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Abstract

A set A ⊆ N is (k, `)-sum-free, for k, ` ∈ N, k > `, if it contains no
solutions to the equation x1 + · · ·+xk = y1 + · · ·+y`. Let ρ = ρ(k− `)
be the smallest natural number not dividing k − `, and let r = rn,
0 ≤ r < ρ, be such that r ≡ n (mod ρ). The main result of this
note says that if (k − `)/` is small in terms of ρ, then the number of
(k, `)-sum-free subsets of [1, n] is equal to (ϕ(ρ) +ϕr(ρ) + o(1))2bn/ρc,
where ϕr(x) denotes the number of positive integers m ≤ r relatively
prime to x and ϕ(x) = ϕx(x).
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A set A of positive integers is (k, `)-sum-free for k, ` ∈ N, k > `, if there
are no solutions to the equation x1 + · · · + xk = y1 + · · ·+ y` in A. Denote
by SFnk,` the number of (k, `)-sum-free subsets of [1, n]. Since the set of
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odd numbers is (2, 1)-sum-free we have SFn2,1 ≥ 2b(n+1)/2c. In fact Erdős and

Cameron [6] conjectured SFn2,1 = O(2n/2). This conjecture is still open and
the best upper bounds for SFn2,1 given independently by Alon [1] and Calkin
[3], say that, for ` ≥ 1,

SFn`+1,` ≤ SFn2,1 = O(2n/2+o(n)) .

For ` ≥ 3 this bound was recently improved by Bilu [2] who proved that in
this case SFn

`+1,` = (1 + o(1))2b(n+1)/2c.
The case of k being much larger than ` was treated by Calkin and Taylor

[4]. They showed that for some constant ck the number of (k, 1)-sum-free

subsets of [1, n] is at most ck2
k−1
k
n, provided k ≥ 3. Furthermore, Calkin and

Thomson proved [5] that for every k and ` with k ≥ 4`− 1

SFnk,` ≤ ck2
(k−`)n/k.

In order to study the behaviour of SFnk,` let us observe first that there are
two natural examples of large (k, `)-sum-free subsets of the interval [1, n]:

{b`n/kc+ 1, . . . , n}

and
{m ∈ {1, 2, . . . , n} : m ≡ r (mod ρ)} ,

where gcd(r, ρ) = 1 and ρ = ρ(k−`) = min{s ∈ N : s does not divide k−`}.
Thus,

SFn
k,` ≥ max

(
2bn/ρc, 2d(k−`)n/ke

)
.

In this note we study the case k < ρ
ρ−1

` so that 2bn/ρc > 2d(k−`)n/ke, and we

may expect SFn
k,` to be close to 2bn/ρc. Indeed, we will prove as our main

result that for fixed k and ` there exists a bounded function ξ = ξ(n) such
that

SFn
k,` = (ξ + o(1))2bn/ρc

provided k <
(
1− c−1

cρ−1

)
ρ
ρ−1

`, where c = 1+ln 2
2 ln 2

, and ` is sufficiently large.

For every natural numbers x, r let ϕr(x) be the number of positive inte-
gers m ≤ r relatively prime to x and let ϕ(x) abbreviate ϕx(x). For a finite
set A of integers A define:
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d(A) = gcd(A), d′(A) = d(A− A),
Λ(A) = maxA−minA, Λ′(A) = Λ(A)/d′(A).

Furthermore, let

κ(A) =
Λ′(A)− 1

|A| − 2
, θ(A) =

max(A)

Λ(A)
,

T (A) = (|A| − 2)(bκ(A)c+ 1− κ(A)) + 1

and
hA = {a1 + · · ·+ ah : a1, . . . , ah ∈ A}.

For a specified set A, we simply write d, d′,Λ, etc.
Our approach is based on a remarkable result of Lev [7]. Using an affine

transformation of variables his theorem can be stated as follows.

Theorem 1. Let A be a finite set of integers and let h be a positive integer
satisfying h > 2κ− 1. Then there exists an integer s such that

{sd′, . . . , (s+ t)d′} ⊆ hA ,

for t = (h− 2bκc)Λ′ + 2bκcT .

Lemma 1. Let A be a finite set of integers and let h be a positive integer
satisfying h > 2κ− 1. Then {0, d′, . . . , td′} ⊆ hA − hA, where t ≥ (h + 1−
2κ)Λ′.

Proof. Theorem 1 implies that hA contains t = (h − 2bκc)Λ′ + 2bκcT + 1
consecutive multiples of d′, so that

{0, . . . , td′} ⊆ hA− hA.

Furthermore,

t = (h−2bκc)Λ′+2bκcT = (h+2−2κ−τ)Λ′+
2bκc(κ− bκc) + 2bκc(κ− 1)

κ
,

where

τ =
2(κ− bκc)(bκc+ 1− κ)

κ
.

Since τ ≤ 1 and κ ≥ 1, the result follows. 2
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Lemma 2. Let A ⊆ [1, n] be a (k, `)-sum-free set, and let r be the residue
class mod d′ containing A. Assume that either

d′ < ρ, (1)

or

(k − `)r ≡ 0 (mod d′). (2)

Then

κ ≥ k + 1− (k − `)θ
2

. (3)

Proof. We may assume that ` > 2κ− 1, otherwise the assertion is obvious.
By Lemma 1 we have

{0, d′, . . . , td′} ⊆ `A− `A,

where t ≥ (`+ 1− 2κ)Λ′. Put m = minA. Then any of the assumptions (1),
(2) implies d′|(k − `)m. Since A is a (k, `)-sum-free set, it follows that

(k − `)m > td′ ≥ (`+ 1− 2κ)Λ,

which gives the required inequality. 2

Theorem 2. Assume that k > ` ≥ 3 are positive integers satisfying

k − `
2
· max

2≤x≤ `+1
2

lnx
x

+ x−1
x

ln x
x−1

k+1
2
− x

<
ln 2

ρ
. (4)

Then

SFnk,` = (ϕ+ ϕr + o(1))2bn/ρc, (5)

where 0 ≤ r < ρ and r ≡ n (mod ρ).

Proof. In order to obtain the lower bound let us observe that there are
exactly ϕ maximal (k, `)-sum-free arithmetic progressions with the difference
ρ. Precisely ϕr of them have length dn/ρe and ϕ − ϕr are of length bn/ρc.
Since these progressions are pairwise disjoint, there are at least

(ϕ+ ϕr)2
bn/ρc
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(k, `)-sum-free subsets of [1, n].

Now we estimate SFn
k,` from above. First consider (k, `)-sum-free sets

satisfying neither (1), nor (2). Plainly each of these is contained in a residue
class r mod d′, where d′ ≥ ρ and (k− `)r 6≡ 0 mod d′. If d′ = ρ, by the same
argument as above, exactly (ϕ + ϕr)2

bn/ρc (k, `)-sum-free subsets of [1, n]
are contained in arithmetic progression r mod ρ, where (k − `)r 6≡ 0 mod ρ.
If d′ > ρ then every progression r mod d′ consists of at most dn/(ρ + 1)e
elements hence it contains no more than 2dn/(ρ+1)e subsets. Furthermore we
have less than n2 possible choices for the pair (d′, ρ), hence there are at most
2n22n/(ρ+1) such (k, `)-sum-free sets. Thus, the number of (k, `)-sum-free sets
satisfying neither (1), nor (2) does not exceed

(ϕ+ ϕr)2
bn/ρc + 2n22n/(ρ+1).

To complete the proof it is sufficient to show that the number of (k, `)-
sum-free subsets of [1, n] satisfying either (1) or (2) is o(2n/ρ). Denote by B
the set of all such subsets, and let

B(K,L,M) = {A ∈ B : |A| = K, Λ(A) = L, maxA = M},

so that
B =

⋃
1≤K≤L+1≤M≤n

B(K,L,M).

We will prove that

max
1≤K≤L+1≤M≤n

|B(K,L,M)| ≤ eµn+O(lnn), (6)

where µ is the left-hand side of (4) which in turn implies that

|B| = o(2n/ρ). (7)

Let us define the following decreasing function x(t) = (k+1−(k−`)t)/2.
Note that x(1) = (`+ 1)/2, x(t2) = 2 and x(t1) = 1, where

t2 =
k − 3

k − ` ≥ 1 and t1 =
k − 1

k − ` .

Furthermore, put

H(x) =
lnx

x
+
x− 1

x
ln

x

x− 1
.
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Observe that H is increasing on (1, 2] and decreasing on [2,∞). Moreover

µ = max
1≤t≤t2

H(x(t))

t

and

max
1≤t≤t1
x≥x(t)

H(x)

t
= µ. (8)

Indeed, if 1 ≤ t ≤ t2 then x ≥ x(t) ≥ 2 and H(x)/t ≤ H(x(t))/t ≤ µ. If
t2 ≤ t ≤ t1 then H(x)/t ≤ H(2)/t2 = H(x(t2))/t2 ≤ µ.

Now we are ready to prove (7). For a fixed triple K,L,M with 1 ≤ K ≤
L+ 1 ≤M ≤ n put

θ =
M

L
, κ =

L− 1

K − 2
.

Then κ(A) ≤ κ and θ(A) = θ for any A ∈ B(K,L,M). By Lemma 2 we have
κ ≥ x(θ). Since κ ≥ 1 by definition, we infer that H(κ)/θ ≤ µ by (8). Using
Stirling’s formula we obtain

|B(K,L,M)| ≤
(
L− 1

K − 2

)
= exp(H(κ)L+O(lnL))

= exp
(H(κ)

θ
M +O(lnn)

)
≤ exp(µn+O(lnn)).

Thus
|B| ≤ n3 exp(µn+O(lnn)),

which completes the proof of Theorem 2. 2

Corollary 1. The estimate (5) holds, provided k > ` ≥ 3 and

max
(

1+ln 2
2

(k − `), 2(1 + ln `+1
2

)
)

`+ 1
<

ln 2

ρ
. (9)
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Proof. We need to show that the left-hand side of (4) is not larger than the
left-hand side of (9). Since ln(1 + u) ≤ u for u ≥ 0, we have

x− 1

x
ln

x

x− 1
≤ 1

x

for x ≥ 1, so that

µ ≤ k − l
2

max
2≤x≤ `+1

2

1 + lnx

x(k+1
2
− x)

. (10)

Furthermore,

max
2≤x≤ k−`

2

1 + lnx

x(k+1
2
− x)

≤ 2

`+ 1
max

2≤x≤ `+1
2

1 + lnx

x
=

1 + ln 2

`+ 1
,

max
k−`

2
≤x≤ `+1

2

1 + lnx

x(k+1
2
− x)

≤
1 + ln `+1

2

min
k−`

2
≤x≤ `+1

2

x(k+1
2
− x)

= 4
1 + ln `+1

2

(k − `)(`+ 1)
.

Combining the above inequalities with (10), the result follows. 2

Let us conclude this note with some further remarks on the range of k
and ` satisfying (4). If 1+ln 2

2
(k−`) ≤ 2(1+ln `+1

2
), that is (k−`) ≤ 4

1+ln 2
(1+

ln `+1
2

), then by Corollary 1 (4) holds, provided ` ≥ 2
ln 2

(
1 + ln `+1

2

)
ρ(k − `).

By the prime number theorem, ρ(n) ≤ (1 + o(1)) lnn, hence the inequality

` ≥ 2
ln 2

(
1+ln `+1

2

)
ρ(k−`) is fulfilled for every sufficiently large `. If 1+ln 2

2
(k−

`) ≥ 2(1 + ln `+1
2

) then (4) holds for every k and ` such that ` < k < cρ
cρ−1

` =(
1 − c−1

cρ−1

)
ρ
ρ−1

`, where c = 1+ln 2
2 ln 2

. Thus, from Theorem 2, one can deduce
that there exists an absolute constant `0 such that

SFnk,` = (ϕ+ ϕr + o(1))2bn/ρc,

provided `0 < ` < k <
(
1− c−1

cρ−1

)
ρ
ρ−1

`.
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