−n
′

=
n∑
k=0

bnk

(
m+ n− k

n

)
.

The numbers bnk are determined by the recurrence in Theorem 3.3, using p′, q′ up to
n′, and thereafter continuing with p, q.
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Finally, we make a note that all the above polynomial identities can be trans-
lated into power series identities by the following well-known formula for generating
functions:

A(m) =
n∑
k=0

bnk

(
m+ n− k

n

)
⇔

∞∑
m=0

A(m) xm =

∑n
k=0 bnk x

k

(1− x)n+1
(6)

3.5. Deriving identity (1). With p = 0 and q = 1 for n′ = 1, while p = 1 and
q = 1 for higher n, Theorem 3.8 gives the following identity:

m(2m+ 1)n−1 =
n∑
k=0

bnk

(
m+ n− k

n

)
,

with the numbers bnk defined by b10 = 1, b11 = 0 and, for n > 1, by the standard
recurrence for p = q = 1. Identity (6) yields

∞∑
m=0

m(2m+ 1)n−1 xm =

∑n
k=0 bnk x

k

(1− x)n+1
.

If we now take x = σ = (
√

5 − 1)/2 and use the fact that 1 − σ = σ2, we obtain
identity (1) as promised in the introduction.

4. Playing diagonal Pegs in Zn

Peg solitaire, or Pegs, is one of the most famous board games for one person.
It is played on a board with 33 holes, 32 of which are occupied by a peg, and the
objective is to get rid of all pegs but one. (Detailed descriptions, and some interesting
generalizations can be found in Berlekamp, Conway and Guy [1] and in Eriksen [4]).
A move can be made whenever there are two adjacent pegs next to an empty hole,
all in the same row or column. Then the outer peg may jump over the middle peg
into the empty hole, thereby removing the middle peg. With white pegs and black
holes, it looks like this:

gg r - r r g

One can of course play Pegs on other boards than the traditional one. In [1], the
following situation is studied: Use Z2 as our board, with the entire lower half plane
(including y = 0) filled with pegs and the upper half plane empty. How far up into the
upper half plane can you put a peg, using Pegs moves? The answer is that although
there is an infinite number of pegs to use, one can only reach the fourth row!

The reachability problem was generalized to Zn, n ≥ 2, by H. Eriksson and Lind-
ström [5]:

Theorem 4.1 (Eriksson and Lindström [5]). When playing Pegs on Zn, starting
with pegs in all holes with coordinates (x1, x2, . . . , xn) such that xn ≤ 0, it is im-
possible to play a peg into any hole with xn ≥ 3n− 1.
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Eriksson and Lindström also prove that the bound is sharp: a good player can
always reach level xn = 3n− 2. They remark that allowing L-moves of the following
kind will not increase the range.

e e
r

- r r
e

In the present paper, we will study how far pegs can reach when diagonal moves are
allowed, such as

e
e
r

-
r
r
e

4.1. The pagoda function. We will use the standard tool for this kind of problems:
the pagoda function introduced in [1]. A pagoda function is a function P (x) that
assigns a real value to each position on the board, with the property that the sum of
the values of all peg positions can never increase by a legal move.

In our case, the board is Zn and the initial peg distribution is a filled halfspace.
The pagoda function is now used as follows. Let

f(n, k)
def
=

∑
x:xn≤−k

P (x).

Then if we find a value of k such that f(n, k) ≤ P (0̄), this implies that it is impossible
to reach k levels above the peg-filled halfspace, since the pagoda function cannot
increase.

Thus our first task is to find a good pagoda function. In the analysis of the classical
case where no diagonal moves are allowed [1, 5], the pagoda function was taken to
be Pclassic(x) = σ|x1|+···+|xn|, where σ = (

√
5− 1)/2. It is easy to verify that this is a

proper pagoda function, using the equation σ2 + σ = 1.
When diagonal moves are allowed too, the above function is no longer a proper

pagoda function. We will instead define

P (x)
def
= σmax |xi|,(7)

for which the pagoda property is easily verified.
We have P (0̄) = 1, so if f(n, k) ≤ 1 for some n and k, then we cannot reach the

kth level in Zn. Calculating f(n, k) will thus provide us with an upper limit on the
range of the pegs.

4.2. Computation of f(n, k). Computation of the function f(n, k) is not trivial,
and we will approach the problem in several steps. To begin with, we can find a
recurrence involving an infinite sum.

Lemma 4.2. The numbers f(n, k) satisfy the recurrence

f(n, k) = 4
∞∑

l=k+1

f(n− 1, l) + (2k + 1)f(n− 1, k),

with the initial values

f(1, k) = σk−2.
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Proof. Let us first verify the initial values. We first observe that in Z1, we get a single
line of σ, σ2, σ3, . . . . Simple calculations give

f(1, k) =
∞∑
`=k

σ` =
σk

1− σ = σk−2.

For the recurrence, we start with the case n = 2. Figure 1 shows the σ-logarithm of the
Pagoda function. (The zero is, of course, at the origin.) First we calculate f(2, 1): On
the right side of the middle column, we have, diagonally, a sum equivalent to f(1, 1)
running from (1, -1), two f(1, 2)s running from (1, -2) and (2, -1), two f(1, 3)s, etc.
The same goes for the left side, and the middle column will produce a f(1, 1), giving
a total of f(2, 1) = 3f(1, 1) + 4f(1, 2) + 4f(1, 3) + . . . .

4 3 2 1 0 1 2 3 4

4 3 2 1 1 1 2 3 4

4 3 2 2 2 2 2 3 4

4 3 3 3 3 3 3 3 4

4 4 4 4 4 4 4 4 4

Figure 1. The σ-logarithm of the Pagoda function

Calculating f(2, 2) is done in an analogous way: We get nice diagonals on the right
and the sides if we first remove the three middle columns. The total weight will then
be 5f(1, 2) + 4f(1, 3) + 4f(1, 4) + . . . . An inductive argument then shows that the
recursion is valid for every f(2, k), proving the formula correct for n = 2.

Higher dimensions can be dealt with in the same manner. For example, in order to
compute f(3, 1), use the vertical plane in the middle (x2 = 0) as a divider and consider
the right and left sides. On each, we have one f(2, 1), two f(2, 2)s, two f(2, 3)s etc.
Together with the dividing plane, which equals f(2, 1), we get f(3, 1) = 3f(2, 1) +
4f(2, 2) + 4f(2, 3) + . . . , and the argument obviously applies to all f(n, k).

From this recursion, we can write f as a linear function of k, making it easy to find
the smallest value of k such that f(n, k) ≤ 1, for any given n, provided the value of
f(j, 1) is known for all j ≤ n.

Lemma 4.3. The function f(n, k) is given by the formula

f(n, k) = f(n, 1)− 2(k − 1)
n−1∑
j=1

f(j, 1).

Hence in particular, f is a linear function of k. The smallest value of k for which
f(n, k) ≤ 1 is clearly

k∗(n) = 1 +

⌈
f(n, 1)− 1

2
∑n−1

j=1 f(j, 1)

⌉
.



10 the electronic journal of combinatorics 7 (2000), #R3

Proof. First we simplify the recursion a bit. Using k − 1 instead of k, we obtain

f(n, k − 1) = 4
∞∑
l=k

f(n− 1, l) + (2k − 1)f(n− 1, k − 1),

and subtracting the second recursion from the first gives

f(n, k)− f(n, k − 1) = (2k − 3)f(n− 1, k)− (2k − 1)f(n− 1, k − 1).

Let us now assume that f(n, k) can be written in the form

f(n, k) = f(n, 1)− (k − 1)h(n),

where h does not depend on k and is to be determined. We then substitute this into
the expression above and extract h(n).

In order to be able to use the above formula, our next step is to calculate f(n, 1).

Lemma 4.4. The value of all holes with xn ≤ −1 in Zn, is given by

f(n, 1) = σ2

∞∑
m=1

m (2m+ 1)n−1σm.

Proof. We wish to compute the total value of the holes with xn ≤ −1. This value is
equal to the value of the holes with xn ≥ 1. Hence, if we let g(n) be the value of all
holes in Zn, then we can subtract the total value of the hyperplane xn = 0 and divide
the difference by two to obtain f(n, 1). But the value of the hyperplane is g(n− 1).
Thus, we have proved that

f(n, 1) =
g(n)− g(n− 1)

2
(8)

The holes in Zn with value σm, for a fixed m ≥ 1, constitute the outer shell of an
n-dimensional hypercube centered around the origin, with side length 2m + 1 The
number of such holes is therefore (2m+ 1)n − (2m− 1)n. Using (8), we now obtain

f(n, 1) =
∞∑
m=1

((2m+ 1)n − (2m− 1)n)− ((2m+ 1)n−1 − (2m− 1)n−1)

2
σm

=
∞∑
m=1

(2m+ 1− 1)(2m+ 1)n−1 − (2m− 1− 1)(2m− 1)n−1

2
σm

=
∞∑
m=1

(m(2m+ 1)n−1 − (m− 1)(2m− 1)n−1)σm

=
∞∑
m=1

m(2m+ 1)n−1σm −
∞∑
m=0

m(2m+ 1)n−1σm+1

=
∞∑
m=1

m (2m+ 1)n−1 σm+2
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Finally, we observe that this infinite sum is computable via identity (1), which was
proved in Section 3.5. Hence, we have a way of computing k∗(n). The results are
collected in the below theorem.

We are now ready to state the theorem, which follows directly from the lemmas.

Theorem 4.5. Suppose that the half-space xn ≤ 0 is filled with pegs and the rest of
Zn is empty. Then the range of the pegs is bounded, even if we allow diagonal moves.
Upper bounds for small values of n can be found in Table 1.

Table 1. Unreachable levels of Diapegs in Zn

n unreachable level k∗ f(n, k∗) f(n, k∗ − 1)
1 2 1.000 1.618
2 9 0.877 1.308
3 18 0.872 1.286
4 28 0.967 1.424
5 40 0.689 1.017
6 51 0.932 1.376
7 64 0.703 1.041

4.3. Lower bounds. When Eriksson and Lindström [5] proved that the upper bounds
could be attained in the case where diagonal moves are not allowed, they showed how
a successful construction in two dimensions could be used iteratively to solve the
problem in higher dimensions. Such a scheme does not seem likely to succeed when
diagonal moves are allowed, since every time the dimension is increased a new type
of diagonal move is introduced. We have no nontrivial general lower bounds.

However, using ad hoc methods we have constructed a game in Z2 that reaches
level 8, so here the upper bound is sharp! It is possible that the bounds are sharp for
all n, but completely new construction ideas would be needed to prove such a result.
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