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Abstract

A set A C Nis (k,{)-sum-free, for k,¢ € N, k > £, if it contains no
solutions to the equation z1+---+xr = y1+-- -+ yp. Let p=p(k—¥)
be the smallest natural number not dividing k£ — ¢, and let r = r,,
0 < r < p, be such that » = n (mod p). The main result of this
note says that if (k — ¢)/¢ is small in terms of p, then the number of
(k, £)-sum-free subsets of [1,n] is equal to (¢(p) + ¢, (p) + o(1))2L7/P],
where ¢, (x) denotes the number of positive integers m < r relatively
prime to x and p(x) = @, ().
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A set A of positive integers is (k, £)-sum-free for k, ¢ € N, k > ¢, if there
are no solutions to the equation xy + -+ 4+ 2 = y; + - - - + y¢ in A. Denote
by SFy, the number of (k,()-sum-free subsets of [1,n]. Since the set of
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odd numbers is (2, 1)-sum-free we have SFj, > 2l"*1/2 In fact Erdés and
Cameron [6] conjectured SF5; = O(2"/2). This conjecture is still open and
the best upper bounds for SF7 ;| given independently by Alon [1] and Calkin
3], say that, for £ > 1,

S é+1£ < Sf'n _ O(Qn/QJro(n)) ]

For ¢ > 3 this bound was recently improved by Bilu [2] who proved that in
this case SF},, , = (14 o(1))2L /2],

The case of k being much larger than ¢ was treated by Calkin and Taylor
[4]. They showed that for some constant ¢; the number of (k,1)-sum-free

subsets of [1,n] is at most ckQ%”, provided k > 3. Furthermore, Calkin and
Thomson proved [5] that for every k and ¢ with £ > 4¢ — 1

SFp, < 20k,

In order to study the behaviour of SF7 , let us observe first that there are
two natural examples of large (k, ()- sum-free subsets of the interval [1,n]:

{Un/k] +1,...,n}

and
{me{l,2,...,n}:m=r (modp)},
where ged(r, p) = 1 and p = p(k — () = min{s € N : s does not divide k —(}.
Thus,
SFI, > max (Qtn/pJ’ 2[(kf€)n/k]>.

In this note we study the case k < —-£-¢ so that 2["/¢) > 2[(k=On/kT "and we

may expect SF, to be close to 2L”/ pJ. Indeed, we will prove as our main
result that for fixed k& and ¢ there exists a bounded function £ = £(n) such
that

SFy = (€ +o0(1))2!

provided k < (1 — Ccﬁ;ll)pfplf, where ¢ = 1;1;“22, and /¢ is sufficiently large.

For every natural numbers x,r let ¢,(x) be the number of positive inte-
gers m < r relatively prime to z and let ¢(x) abbreviate ¢, (x). For a finite
set A of integers A define:



THE ELECTRONIC JOURNAL OF COMBINATORICS 7 (2000), #R30
d(A) = ged(A), d(A) = d(A-A),
A(A) = maxA —minA, A(A) = A(A)/d(A).
Furthermore, let

max(A)
A(A)

AN(A) -1
K(A) = m,

T(A) = (JA] = 2)(Is(A)] +1 = K(A4)) + 1

0(A) =

and
hA={a1+ - +ap:ay,...,a, € A}.

For a specified set A, we simply write d,d’, A, etc.

Our approach is based on a remarkable result of Lev [7]. Using an affine

transformation of variables his theorem can be stated as follows.

Theorem 1. Let A be a finite set of integers and let h be a positive integer

satisfying h > 2k — 1. Then there exists an integer s such that
{sd,...,(s+t)d'} ChA,

fort = (h—2|k])N +2|x]T.

Lemma 1. Let A be a finite set of integers and let h be a positive integer
satisfying h > 2k — 1. Then {0,d’,... td'} C hA — hA, wheret > (h+1—

2k)N.

Proof. Theorem 1 implies that hA contains ¢t = (h — 2|k|)A + 2|k]T + 1

consecutive multiples of d’, so that
{0,...,td'} C hA — hA.

Furthermore,

t = (h—=2|k|)N +2|k|T = (h+2—2m—T)Af+2L“J(“— [k]) +2|k](k — 1)

K

where

oo 2= k(K] +1 k)

Since 7 < 1 and k > 1, the result follows. O
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Lemma 2. Let A C [1,n] be a (k,{)-sum-free set, and let r be the residue
class mod d' containing A. Assume that either

d < p, (1)
(k—0r=0 (modd). (2)
Then

Lkl (k=00

> (3

K

Proof. We may assume that ¢ > 2k — 1, otherwise the assertion is obvious.
By Lemma 1 we have

{0,d,... td} C LA~ (A,

where t > (41— 2k)A’. Put m = min A. Then any of the assumptions (1),
(2) implies d'|(k — ¢)m. Since A is a (k, {)-sum-free set, it follows that

(k—0m >td > ({+1—2k)A,
which gives the required inequality. O

Theorem 2. Assume that k > { > 3 are positive integers satisfying

E—¢ Inz | z=11, = n?2
—— - max ——— - CREp (4)
22t Ty T P
Then
SFpo=(p+ @ +o0(1))27) (5)

where 0 < r < p and r =n (mod p).

Proof. In order to obtain the lower bound let us observe that there are
exactly ¢ maximal (k, £)-sum-free arithmetic progressions with the difference
p. Precisely ¢, of them have length [n/p] and ¢ — ¢, are of length |n/p].
Since these progressions are pairwise disjoint, there are at least

(p+ pratvse
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(k, £)-sum-free subsets of [1,n].

Now we estimate SF}, from above. First consider (k,£)-sum-free sets
satisfying neither (1), nor (2). Plainly each of these is contained in a residue
class r mod d', where d’ > p and (k — {)r # 0 mod d'. If d’ = p, by the same
argument as above, exactly (¢ + ¢,)2"/?1  (k £)-sum-free subsets of [1, 7]
are contained in arithmetic progression r mod p, where (k — ¢)r #Z 0 mod p.
If d > p then every progression r mod d' consists of at most [n/(p + 1)]
elements hence it contains no more than 2/"/(°*D1 subsets. Furthermore we
have less than n? possible choices for the pair (d', p), hence there are at most
2n22"/(+1) such (k, £)-sum-free sets. Thus, the number of (k, £)-sum-free sets
satisfying neither (1), nor (2) does not exceed

(o + QOT)QL”/”J + 2p29n/(p+1)

To complete the proof it is sufficient to show that the number of (k,¢)-
sum-free subsets of [1,n] satisfying either (1) or (2) is 0(2"/?). Denote by B
the set of all such subsets, and let

BK,L,M)={A€B:|Al =K, A(A)=L, maxA = M},

so that
B = LJ B(K,L, M).
1<K<L+1<M<n
We will prove that
max |B(K, L, M)| < elerO(lnn)7 (6)
ISK<L+1<M<n

where p is the left-hand side of (4) which in turn implies that
|B] = o(2"/7). (7)

Let us define the following decreasing function z(t) = (k+1—(k—0)t)/2.
Note that x(1) = (£ +1)/2, x(t3) = 2 and x(t;) = 1, where

k—3 k—1
ty=——2>1 and t; = ——.
T
Furthermore, put
1 -1
H(x) = T 4T In—~

x x xr—1
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Observe that H is increasing on (1, 2] and decreasing on [2, 00). Moreover

L HGE@)
H 1<t<t2 t
and
H(x)
eyt (8)
>z (t)

Indeed, if 1 <t <ty then x > z(t) > 2 and H(x)/t < H(x(t))/t < p. If
Now we are ready to prove (7). For a fixed triple K, L, M with 1 < K <

L+1< M <nput
M L—1

A
Then x(A) < k and 0(A) = 6 for any A € B(K, L, M). By Lemma 2 we have
k > x(0). Since k > 1 by definition, we infer that H(x)/6 < p by (8). Using
Stirling’s formula we obtain
L—-1
(k=)

= exp(H(k)L+ O(In L))

0:

|B(K, L, M)

IN

= exp <#M + O(lnn))
< exp(pun + O(Inn)).

Thus
1B| < n’ exp(un + O(Inn)),

which completes the proof of Theorem 2. O

Corollary 1. The estimate (5) holds, provided k > ¢ > 3 and

max (L22(k - 0), 201+ %)
< —.
(41 p
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Proof.  We need to show that the left-hand side of (4) is not larger than the
left-hand side of (9). Since In(1 + u) < u for u > 0, we have

z—1 x 1
In < —
x r—1" x
for x > 1, so that
—1 1+Inx
< —— max 10
P2 e (B ) o)
Furthermore
1+Inx 2 l1+Inz 1+1In2
max ) < max = ,
p<o<ht (5 — 1) T A+ loce<tt @ (+1
1+ Inx 1—1—1n”71 1—|—ln”71
max < - = )
ket opctin p( B — ) min  z(EL — ) (k—=0)(+1)

et
Combining the above inequalities with (10), the result follows. O

Let us conclude this note with some further remarks on the range of k
and € satisfying (4). If H22(k—() < 2(14+In ‘), that is (k—() < 151+
In ££1), then by Corollary 1 (4) holds, provided ¢ > 2 (1 +1In ”Tl) (k—10).
By the prime number theorem, p(n) < (1 + o(1))Inn, hence the inequality
(> (1+ln ”1) (k—2) is fulfilled for every sufficiently large ¢. If 1102 (k—

0) > 2(1 +1In 1) then (4) holds for every k and ¢ such that £ < k < ool =

(1 — ci):11)p ¢, where ¢ = 12’::]“22. Thus, from Theorem 2, one can deduce

that there exists an absolute constant ¢, such that
S:FZ,Z = (90 + ¢r + 0(1))2[”/#4’

provided £y < ¢ <k < (1 — ccpill)p—flﬁ.
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