A note on the number of (k, ℓ) -sum-free sets

Tomasz Schoen
Mathematisches Seminar Universität zu Kiel
Ludewig-Meyn-Str. 4,
24098 Kiel, Germany

tos@numerik.uni-kiel.de

and

Department of Discrete Mathematics Adam Mickiewicz University Poznań, Poland

Abstract

A set $A\subseteq\mathbb{N}$ is (k,ℓ) -sum-free, for $k,\ell\in\mathbb{N},\,k>\ell$, if it contains no solutions to the equation $x_1+\cdots+x_k=y_1+\cdots+y_\ell$. Let $\rho=\rho(k-\ell)$ be the smallest natural number not dividing $k-\ell$, and let $r=r_n$, $0\le r<\rho$, be such that $r\equiv n\pmod{\rho}$. The main result of this note says that if $(k-\ell)/\ell$ is small in terms of ρ , then the number of (k,ℓ) -sum-free subsets of [1,n] is equal to $(\varphi(\rho)+\varphi_r(\rho)+o(1))2^{\lfloor n/\rho\rfloor}$, where $\varphi_r(x)$ denotes the number of positive integers $m\le r$ relatively prime to x and $\varphi(x)=\varphi_x(x)$.

Submitted: February 15, 1999; Accepted: May 23, 2000. 1991 Mathematics Subject Classification: 11B75, 11P99.

A set A of positive integers is (k,ℓ) -sum-free for $k,\ell\in\mathbb{N},\ k>\ell$, if there are no solutions to the equation $x_1+\cdots+x_k=y_1+\cdots+y_\ell$ in A. Denote by $\mathcal{SF}^n_{k,\ell}$ the number of (k,ℓ) -sum-free subsets of [1,n]. Since the set of

odd numbers is (2,1)-sum-free we have $\mathcal{SF}_{2,1}^n \geq 2^{\lfloor (n+1)/2 \rfloor}$. In fact Erdős and Cameron [6] conjectured $\mathcal{SF}_{2,1}^n = O(2^{n/2})$. This conjecture is still open and the best upper bounds for $\mathcal{SF}_{2,1}^n$ given independently by Alon [1] and Calkin [3], say that, for $\ell \geq 1$,

$$\mathcal{SF}_{\ell+1}^n \in \mathcal{SF}_{2,1}^n = O(2^{n/2+o(n)})$$
.

For $\ell \geq 3$ this bound was recently improved by Bilu [2] who proved that in this case $\mathcal{SF}_{\ell+1,\ell}^n = (1+o(1))2^{\lfloor (n+1)/2 \rfloor}$.

The case of k being much larger than ℓ was treated by Calkin and Taylor [4]. They showed that for some constant c_k the number of (k,1)-sum-free subsets of [1,n] is at most $c_k 2^{\frac{k-1}{k}n}$, provided $k \geq 3$. Furthermore, Calkin and Thomson proved [5] that for every k and ℓ with $k \geq 4\ell - 1$

$$\mathcal{SF}_{k,\ell}^n \le c_k 2^{(k-\ell)n/k}$$
.

In order to study the behaviour of $\mathcal{SF}_{k,\ell}^n$ let us observe first that there are two natural examples of large (k,ℓ) -sum-free subsets of the interval [1,n]:

$$\{ |\ell n/k| + 1, \ldots, n \}$$

and

$$\{m \in \{1, 2, \dots, n\} : m \equiv r \pmod{\rho}\},\$$

where $\gcd(r,\rho)=1$ and $\rho=\rho(k-\ell)=\min\{s\in\mathbb{N}:s\text{ does not divide }k-\ell\}.$ Thus,

$$\mathcal{SF}_{k,\ell}^n \ge \max\left(2^{\lfloor n/\rho \rfloor}, \ 2^{\lceil (k-\ell)n/k \rceil}\right).$$

In this note we study the case $k < \frac{\rho}{\rho-1}\ell$ so that $2^{\lfloor n/\rho \rfloor} > 2^{\lceil (k-\ell)n/k \rceil}$, and we may expect $\mathcal{SF}^n_{k,\ell}$ to be close to $2^{\lfloor n/\rho \rfloor}$. Indeed, we will prove as our main result that for fixed k and ℓ there exists a bounded function $\xi = \xi(n)$ such that

$$\mathcal{SF}_{k,\ell}^n = (\xi + o(1))2^{\lfloor n/\rho \rfloor}$$

provided $k < (1 - \frac{c-1}{c\rho-1})\frac{\rho}{\rho-1}\ell$, where $c = \frac{1+\ln 2}{2\ln 2}$, and ℓ is sufficiently large.

For every natural numbers x, r let $\varphi_r(x)$ be the number of positive integers $m \leq r$ relatively prime to x and let $\varphi(x)$ abbreviate $\varphi_x(x)$. For a finite set A of integers A define:

$$\begin{array}{rclcrcl} d(A) & = & \gcd(A), & d'(A) & = & d(A-A), \\ \Lambda(A) & = & \max A - \min A, & \Lambda'(A) & = & \Lambda(A)/d'(A). \end{array}$$

Furthermore, let

$$\kappa(A) = \frac{\Lambda'(A) - 1}{|A| - 2}, \quad \theta(A) = \frac{\max(A)}{\Lambda(A)},$$

$$T(A) = (|A| - 2)(\lfloor \kappa(A) \rfloor + 1 - \kappa(A)) + 1$$

and

$$hA = \{a_1 + \dots + a_h : a_1, \dots, a_h \in A\}.$$

For a specified set A, we simply write d, d', Λ , etc.

Our approach is based on a remarkable result of Lev [7]. Using an affine transformation of variables his theorem can be stated as follows.

Theorem 1. Let A be a finite set of integers and let h be a positive integer satisfying $h > 2\kappa - 1$. Then there exists an integer s such that

$$\{sd',\ldots,(s+t)d'\}\subseteq hA$$
,

for
$$t = (h - 2|\kappa|)\Lambda' + 2|\kappa|T$$
.

Lemma 1. Let A be a finite set of integers and let h be a positive integer satisfying $h > 2\kappa - 1$. Then $\{0, d', \ldots, td'\} \subseteq hA - hA$, where $t \geq (h + 1 - 2\kappa)\Lambda'$.

Proof. Theorem 1 implies that hA contains $t = (h - 2\lfloor \kappa \rfloor)\Lambda' + 2\lfloor \kappa \rfloor T + 1$ consecutive multiples of d', so that

$$\{0,\ldots,td'\}\subseteq hA-hA.$$

Furthermore,

$$t = (h - 2\lfloor \kappa \rfloor) \Lambda' + 2\lfloor \kappa \rfloor T = (h + 2 - 2\kappa - \tau) \Lambda' + \frac{2\lfloor \kappa \rfloor (\kappa - \lfloor \kappa \rfloor) + 2\lfloor \kappa \rfloor (\kappa - 1)}{\kappa},$$

where

$$\tau = \frac{2(\kappa - \lfloor \kappa \rfloor)(\lfloor \kappa \rfloor + 1 - \kappa)}{\kappa}.$$

Since $\tau \leq 1$ and $\kappa \geq 1$, the result follows. \square

Lemma 2. Let $A \subseteq [1, n]$ be a (k, ℓ) -sum-free set, and let r be the residue class mod d' containing A. Assume that either

$$d' < \rho, \tag{1}$$

or

$$(k - \ell)r \equiv 0 \pmod{d'}.$$
 (2)

Then

$$\kappa \ge \frac{k+1-(k-\ell)\theta}{2}.\tag{3}$$

Proof. We may assume that $\ell > 2\kappa - 1$, otherwise the assertion is obvious. By Lemma 1 we have

$$\{0, d', \dots, td'\} \subseteq \ell A - \ell A,$$

where $t \geq (\ell + 1 - 2\kappa)\Lambda'$. Put $m = \min A$. Then any of the assumptions (1), (2) implies $d'|(k - \ell)m$. Since A is a (k, ℓ) -sum-free set, it follows that

$$(k-\ell)m > td' \ge (\ell+1-2\kappa)\Lambda,$$

which gives the required inequality. \Box

Theorem 2. Assume that $k > \ell \geq 3$ are positive integers satisfying

$$\frac{k-\ell}{2} \cdot \max_{2 \le x \le \frac{\ell+1}{2}} \frac{\frac{\ln x}{x} + \frac{x-1}{x} \ln \frac{x}{x-1}}{\frac{k+1}{2} - x} < \frac{\ln 2}{\rho}.$$
 (4)

Then

$$\mathcal{SF}_{k,\ell}^n = (\varphi + \varphi_r + o(1))2^{\lfloor n/\rho \rfloor},\tag{5}$$

where $0 \le r < \rho \text{ and } r \equiv n \pmod{\rho}$.

Proof. In order to obtain the lower bound let us observe that there are exactly φ maximal (k, ℓ) -sum-free arithmetic progressions with the difference ρ . Precisely φ_r of them have length $\lceil n/\rho \rceil$ and $\varphi - \varphi_r$ are of length $\lfloor n/\rho \rfloor$. Since these progressions are pairwise disjoint, there are at least

$$(\varphi + \varphi_r)2^{\lfloor n/\rho \rfloor}$$

 (k, ℓ) -sum-free subsets of [1, n].

Now we estimate $\mathcal{SF}_{k,\ell}^n$ from above. First consider (k,ℓ) -sum-free sets satisfying neither (1), nor (2). Plainly each of these is contained in a residue class $r \mod d'$, where $d' \geq \rho$ and $(k-\ell)r \not\equiv 0 \mod d'$. If $d' = \rho$, by the same argument as above, exactly $(\varphi + \varphi_r)2^{\lfloor n/\rho \rfloor}$ (k,ℓ) -sum-free subsets of [1,n] are contained in arithmetic progression $r \mod \rho$, where $(k-\ell)r \not\equiv 0 \mod \rho$. If $d' > \rho$ then every progression $r \mod d'$ consists of at most $\lceil n/(\rho+1) \rceil$ elements hence it contains no more than $2^{\lceil n/(\rho+1) \rceil}$ subsets. Furthermore we have less than n^2 possible choices for the pair (d',ρ) , hence there are at most $2n^22^{n/(\rho+1)}$ such (k,ℓ) -sum-free sets. Thus, the number of (k,ℓ) -sum-free sets satisfying neither (1), nor (2) does not exceed

$$(\varphi + \varphi_r)2^{\lfloor n/\rho \rfloor} + 2n^2 2^{n/(\rho+1)}.$$

To complete the proof it is sufficient to show that the number of (k, ℓ) sum-free subsets of [1, n] satisfying either (1) or (2) is $o(2^{n/\rho})$. Denote by \mathcal{B} the set of all such subsets, and let

$$\mathcal{B}(K, L, M) = \{ A \in \mathcal{B} : |A| = K, \ \Lambda(A) = L, \ \max A = M \},$$

so that

$$\mathcal{B} = \bigcup_{1 \le K \le L+1 \le M \le n} \mathcal{B}(K, L, M).$$

We will prove that

$$\max_{1 \le K \le L+1 \le M \le n} |\mathcal{B}(K, L, M)| \le e^{\mu n + O(\ln n)},\tag{6}$$

where μ is the left-hand side of (4) which in turn implies that

$$|\mathcal{B}| = o(2^{n/\rho}). \tag{7}$$

Let us define the following decreasing function $x(t) = (k+1-(k-\ell)t)/2$. Note that $x(1) = (\ell+1)/2$, $x(t_2) = 2$ and $x(t_1) = 1$, where

$$t_2 = \frac{k-3}{k-\ell} \ge 1$$
 and $t_1 = \frac{k-1}{k-\ell}$.

Furthermore, put

$$H(x) = \frac{\ln x}{x} + \frac{x-1}{x} \ln \frac{x}{x-1}.$$

Observe that H is increasing on (1,2] and decreasing on $[2,\infty)$. Moreover

$$\mu = \max_{1 \le t \le t_2} \frac{H(x(t))}{t}$$

and

$$\max_{\substack{1 \le t \le t_1 \\ x \ge x(t)}} \frac{H(x)}{t} = \mu.$$
(8)

Indeed, if $1 \le t \le t_2$ then $x \ge x(t) \ge 2$ and $H(x)/t \le H(x(t))/t \le \mu$. If $t_2 \le t \le t_1$ then $H(x)/t \le H(2)/t_2 = H(x(t_2))/t_2 \le \mu$.

Now we are ready to prove (7). For a fixed triple K, L, M with $1 \le K \le L+1 \le M \le n$ put

$$\theta = \frac{M}{L}, \quad \kappa = \frac{L-1}{K-2}.$$

Then $\kappa(A) \leq \kappa$ and $\theta(A) = \theta$ for any $A \in \mathcal{B}(K, L, M)$. By Lemma 2 we have $\kappa \geq x(\theta)$. Since $\kappa \geq 1$ by definition, we infer that $H(\kappa)/\theta \leq \mu$ by (8). Using Stirling's formula we obtain

$$|\mathcal{B}(K, L, M)| \leq \binom{L-1}{K-2}$$

$$= \exp(H(\kappa)L + O(\ln L))$$

$$= \exp\left(\frac{H(\kappa)}{\theta}M + O(\ln n)\right)$$

$$\leq \exp(\mu n + O(\ln n)).$$

Thus

$$|\mathcal{B}| \le n^3 \exp(\mu n + O(\ln n)),$$

which completes the proof of Theorem 2. \square

Corollary 1. The estimate (5) holds, provided $k > \ell \geq 3$ and

$$\frac{\max\left(\frac{1+\ln 2}{2}(k-\ell), \ 2(1+\ln\frac{\ell+1}{2})\right)}{\ell+1} < \frac{\ln 2}{\rho}.$$
 (9)

Proof. We need to show that the left-hand side of (4) is not larger than the left-hand side of (9). Since $\ln(1+u) \le u$ for $u \ge 0$, we have

$$\frac{x-1}{x} \ln \frac{x}{x-1} \le \frac{1}{x}$$

for $x \geq 1$, so that

$$\mu \le \frac{k-l}{2} \max_{2 \le x \le \frac{\ell+1}{2}} \frac{1 + \ln x}{x(\frac{k+1}{2} - x)}.$$
 (10)

Furthermore,

$$\max_{2 \le x \le \frac{k-\ell}{2}} \frac{1 + \ln x}{x(\frac{k+1}{2} - x)} \le \frac{2}{\ell + 1} \max_{2 \le x \le \frac{\ell + 1}{2}} \frac{1 + \ln x}{x} = \frac{1 + \ln 2}{\ell + 1},$$

$$\max_{\frac{k-\ell}{2} \le x \le \frac{\ell+1}{2}} \frac{1 + \ln x}{x(\frac{k+1}{2} - x)} \le \frac{1 + \ln \frac{\ell+1}{2}}{\min_{\frac{k-\ell}{2} \le x \le \frac{\ell+1}{2}} x(\frac{k+1}{2} - x)} = 4 \frac{1 + \ln \frac{\ell+1}{2}}{(k-\ell)(\ell+1)}.$$

Combining the above inequalities with (10), the result follows. \Box

Let us conclude this note with some further remarks on the range of k and ℓ satisfying (4). If $\frac{1+\ln 2}{2}(k-\ell) \leq 2(1+\ln\frac{\ell+1}{2})$, that is $(k-\ell) \leq \frac{4}{1+\ln 2}(1+\ln\frac{\ell+1}{2})$, then by Corollary 1 (4) holds, provided $\ell \geq \frac{2}{\ln 2}\Big(1+\ln\frac{\ell+1}{2}\Big)\rho(k-\ell)$. By the prime number theorem, $\rho(n) \leq (1+o(1))\ln n$, hence the inequality $\ell \geq \frac{2}{\ln 2}\Big(1+\ln\frac{\ell+1}{2}\Big)\rho(k-\ell)$ is fulfilled for every sufficiently large ℓ . If $\frac{1+\ln 2}{2}(k-\ell) \geq 2(1+\ln\frac{\ell+1}{2})$ then (4) holds for every k and ℓ such that $\ell < k < \frac{c\rho}{c\rho-1}\ell = \Big(1-\frac{c-1}{c\rho-1}\Big)\frac{\rho}{\rho-1}\ell$, where $c=\frac{1+\ln 2}{2\ln 2}$. Thus, from Theorem 2, one can deduce that there exists an absolute constant ℓ_0 such that

$$\mathcal{SF}_{k,\ell}^n = (\varphi + \varphi_r + o(1))2^{\lfloor n/\rho \rfloor},$$

provided $\ell_0 < \ell < k < \left(1 - \frac{c-1}{c\rho-1}\right) \frac{\rho}{\rho-1} \ell$.

Acknowledgments. I would like to thank referees for many valuable comments. Due to their suggestions we were able to prove the main result of the note in its present sharp form.

References

- [1] N. Alon, Independent sets in regular graphs and sum-free sets of finite groups, Israel J. Math. 73 (1991), 247–256.
- [2] Yu. Bilu, Sum-free sets and related sets, Combinatorica 18 (1998), 449–459.
- [3] N. J. Calkin, On the number of sum-free sets, Bull. Lond. Math. Soc. 22 (1990), 141–144.
- [4] N. J. Calkin, A. C. Taylor: Counting sets of integers, no k of which sum to another, J. Number Theory 57 (1996), 323–327.
- [5] N. J. Calkin, J. M. Thomson, Counting generalized sum-free sets, J. Number Theory 68 (1998), 151–160.
- [6] P. J. Cameron, P. Erdős, On the number of sets of integers with various properties, in R. A. Mollin (ed.), Number Theory: Proc. First Conf. Can. Number Th. Ass., Banff, 1988, de Gruyter, 1990, 61–79.
- [7] V. F. Lev, Optimal representation by sumsets and subset sums, J. Number Theory 62 (1997), 127–143.