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Abstract

To each coherent configuration (scheme) C and positive integer m we associate a
natural scheme Ĉ(m) on the m-fold Cartesian product of the point set of C having
the same automorphism group as C. Using this construction we define and study two
positive integers: the separability number s(C) and the Schurity number t(C) of C.
It turns out that s(C) ≤ m iff C is uniquely determined up to isomorphism by the
intersection numbers of the scheme Ĉ(m). Similarly, t(C) ≤ m iff the diagonal subscheme
of Ĉ(m) is an orbital one. In particular, if C is the scheme of a distance-regular graph Γ,
then s(C) = 1 iff Γ is uniquely determined by its parameters whereas t(C) = 1 iff Γ is
distance-transitive. We show that if C is a Johnson, Hamming or Grassmann scheme,
then s(C) ≤ 2 and t(C) = 1. Moreover, we find the exact values of s(C) and t(C) for
the scheme C associated with any distance-regular graph having the same parameters
as some Johnson or Hamming graph. In particular, s(C) = t(C) = 2 if C is the scheme
of a Doob graph. In addition, we prove that s(C) ≤ 2 and t(C) ≤ 2 for any imprimitive
3/2-homogeneous scheme. Finally, we show that s(C) ≤ 4, whenever C is a cyclotomic
scheme on a prime number of points.

1 Introduction

The purpose of this paper is to continue the investigations of distance-regular graphs [4]
and more generally association schemes [3] from the point of view of their isomorphisms
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and symmetries, started by the authors in [9], [11], [12]. We have tried to make this paper
self-contained but nevertheless some knowledge of basic algebraic combinatorics in the spirit
of the books by Brouwer-Cohen-Neumaier and Bannai-Ito cited above will be helpful.

The starting point of the paper is the following two interconnected questions arising in
different fields of combinatorial mathematics such as association scheme theory, graph theory
and so forth. The first of them is the problem of finding parameters of an association scheme
or a graph determining it up to isomorphism. The second one reflects the desire to reveal
a canonical group-like object in a class of schemes or graphs with the same automorphism
group or, in other words, to reconstruct such an object without finding the last groups
explicitly. We will return to these questions a bit later after choosing a suitable language.
In this connection we remark that the language of association schemes is not sufficiently
general because it weakly reflects the fact that the automorphism group of a scheme can have
several orbits whereas the language of graphs is too amorphic because almost nothing can
be said on invariants and symmetries of general graphs. On the other hand, the language
of permutation groups is too restrictive in the sense that there is a variety of interesting
combinatorial objects which are not explicitly connected with any group. We choose the
language of coherent configurations (or schemes) introduced by D. G. Higman in [16] and
under a different name independently by B. Yu. Weisfeiler and A. A. Leman in [22]. The
exact definition will be given in Subsection 2.1 and here we say only that all mentioned above
objects can be considered as special cases of coherent configurations. Nowadays, the general
theory of coherent configurations is far from being completed (see, however, [7, Chapter 3]
and [14]). The present paper continues the investigations of the authors in this direction
(see [9]-[13]).

Probably one of the first results on the characterization of a scheme by its parameters
was the paper [20] where it was proved that any strongly regular graph with parameters
of some Hamming graph of diameter 2 and different from it is the Shrikhande graph. This
result in particular shows that the parameters of a strongly regular graph do not necessarily
determine it up to isomorphism. One more example of such a situation arises in [15] where
some families of rank 3 graphs were characterized by means of the valency and the so
called t-vertex condition (see Subsection 6.3). Further investigations in this direction led to
characterizing some classical families of distance-regular graphs (see [4, Chapter 9]). However
only a few of these characterizations are formulated in terms of the intersection numbers of
the corresponding schemes. For example, in the case of Grassmann graphs some additional
information concerning the local structure of a graph is needed. This and similar examples
indicate the absence of a unified approach to characterizing schemes. (In [3] it was suggested
in a nonformal way to differ characterizations by spectrum, parameters and local structure.)
One of the purposes of this paper is to present a new invariant of an arbitrary scheme, its
separability number, on which depends how many parameters are sufficient to characterize
it. In addition, we compute this number for classical and some other schemes.

The above discussion reveals a close relationship between the problem of characterizing
schemes and the graph isomorphism problem which is one of the most famous unsolved
problems in computational complexity theory. This problem consists in finding an efficient
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algorithm to test the isomorphism of two graphs (see [2]). As it was found in [22] it is
polynomial-time equivalent to the problem of finding the scheme consisting of 2-orbits of the
automorphism group of a given scheme. Just the last scheme can be chosen as a canonical
group-like object in the class of all schemes having the same automorphism group. In
particular, if any scheme was obtained in such a way from its automorphism group, then
the graph isomorphism problem would become trivial. However this is not the case and one
of the counterexamples is the scheme of the Shrikhande graph which is a strongly regular
but not rank 3 graph. To resolve this collision several ways based on higher dimensional
constructions were suggested. Here we mention only the algorithms of deep stabilization
from [21], the so called m-dim Weisfeiler-Leman method associated with them (see [2])
and a general concept of such procedures from [9]. The analysis of these ideas enabled us to
introduce in this paper a new invariant of a scheme, its Schurity number, which is responsible
for the minimal dimension of the construction for which the corresponding 2-orbit scheme
arises as the diagonal subscheme of it.

Before presenting the main results of the paper we pass from the combinatorial language
of schemes to a more algebraic (but equivalent) language of cellular algebras introduced
in [22] (as to exact definitions see Subsection 2.1). They are by definition matrix algebras
over C closed under the Hadamard (componentwise) multiplication and the Hermitian con-
jugation and containing the identity matrix and the all-one matrix. The closedness under
the Hadamard multiplication enables us to associate to any cellular algebra the scheme con-
sisting of the binary relations corresponding to the elements of its uniquely determined linear
base consisting of {0,1}-matrices. Conversely, any scheme produces a cellular algebra (its
Bose-Mesner algebra) spanned by the adjacency matrices of its basis relations. This 1-1 cor-
respondence transforms isomorphisms of schemes to strong isomorphisms of cellular algebras,
schemes with the same intersection numbers to weakly isomorphic cellular algebras (which
means the existence of a matrix algebra isomorphism preserving the Hadamard multiplica-
tion) and 2-orbit (orbital) schemes to the centralizer algebras of permutation groups. We
also mention that the automorphism group of any scheme coincides with the automorphism
group of its Bose-Mesner algebra.

Our technique is based on the following notion of the extended algebra introduced in [9]
and studied in [12] (as to exact definitions see Section 3). For each positive integer m we

define the m-extended algebra Ŵ (m) of a cellular algebra W ≤ MatV as the smallest cellular
algebra on the set V m containing the m-fold tensor product of W and the adjacency matrix
of the reflexive relation corresponding to the diagonal of V m. The algebra Ŵ (m) plays the
same role with respect to W as the induced coordinatewise action of the group G on V m

with respect to a given action of G on V . Using the natural bijection between this diagonal

and V we define a cellular algebra W
(m)

on V called the m-closure of W . This produces the
following series of inclusions:

W = W
(1) ≤ . . . ≤ W

(n)
= . . . = W

(∞)
(1)

where W
(∞)

is the Schurian closure of W , i.e. the centralizer algebra of Aut(W ) in MatV , and
n is the number of elements of V . Similarly we refine the concept of a weak isomorphism



the electronic journal of combinatorics 7 (2000), #R31 4

by saying that a weak isomorphism of cellular algebras is an m-isomorphism if it can be
extended to a weak isomorphism of their m-extended algebras. Then given two cellular
algebras W and W ′ we have

Isow(W, W ′) = Isow1(W, W ′) ⊃ . . . ⊃ Isown(W, W ′) = . . . = Isow∞(W, W ′) (2)

where Isowm(W, W ′) is the set of all m-isomorphisms from W to W ′ and Isow∞(W, W ′) is
the set of all weak isomorphisms from W to W ′ induced by strong isomorphisms. According
to (2) and (1) we say that the algebra W is m-separable if Isowm(W, W ′) = Isow∞(W, W ′)

for all cellular algebras W ′, and m-Schurian if W
(m)

= W
(∞)

. Now we define the separability
number s(W ) and the Schurity number t(W ) of W by

s(W ) = min{m : W is m− separable}, t(W ) = min{m : W is m− Schurian}.

It follows from Theorem 4.5 that there exist cellular algebras with arbitrary large separability
and Schurity numbers. However their values for an algebra on n points do not exceed dn/3e
(Theorem 4.3) and equal 1 for a simplex and a semiregular algebra (Theorem 4.4). In
the general case we estimate these numbers for W by those for pointwise stabilizers and
extended algebras of it (Theorem 4.6). In particular, we show that s(W ) and t(W ) do not
exceed b(W ) + 1 where b(W ) is the base number of W (Theorem 4.8). All of these results
are used in Sections 5 and 7.

Let us turn to schemes. We define the separability number and the Schurity number of
a scheme as the corresponding numbers of its Bose-Mesner algebra. A scheme C is called
m-separable if s(C) ≤ m and m-Schurian if t(C) ≤ m. In particular, any m-separable scheme
is uniquely determined by the structure constants of its m-extended algebra. Similarly, the
scheme corresponding to the m-closure of the Bose-Mesner algebra of an m-Schurian scheme
is an orbital one. The class of 1-separable and 1-Schurian schemes is of special interest.
As it follows from the results of the paper a number of schemes associated with classical
distance-regular graphs are in it. It also contains the class of schemes arising from algebraic
forests. This class of graphs was introduced and studied in [13] and contains trees, cographs
and interval graphs.

In this paper we estimate the separability and Schurity numbers for several classes of
schemes. In Section 5 by analogy with 3/2-transitive permutation groups (i.e. transitive ones
whose all subdegrees are equal) we introduce the class of 3/2-homogeneous schemes contain-
ing in particular all cyclotomic schemes. We show that any imprimitive 3/2-homogeneous
scheme is 2-separable and 2-Schurian (Theorem 5.1). The primitive case seems to be more
complicated and all we can prove here is that any cyclotomic scheme on a prime number
of points is 4-separable (Theorem 5.4). (It should be remarked that such schemes are not
necessarily 1-separable.) This result can be used for constructing a simple polynomial-time
algorithm to recognize circulant graphs of prime order (an efficient algorithm for this problem
was originally presented in [19]).

The concepts of m-separability and m-Schurity take especially simple form in the case of
the schemes of distance-regular graphs. Indeed, such a scheme is 1-separable iff the graph
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is uniquely determined by its parameters and 1-Schurian iff the graph is distance-transitive
(Proposition 7.1). Using known characterizations of Johnson and Hamming schemes we
compute the separability and Schurity numbers of all schemes with the corresponding pa-
rameters (Theorems 7.2 and 7.3). In particular we prove that the scheme of any Doob
graph is exactly 2-separable and 2-Schurian and also that the Doob graphs are pairwise
non-isomorphic. In the case of Grassmann schemes we cannot give the exact values of the
separability and Schurity numbers for all schemes with the same parameters. However we
show (Theorem 7.7) that any Grassmann scheme is 2-separable (its 1-Schurity follows from
the distance-transitivity). In some cases, one can estimate the separability and Schurity
numbers of a scheme by indirect reasoning. For example, in Subsection 7.5 we prove the
2-Schurity of the schemes arising from some strongly regular graphs with the automorphism
group of rank 4. One of them is the graph on 256 vertices (found by A. V. Ivanov in [17])
which is the only known to the authors strongly regular non rank 3 graph satisfying the 5-
vertex condition. Our last example is the distance-regular graph of diameter 4 corresponding
to a finite projective plane. In the general case, the separability and Schurity numbers of its
scheme do not exceed O(log log q) where q is the order of the plane (Theorem 7.9). In the
case of a Galois plane we prove that the corresponding scheme is 6-separable.

The most part of the above results is based on the notion of the (K,L)-regularity of an
edge colored graph Γ introduced and studied in Section 6 (here K and L are edge colored
graphs, L being a subgraph of K). If K and L have at most t and 2 vertices respectively,
then the (K,L)-regularity of Γ for all such K,L exactly means that Γ satisfies the t-vertex
condition. In the general case the (K,L)-regularity of Γ means that any embedding of L to Γ
can be extended in the same number of ways to an embedding of K to it. Many classical
distance-regular graphs are (K,L)-regular for several choices of K and L and, moreover,
they can be characterized in such a way. We use this observation in Section 7 for computing
the separability and Schurity numbers of some classical schemes. We show that the colored
graphs of the schemes corresponding to m-isomorphic algebras are simultaneously (K,L)-
regular or not for all colored graphs K,L with at most 3m and 2m vertices respectively
(Corollary 6.3). In addition we prove that the colored graph of the scheme corresponding to
an m-closed algebra satisfies the 3m-vertex condition (Theorem 6.4).

The paper consists of eight sections. Section 2 contains the main definitions and notation
concerning schemes and cellular algebras. In Section 3 we give a brief exposition of the
theory of m-extended algebras and m-isomorphisms. Here we illustrate the first concept
by considering the m-equivalence of cellular algebras which is similar in a sense to the m-
equivalence of permutation groups (see [24]). In Section 4 we introduce the separability and
Schurity numbers of cellular algebras and schemes and study general properties of them.
Sections 5 and 7 are devoted to computing the separability and Schurity numbers for 3/2-
homogeneous schemes and the schemes of some distance-regular graphs. In Section 6 we
study the (K,L)-regularity of colored graphs. Finally, Section 8 (Appendix) contains a
number of technical results concerning the structure of extended algebras and their weak
isomorphisms. These results are used in Subsection 3.3 and Section 4.

Notation. As usual by C and Z we denote the complex field and the ring of integers.
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Throughout the paper V denotes a finite set with n = |V | elements. A subset of V × V
is called a relation on V . For a relation R on V we define its support VR to be the smallest
set U ⊂ V such that R ⊂ U × U .

By an equivalence E on V we always mean an ordinary equivalence relation on a subset
of V (coinciding with VE). The set of equivalence classes of E will be denoted by V/E.

The algebra of all complex matrices whose rows and columns are indexed by the elements
of V is denoted by MatV , its unit element (the identity matrix) by IV and the all-one matrix
by JV . Given A ∈ MatV and u, v ∈ V , we denote by Au,v the element of A in the row indexed
by u and the column indexed by v.

For U ⊂ V the algebra MatU can be treated in a natural way as a subalgebra of MatV .
If A ∈ MatV , then AU will denote the submatrix of A corresponding to U , i.e. the matrix in
MatU such that (AU)u,v = Au,v for all u, v ∈ U .

The adjacency matrix of a relation R is denoted by A(R) (this is a {0,1}-matrix of MatV

such that A(R)u,v = 1 iff (u, v) ∈ R). For U, U ′ ⊂ V let JU,U ′ denote the adjacency matrix
of the relation U × U ′.

The transpose of a matrix A is denoted by AT , its Hermitian conjugate by A∗. If R is a
relation on V , then RT denotes the relation with adjacency matrix A(R)T .

Each bijection g : V → V ′ (v 7→ vg) defines a natural algebra isomorphism from MatV

onto MatV ′ . The image of a matrix A under it will be denoted by Ag, thus (Ag)ug,vg = Au,v

for all u, v ∈ V . If R is a relation on V , then we set Rg to be the relation on V ′ with
adjacency matrix A(R)g.

The group of all permutations of V is denoted by Sym(V ).
For integers l, m the set {l, l + 1, . . . , m} is denoted by [l, m]. We write [m], Sym(m) and

V m instead of [1, m], Sym([m]) and V [m] respectively. Finally, ∆(m)(V ) = {(v, . . . , v) ∈ V m :
v ∈ V }.

2 Coherent configurations and cellular algebras

2.1. Let V be a finite set and R a set of binary relations on V . A pair C = (V,R) is called
a coherent configuration or a scheme on V if the following conditions are satisfied:

(C1) R forms a partition of the set V 2,

(C2) ∆(2)(V ) is a union of elements of R,

(C3) if R ∈ R, then RT ∈ R,

(C4) if R, S, T ∈ R, then the number |{v ∈ V : (u, v) ∈ R, (v, w) ∈ S}| does not depend
on the choice of (u, w) ∈ T .

The numbers from (C4) are called the intersection numbers of C and denoted by pT
R,S. The

elements of R = R(C) are called the basis relations of C.
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We say that schemes C = (V,R) and C′ = (V ′,R′) are isomorphic, if Rg = R′ for some
bijection g : V → V ′ called an isomorphism from C to C′. The group of all isomorphisms
from C to itself contains a normal subgroup

Aut(C) = {g ∈ Sym(V ) : Rg = R, R ∈ R}

called the automorphism group of C. Conversely, to each permutation group G ≤ Sym(V )
we associate a scheme (V, Orb2(G)) where Orb2(G) is the set of all 2-orbits of G. The above
mappings between schemes and permutation groups on V are not inverse to each other but
define a Galois correspondence with respect to the natural partial orders on these sets (cf. [14,
p.16]). A scheme C is called Schurian if it is a closed object under this correspondence, i.e.
if the set of its basis relations coincides with Orb2(Aut(C)).

If C = (V,R) is a scheme, then the set M = {A(R) : R ∈ R} is a linearly independent
subset of MatV by (C1). Its linear span is closed with respect to the matrix multiplication
by (C4) and so defines a subalgebra of MatV . It is called the Bose-Mesner (or adjacency)
algebra of C and will be denoted by A(C). Obviously, it is a cellular algebra on V , i.e. a
subalgebra A of MatV satisfying the following conditions:

(A1) IV , JV ∈ A,

(A2) ∀A ∈ A : A∗ ∈ A,

(A3) ∀A, B ∈ A : A ◦B ∈ A,

where A ◦ B is the Hadamard (componentwise) product of the matrices A and B. The
elements of V are called the points and the set V is called the point set of A.

Each cellular algebra A on V has a uniquely determined linear base M = M(A) con-
sisting of {0,1}-matrices such that∑

A∈M
A = JV and A ∈M ⇔ AT ∈M. (3)

The linear baseM is called the standard basis of A and its elements the basis matrices. The
nonnegative integers pC

A,B defined for A, B, C ∈ M by AB =
∑

C∈M pC
A,B · C are called the

structure constants of A.
We say that cellular algebras A on V and A′ on V ′ are strongly isomorphic, if Ag = A′

for some bijection g : V → V ′ called a strong isomorphism from A to A′. The group of all
strong isomorphisms from A to itself contains a normal subgroup

Aut(A) = {g ∈ Sym(V ) : Ag = A, A ∈ A}

called the automorphism group of A. Conversely, for any permutation group G ≤ Sym(V )
its centralizer algebra

Z(G) = {A ∈ MatV : Ag = A, g ∈ G}
is a cellular algebra on V . A cellular algebra A is called Schurian if A = Z(Aut(A)).
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Comparing the definitions of schemes and cellular algebras one can see that the mappings

C 7→ A(C), A 7→ C(A) (4)

where C(A) = (V,R(A)) with R(A) = {R ⊂ V 2 : A(R) ∈M(A)}, are reciprocal bijections
between the sets of schemes and cellular algebras on V . Here the intersection numbers
of a scheme coincide with the structure constants of the corresponding cellular algebra.
Moreover, the set of all isomorphisms of two schemes coincides with the set of all strong
isomorphisms of the corresponding cellular algebras and the automorphism group of a scheme
coincides with the automorphism group of the corresponding cellular algebra. Finally, the
correspondence (4) takes Schurian schemes to Schurian cellular algebras and vice versa.

The properties of the correspondence (4) show that schemes and cellular algebras are in
fact the same thing up to language. So the name of any class of cellular algebras used below
(homogeneous, primitive, . . .) is inherited by the corresponding class of schemes. Similarly,
we use all notions and notations introduced for basis matrices of a cellular algebra (degree,
d(A), . . .) also for basis relation of a scheme. We prefer to deal with cellular algebras because
this enables us to use standard algebraic techniques. Below we will traditionally denote a
cellular algebra by W .

The set of all cellular algebras on V is partially ordered by inclusion. The largest and the
smallest elements of the set are respectively the full matrix algebra MatV and the simplex
on V , i.e. the algebra Z(Sym(V )) with the linear base {IV , JV }. We write W ≤ W ′

if W ⊂ W ′. Given subsets X1, . . . , Xs of MatV , their cellular closure, i.e. the smallest
cellular algebra on V containing all of them is denoted by [X1, . . . , Xs]. If Xi = {Ai}, we
omit the braces. For a cellular algebra W ≤ MatV and a point v ∈ V we set Wv = [W, Iv]
where Iv = I{v}.

2.2. Let W ≤ MatV be a cellular algebra andM =M(W ). Set

Cel(W ) = {U ⊂ V : IU ∈M}, Cel∗(W ) = {
⋃

U∈X

U : X ⊂ Cel(W )}.

Each element of Cel(W ) (resp. Cel∗(W )) is called a cell of W (resp. a cellular set of W ).
Obviously,

V =
⋃

U∈Cel(W )

U (disjoint union).

The algebra W is called homogeneous if |Cel(W )| = 1.
For U1, U2 ∈ Cel∗(W ) set MU1,U2 = {A ∈ M : A ◦ JU1,U2 = A}. Then

M =
⋃

U1,U2∈Cel(W )

MU1,U2 (disjoint union).

Also, since for any cells U1, U2 and any A ∈ MU1,U2 the uth diagonal element of the matrix
AAT equals the number of 1’s in the uth row of A, it follows that the number of 1’s in the uth
row (resp. vth column) of A does not depend on the choice of u ∈ U1 (resp. v ∈ U2). This
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number is denoted by dout(A) (resp. din(A)). If W is homogeneous, then dout(A) = din(A)
for all A ∈ M and we use the notation d(A) for this number and call it the degree of A.
A cellular algebra W is called semiregular if din(A) = dout(A) = 1 for all A ∈ M. A
homogeneous semiregular algebra is called regular.

For each U ∈ Cel∗(W ) we view the subalgebra IUWIU of W as a cellular algebra on U ,
denote it by WU and call the restriction of W to U . The basis matrices of WU are in a natural
1-1 correspondence to the matrices of MU,U . If U ∈ Cel(W ), we call WU the homogeneous
component of W corresponding to U .

A relation R on V is called a relation of the algebra W if A(R) ∈ W . If in addition
A(R) ∈M, we say that R is a basis one. We observe that the set of all basis relations of W
coincides with R(W ) = R(C(W )). For U1, U2 ∈ Cel(W ) we set

RU1,U2 = RU1,U2(W ) = {R ∈ R(W ) : A(R) ∈MU1,U2}.

2.3. Let W be a cellular algebra on V and E be an equivalence on V . We say that E is
an equivalence of W if it is the union of basis relations of W . In this case its support VE is
a cellular set of W . The set of all equivalences of W is denoted by E(W ). The equivalences
of W with the adjacency matrices IV and JV are called trivial. Suppose now that W is
homogeneous. We call W imprimitive if it has a nontrivial equivalence. If W has exactly
two equivalences, then it is called primitive. We stress that a cellular algebra on a one-point
set is neither imprimitive nor primitive according to this definition.

Let E ∈ E(W ). For each U ∈ V/E we view the subalgebra IUWIU of MatV satisfying
obviously conditions (A2) and (A3) as a cellular algebra on U and denote it by WE,U . Its
standard basis is of the form

M(WE,U) = {AU : A ∈M, IUAIU 6= 0}. (5)

It follows from (5) and the first part of (3) that each basis matrix of WE,U can be uniquely
represented in the form AU for some A ∈M(W ). Set

WE = {A(E) ◦B : B ∈W}.

Then WE is a subalgebra of W satisfying conditions (A2) and (A3).
A nonempty equivalence E of W is called indecomposable (in W ) if E is not a disjoint

union of two nonempty equivalences of W . We observe that any equivalence of a homoge-
neous algebra is obviously indecomposable whereas it is not the case for a non-homogeneous
one (the simplest example is the equivalence the classes of which are cells). The equiva-
lence E is called decomposable if it is not indecomposable. In this case E = E1 ∪ E2 for
some nonempty equivalences E1 and E2 of W with disjoint supports. It is easy to see that
each equivalence of W can be uniquely represented as a disjoint union of indecomposable
ones called indecomposable components of it. It follows from [9, Lemma 2.6] that given an
indecomposable equivalence E ∈ E(W ) we have

|U1 ∩X| = |U2 ∩X| > 0 for all cells X ⊂ VE and U1, U2 ∈ V/E.
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In particular, all classes of E are of the same cardinality. Besides, given an equivalence of W ,
the support of an indecomposable component of it coincides with the smallest cellular set
of W containing any given class of this component. Another consequence of [9, Lemma 2.6]
is that if E is indecomposable, then given U ∈ V/E the mapping

πU : WE →WE,U , A 7→ AU (6)

is a matrix algebra isomorphism preserving the Hadamard multiplication.
We complete the subsection by a technical lemma which will be used later.

Lemma 2.1 Let W ≤ MatV be a cellular algebra, R ∈ R(W ) and E1, E2 ∈ E(W ). Then
the number |(U1 × U2) ∩ R| does not depend on the choice of U1 ∈ V/E1 and U2 ∈ V/E2,
such that (U1 × U2) ∩R 6= ∅.

Proof. Suppose that (U1×U2)∩R 6= ∅. Then the number |(U1×U2)∩R| equals the (v1, v2)-
entry of the matrix A(E1)A(R)A(E2) where (v1, v2) ∈ (U1 × U2) ∩ R. Since this number
coincides with the coefficient at A(R) in the decomposition of the last matrix with respect
to the standard basis of W , we are done.

2.4. Along with the notion of a strong isomorphism we consider for cellular algebras also
weak isomorphisms (see [21, 12, 9])1. Cellular algebras W on V and W ′ on V ′ are called
weakly isomorphic if there exists a matrix algebra isomorphism ϕ : W →W ′ such that

ϕ(A ◦B) = ϕ(A) ◦ ϕ(B) for all A, B ∈ W. (7)

Any such ϕ is called a weak isomorphism from W to W ′. It immediately follows from the
definition that ϕ takes {0,1}-matrices to {0,1}-matrices and also ϕ(IV ) = IV ′, ϕ(JV ) = JV ′ .
It was proved in [11, Lemma 4.1] that ϕ(AT ) = ϕ(A)T for all A ∈ M(W ). Besides, ϕ
induces a natural bijection U 7→ Uϕ from Cel∗(W ) onto Cel∗(W ′) preserving cells such that
ϕ(IU) = IUϕ and |U | = |Uϕ|. In particular, |V | = |V ′|. Finally, ϕ(M) =M′ and moreover

ϕ(MU1,U2) =M′
Uϕ1 ,Uϕ2

for all U1, U2 ∈ Cel∗(W ) (8)

where M = M(W ) and M′ = M(W ′). Thus the corresponding structure constants of

weakly isomorphic algebras coincide. More exactly, pC
A,B = p

ϕ(C)
ϕ(A),ϕ(B) for all A, B, C ∈M.

The following lemma describes the behavior of the relations of a cellular algebra under
weak isomorphisms.

Lemma 2.2 Let W ≤ MatV and W ′ ≤ MatV ′ be cellular algebras and ϕ ∈ Isow(W, W ′).
Then ϕ induces a bijection R 7→ Rϕ from the set of all relations of W to the set of all
relations of W ′ such that ϕ(A(R)) = A(Rϕ). Moreover,

(1) din(R) = din(R
ϕ), dout(R) = dout(R

ϕ), |R| = |Rϕ| for all R ∈ R(W ),

1In [21, p.33] they were called weak equivalences.
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(2) E is an (indecomposable) equivalence of W iff Eϕ is an (indecomposable) equivalence
of W ′. In addition, |VE| = |V ′Eϕ| and |V/E| = |V ′/Eϕ|.

Proof. Since statement (2) coincides with Lemma 3.3 of [13], we prove only statement (1).
Let R ∈ RU1,U2(W ) where U1, U2 ∈ Cel(W ). Then obviously dout(R) = p∆1

R,RT
and din(R) =

p∆2

RT ,R
where ∆i = ∆(2)(Ui), i = 1, 2. Since Rϕ ∈ RU ′1,U ′2

(W ′) where U ′i = (Ui)
ϕ, i = 1, 2,

(see (8)) and (RT )ϕ = (Rϕ)T , the equalities for degree follow. Now the third equality is the
consequence of the formulas |R| = |U1|dout(R) and |U1| = |U ′1|.

We observe that the composition of weak isomorphisms and the inverse of a weak iso-
morphism are also weak isomorphisms. Evidently each strong isomorphism from W to W ′

induces a weak isomorphism between these algebras. The set of all weak isomorphisms from
W to W ′ is denoted by Isow(W, W ′). If W = W ′ we write Isow(W ) instead of Isow(W, W ).
Clearly, Isow(W ) forms a group isomorphic to a subgroup of Sym(M(W )).

3 Extended algebras and their weak isomorphisms

3.1. Let W be a cellular algebra on V . For each positive integer m we set

Ŵ = Ŵ (m) = [Wm, Zm(V )] (9)

where Wm = W ⊗ · · · ⊗W is the m-fold tensor product of W and Zm(V ) is the central-
izer algebra of the coordinatewise action of Sym(V ) on V m. We call the cellular algebra

Ŵ ≤ MatVm the m-extended algebra of W . The group Aut(Ŵ ) acts faithfully on the set
∆ = ∆(m)(V ). Moreover, the mapping δ : v 7→ (v, . . . , v) induces a permutation group

isomorphism between Aut(W ) and the constituent of Aut(Ŵ ) on ∆. It was proved in [12]
that

Ŵ = [Wm, I∆]. (10)

The cellular algebra on V defined by

W = W
(m)

= ((Ŵ (m))∆)δ−1

is called the m-closure of W . We say that W is m-closed if W = W
(m)

. It was proved in [9,

Proposition 3.3] that Aut(W
(m)

) = Aut(W ),

W = W
(1) ≤ . . . ≤ W

(n)
= . . . = W (∞) (11)

and the algebra W
(m)

is l-closed for all l ∈ [m]. In addition, it is easy to see that if l ≥ m,

then the l-closure of W
(m)

equals W
(l)

.
We complete the subsection with two statements to be used later. Below we identify the

sets (V m)l and V lm using the bijection from [m]×[l] onto [lm] defined by (i, j) 7→ i+(j−1)m.

Lemma 3.1 Let W be a cellular algebra and l, m positive integers. Then (
̂̂
W (m))(l) = Ŵ (lm).
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Proof. Obviously, the algebra W lm and the matrix I∆(lm)(V ) = (⊗l
j=1I∆(m)(V )) ◦ I∆(l)(V m) are

contained in (Ŵ (m))(l). So by (10) the right side of the equality in question is contained in the

left one. Conversely, I∆(l)(Vm) belongs to Zlm(V ) and hence belongs also to Ŵ (lm). Besides,

(Ŵ (m))l ⊂ Ŵ (lm) due to statement (4) of Lemma 7.2 of [12] with Ik = Jk = [1+(k−1)m, km],
k ∈ [l], and lm instead of m. Thus we are done by (10).

The following technical statement was in fact proved in [9].

Lemma 3.2 Let W ′ be a cellular algebra on V m containing Zm(V ) and W = (W ′
∆)δ−1

.

Then W ′ ≥ Ŵ (m) and also W is m-closed. In particular, the m-extended algebras of an
algebra and its m-closure coincide.

Proof. It follows from the proof of statement (5) of Lemma 5.2 of [9] that W ′ ≥Wm. Thus
the required inclusion is the consequence of equality (10).

3.2. Let ϕ : W → W ′ be a weak isomorphism from a cellular algebra W ≤ MatV

to a cellular algebra W ′ ≤ MatV ′ . According to [12] we say that a weak isomorphism

ψ : Ŵ → Ŵ ′ is an m-extension of ϕ if ψ(I∆) = I∆′ and ψ(A) = ϕm(A) for all A ∈ Wm,
where ∆ = ∆(m)(V ), ∆′ = ∆(m)(V ′) and ϕm is the weak isomorphism from Wm to (W ′)m

induced by ϕ. It was proved in [12] that ψ is uniquely determined by ϕ and the restriction of

it to Ŵ∆ induces a uniquely determined weak isomorphism from W to W ′ extending ϕ. We
denote these weak isomorphisms by ϕ̂ = ϕ̂(m) and ϕ = ϕ(m) respectively. As it was observed
in [12], ϕ̂ takes a basis matrix of Zm(V ) to the corresponing basis matrix of Zm(V ′).

A weak isomorphism ϕ is called an m-isomorphism if there exists an m-extension of ϕ.
The set of all m-isomorphisms from W to W ′ will be denoted by Isowm(W, W ′). It was
proved in [12, Theorem 4.5 and formula (7)] that

Isow(W, W ′) = Isow1(W, W ′) ⊃ . . . ⊃ Isown(W, W ′) = . . . = Isow∞(W, W ′) (12)

where Isow∞(W, W ′) is the set of all weak isomorphisms from W to W ′ induced by strong
isomorphisms.

The following lemma will be of use later.

Lemma 3.3 Let W, W ′ be cellular algebras and l, m positive integers. Then ϕ ∈
Isowlm(W, W ′) iff ϕ ∈ Isowm(W, W ′) and ϕ̂(m) ∈ Isowl(Ŵ

(m), Ŵ ′(m)). In this case,

ϕ̂(lm) = (̂̂ϕ(m))(l).

Proof. Let ϕ ∈ Isowlm(W, W ′). Then ϕ ∈ Isowm(W, W ′) by (12). Besides, ϕ̂(lm)(I∆(l)(Vm)) =

I∆(l)(V ′m) as far as ϕ̂(lm) takes basis matrices of Zlm(V ) to the corresponding basis matrices

of Zlm(V ′). On the other hand, since (Zm(V ))l ⊂ Zlm(V ), we have

ϕ̂(lm)(A) = (ϕ̂(m))l(A) (13)

for all A ∈ (Zm(V ))l. Further, equality (13) obviously holds also for all A ∈ (Wm)l. So

it holds for all A ∈ (Ŵ (m))l by the definition of Ŵ (m) and Lemma 3.1. Thus ϕ̂(lm) is the
l-extension of ϕ̂(m).
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Conversely, let ϕ ∈ Isowm(W, W ′) and ϕ̂(m) ∈ Isowl(Ŵ
(m), Ŵ ′(m)). We show that ψ =

(̂̂ϕ(m))(l) is the lm-extension of ϕ. Indeed, ψ(A) = (ϕ̂(m))l(A) = ϕlm(A) for all A ∈ W lm by
the definition of ϕ̂(m). On the other hand, since ∆(lm)(V ) = (⊗l

j=1I∆(m)(V )) ◦ I∆(l)(Vm), we
have

ψ(I∆(lm)(V )) = (⊗l
j=1ϕ̂

(m)(I∆(m)(V ))) ◦ ψ(I∆(l)(V m)) = (⊗l
j=1I∆(m)(V ′)) ◦ I∆(l)(V ′m) = I∆(lm)(V ′),

which completes the proof.

3.3. In this subsection we illustrate the m-extended algebra technique by using the
following notion which is similar to the notion of the m-equivalence of permutation groups
introduced in [24].

Definition 3.4 Two cellular algebras on the same set of points are called m-equivalent, if
their m-extended algebras equal.

It immediately follows from the definition that the automorphism groups and hence the
Schurian closures of m-equivalent algebras coincide.

Lemma 3.5 Two cellular algebras are m-equivalent iff their m-closures are equal.

Proof. The necessity follows from the definition of m-closure, whereas the sufficiency is the
consequence of Lemma 3.2.

Lemma 3.5 implies that each class of m-equivalent cellular algebras has the largest element
coinciding with the m-closure of any algebra of the class. Below we write W1 ≈m W2, if W1

and W2 are m-equivalent. The statements of the next lemma are similar to the properties
of the m-equivalence of permutation groups proved in [24, pp.8-12].

Lemma 3.6 Let W1, W2 be cellular algebras on an n-point set V . Then

(1) W1 ≈1 W2 iff W1 = W2,

(2) if W1 ≈m W2, then W1 ≈m+1 W2,

(3) if m ≥ n, then W1 ≈m W2 iff Aut(W1) = Aut(W2),

(4) if W1 ≈m W2, then (W1)v ≈m (W2)v for all v ∈ V .

Proof. Statement (1) is trivial. Set Wi = Wi
(m)

, i = 1, 2. If W1 ≈m W2, then W1 = W2 by
Lemma 3.5. So the (m+1)-closures of W1 and W2 coincide. Thus statement (2) follows from
the same lemma. The necessity of statement (3) is clear. Conversely, if Aut(W1) = Aut(W2),
then by formula (11) we conclude that

W1 = W1
(∞)

= W2
(∞)

= W2.

Thus the sufficiency follows from Lemma 3.5. Let us prove statement (4). Since Ŵ1 = Ŵ2,
we have rv(W1) = rv(W2) (as to the definition of the algebra rv(W ), see Appendix). On the
other hand, applying the m-closure operator to inequality (31) with W = Wi we see that
(Wi)v = rv(Wi), i = 1, 2. Thus (W1)v = (W2)v, and we are done by Lemma 3.5.
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4 The separability and Schurity numbers

4.1. Throughout the section we assume m to be a positive integer.

Definition 4.1 A cellular algebra W is called m-separable if Isowm(W, W ′) = Isow∞(W, W ′)

for all cellular algebras W ′; it is called m-Schurian if W
(m)

= W
(∞)

. A scheme is called
m-separable (resp. m-Schurian) if so is its Bose-Mesner algebra.

The m-separability of W means that any m-isomorphism from W to another cellular algebra
is induced by a strong isomorphism, whereas the m-Schurity of it means that the m-closure
of W is a Schurian algebra. Obviously, W is 1-Schurian iff it is Schurian, i.e. the corre-
sponding scheme is orbital. On the other hand, W is 1-separable (briefly, separable) iff the
last scheme is uniquely determined by its intersection number array (cf. Subsection 7.1).
The following statement is an immediate consequence of the definition of m-equivalence and
Lemma 3.5.

Theorem 4.2 Two m-equivalent cellular algebras are m-separable (resp. m-Schurian) or
not simultaneously.

It follows from formula (12) (resp. formula (11)) that an m-separable (resp. m-Schurian)
algebra is also l-separable (resp. l-Schurian) for all l ≥ m and that any cellular algebra W
on n points is always n-separable and n-Schurian. We set

s(W ) = min{m : W is m− separable}, t(W ) = min{m : W is m− Schurian}.

These positive integers are called the separability number and the Schurity number of W
respectively. The separability number s(C) and the Schurity number t(C) of a scheme C are
defined as the corresponding numbers of its Bose-Mesner algebra.

The following statement the proof of which is in the end of Section 6 shows that the
inequalities s(W ) ≤ n and t(W ) ≤ n can be slightly improved.

Theorem 4.3 For any cellular algebra W on n points we have s(W ) ≤ dn/3e and t(W ) ≤
dn/3e.

In some cases the separability and Schurity numbers can easily be computed.

Theorem 4.4 If W is a simplex or a semiregular algebra, then s(W ) = t(W ) = 1. In
particular, s(MatV ) = t(MatV ) = 1.

Proof. The case of a simplex is trivial. Let W be a regular algebra (the case of a semiregular
algebra is easily reduced to this one). Then the set of basis matrices of W forms a finite
group, say G. So W is strongly isomorphic to the enveloping algebra C[Gright] ≤ MatG

where Gright is the permutation group on G defined by right multiplications. However,
C[Gright] = Z(Gleft) where Gleft ≤ Sym(G) is defined by left multiplications. Thus C[Gright]
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and hence W are Schurian. Let now ϕ : W → W ′ be a weak isomorphism from a regular
algebra W to a cellular algebra W ′. By statement (1) of Lemma 2.2 the algebra W ′ is also
regular. So without loss of generality we assume that W = C[Gright], W ′ = C[G′right] where G
and G′ are finite groups. Then ϕ is induced by the group isomorphism G → G′ associated
with the isomorphism of the groups of basis matrices. Thus ϕ ∈ Isow∞(W, W ′).

It was proved in Theorem 1.1 (resp. in Theorem 1.3) of [12] that there exists ε > 0 such
that for all sufficiently large positive integer n one can find a non-Schurian cellular algebra
on n points which is m-closed for some m ≥ bεnc (resp. a Schurian algebra with simple
spectrum on n points admitting an m-isomorphism with m ≥ bεnc which is not induced by
a strong isomorphism). This gives the following statement.

Theorem 4.5 There exist cellular algebras with arbitrary large separability and Schurity
numbers. Moreover

lim inf
n(W )→∞

s(W )

n(W )
> 0, lim inf

n(W )→∞

t(W )

n(W )
> 0

where W runs over all cellular algebras (even Schurian ones with simple spectrum in the first
inequality) and n(W ) is the number of points of W .

The interrelation between the separability and Schurity numbers seems to be rather
complicated. For instance, Theorem 4.5 shows that there exist cellular algebras W with
t(W ) = 1 and arbitrary large s(W ). On the other hand, one can find cellular algebras with
both separability and Schurity numbers arbitrary large (e.g. ones from [12, Subsection 5.5]).

4.2. The following theorem gives some upper bounds for the numbers s(W ) and t(W )
via the corresponding numbers of some algebras associated with W .

Theorem 4.6 Let W ≤ MatV be a cellular algebra. Then

(1) s(W ) ≤ s(Wv) + 1 for all v ∈ V ,

(2) if Wv is t(Wv)-separable for some point v ∈ V , then t(W ) ≤ t(Wv) + 1,

(3) s(W ) ≤ ms(Ŵ (m)), t(W ) ≤ mt(Ŵ (m)) for all m ≥ 1.

Proof. Let ϕ : W → W ′ be an m-isomorphism where m = s(Wv) + 1. Choose v′ ∈ V ′ as
in Subsection 8.2. Then by statement (2) of Lemma 8.3 the weak isomorphism ϕv,v′ belongs
to Isowm−1(W v, W

′
v′) and extends ϕ. Since Wv is (m− 1)-separable, ϕv,v′ and hence ϕ are

induced by a permutation from V to V ′. Thus s(W ) ≤ m.
Set m = t(Wv) + 1. Then the algebra (Wv)

(m−1) is Schurian and hence by Corollary 8.5

coincides with r
(m)
v (W ). So by Lemma 8.3 we have r

(m)
v,v′ (ϕ) = ϕv,v′

(m−1) where ϕ and v′ are
as in Theorem 8.4. Therefore by the assumption of statement (2) and Theorem 4.2 the weak

isomorhism r
(m)
v,v′ (ϕ) is induced by a bijection gv,v′ : V → V ′. Thus Theorem 8.4 implies

that the basis relations of the algebra W
(m)

are 2-orbits of the group generated by the sets
Aut(Wv)gv,v′ , v ∈ X. This proves the Schurity of W .
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To prove statement (3) let ϕ : W → W ′ be an ms(Ŵ )-isomorphism where Ŵ = Ŵ (m).

By Lemma 3.3 with l = s(Ŵ ) we see that ϕ̂ : Ŵ → Ŵ ′ is an s(Ŵ )-isomorphism. So ϕ̂ and

also ϕ are induced by strong isomorphisms. Thus s(W ) ≤ ms(Ŵ ). To prove the second

inequality we observe that the l-closure of Ŵ with l = t(Ŵ ) is Schurian. This implies by

Lemma 3.1 that so is the restriction of the algebra Ŵ (lm) to ∆(l)(V m). Since the algebra Ŵ (lm)

is strongly isomorphic to the restriction of the last algebra to the set ∆(lm)(V ), we are done.
Statements (1) and (2) of Theorem 4.6 imply by induction the following proposition

where we set W[U ] to be the cellular closure of the algebras Wv, v ∈ U .

Corollary 4.7 Let U ⊂ V . Then

s(W ) ≤ s(W[U ]) + l, t(W ) ≤ max(s(W[U ], t(W[U ]) + l

where l = |U |. In particular, s(W ) ≤ l+1 and t(W ) ≤ l+1 whenever s(W[U ]) = t(W[U ]) = 1.

Since the separability and Schurity numbers of a full matrix algebra equal 1 we come
to the following statement the second part of which was proved in a different way in [9].
We recall that the base number b(W ) of a cellular algebra W is by definition the minimum
cardinality of a base of W , i.e. of a set U ⊂ V such that W[U ] = MatV .

Theorem 4.8 For any cellular algebra W we have s(W ) ≤ b(W )+1 and t(W ) ≤ b(W )+1.

It follows from [1] that b(W ) < 4
√

n log n for any primitive cellular algebra on n points
different from a simplex. Thus we have the following statement.

Corollary 4.9 If W is a primitive cellular algebra on n points, then s(W ) < d4√n log ne
and t(W ) < d4√n log ne.

The example of a simplex shows that s(W ) and t(W ) can be rather far from b(W ). On
the other hand, there are nontrivial examples for which the equalities are attained. Indeed,
let W be the Bose-Mesner algebra of the strongly regular graph on 26 points of valency 10
marked as #4 in [21, p.176]. Then a straightforward check shows that b(W ) = 1. Since
the group Aut(W ) is not transitive, the algebra W is not Schurian and hence t(W ) ≥ 2.
In addition, s(W ) ≥ 2, because there exist several strongly regular graphs with the same
parameters.

5 3/2-homogeneous schemes

5.1. We say that a homogeneous scheme is 3/2-homogeneous if any two nonreflexive basis
relations of it have the same degree (called the degree of the scheme). There is a number
of 3/2-homogeneous schemes, e.g. pseudocyclic schemes (see [4, p.42]) and the schemes of
Frobenius groups (see [23]).

Theorem 5.1 If C is an imprimitive 3/2-homogeneous scheme, then s(C) ≤ 2 and t(C) ≤ 2.
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Proof. Let W be the Bose-Mesner algebra of C and W ′ = (Wv)V \{v} where V is the point set
of W . It follows from [11, Lemma 5.13] that W ′ is a semiregular algebra. By Theorem 4.4
we conclude that s(W ′) = t(W ′) = 1. So, obviously, s(Wv) = t(Wv) = 1. Thus the theorem
follows from statements (1) and (2) of Theorem 4.6.

The schemes satisfying the hypothesis of the theorem arise for instance from Frobenius
groups with non-Abelian kernel and from cyclotomic schemes defined by a multiplicative
subgroup of the corresponding finite field contained in a proper subfield.

The case of primitive 3/2-homogeneous schemes seems to be rather difficult. In general
we can only prove that any such scheme C is (d + 1)-separable and (d + 1)-Schurian where d
is the degree of C. Indeed, it follows from [11, Corollary 4.8] that b(W ) ≤ d where W is the
Bose-Mesner algebra of C. Thus the above claim is the consequence of Theorem 4.8. In the
rest of this section we confine ourselves to Schurian schemes on a prime number of points.
According to Burnside’s theorem (see [23, Theorem 7.3]) any such scheme is isomorphic to
a cyclotomic scheme and so is primitive.

5.2. Let p be a prime, d a divisor of p − 1, and Hd the subgroup of the group F∗p of
order d where Fp is a field with p elements. Set

Wp,d = Z(Gp,d) (14)

where Gp,d is the group of all affine transformations x 7→ ax + b of Fp such that a ∈ Hd

and b ∈ Fp. The cellular algebra Wp,d is the adjacency algebra of the cyclotomic scheme
considered in [4]. It is a primitive one of dimension 1+(p−1)/d and each of its basis relations
is of the form

R = {(x, y) : y − x ∈ cHd, x, y ∈ Fp} (15)

for some c ∈ Fp. It is well-known (see [4, p.389]) that Aut(Wp,d) coincides with Gp,d if
d 6= p− 1. We observe that

Wp,d = [A(R)], R ∈ R \ {∆} (16)

where R = R(Wp,d) and ∆ = ∆(2)(Fp). Indeed, since [A(R)] ⊂Wp,d, the group Aut([A(R)])
contains a regular subgroup x 7→ x+b, b ∈ Fp. So by Corollary 2.10.2 of [4] the algebra [A(R)]
is of the form (14), whence (16) follows.

Theorem 5.2 Let W = Wp,d, d 6= p− 1, Ŵ = Ŵ (2) and V = Fp. Then Ŵ(u,v) = MatV 2 for
all (u, v) ∈ V 2 \∆.

Proof. We need the following statement.

Lemma 5.3 If d 6= 1, then there exists an equivalence E′ ∈ E(Ŵ ) such that V 2/E′ = R(W ′)
where W ′ = Wp,d′ for some d′ dividing d, d′ 6= d.

Proof. We observe that p 6= 2 and consider two cases. If d is a composite number, then
it follows from [19, Proposition 4.1] that there exists d′ dividing d, d′ 6= d, such that given
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u ∈ V the set Ru =
⋃

U∈Cel(W ′u) U2 is a union of basis relations of the algebra Wu. Besides,

for all v ∈ V we have (Ru)
gu,v = Rv where gu,v is the automorphism of W ′ of the form

x 7→ x + (v − u), x ∈ V . Since the 2-fold Cartesian product of gu,v belongs to Aut(Ŵ )

and Wv ≤ r
(2)
v (W ) for all v ∈ V (see statement (2) of Lemma 8.3), we conclude that the

matrices
∑

v∈V Iv ⊗ Av and
∑

v∈V Av ⊗ Iv belong to Ŵ where Av = A(Rv) − Iv. By [19,
Lemma 4.2] the transitive closure of the union of the relations with these adjacency matrices
is the equivalence relation on V 2 \ ∆ whose set of classes equals R(W ′) \ {∆}. Obviously

this equivalence belongs to E(Ŵ ). Thus, the required equivalence E′ on V 2 can be obtained
from it by adding a new class ∆.

If d is a prime, then set Av to be the matrix of the permutation gv : x 7→ 2v − x,
x ∈ V . Then Av ∈ Wv for all v ∈ V (this follows from [19, Theorem 4.1] for odd d and is
straightforward for d = 2). So the matrices

∑
v∈V Iv⊗Av and

∑
v∈V Av⊗ Iv belong as above

to Ŵ . We have

(
∑
u∈V

Iu ⊗Au)(
∑
v∈V

Av ⊗ Iv) =
∑

u,v∈V

IuAv ⊗ AuIv =
∑

u,v∈V

Iu,ugv ⊗ Ivgu ,v =

∑
u,v∈V

Iu,2v−u ⊗ I2u−v,v =
∑
b∈V

∑
u,v∈V,u−v=b/2

Iu,u+b ⊗ Iv,v+b

where Ix,y, x, y ∈ V , is a matrix unit. Set E′ to be the transitive closure of the union of the
set ∆ ×∆ and the relation the adjacency matrix of which equals the last matrix. Then it
is easy to see that E′ is the equivalence relation on V 2 whose set of classes equals R(Wp,1).

Since E′ is obviously an equivalence of Ŵ , we are done.
Let us complete the proof of the theorem. If d = 1, then Wp,d is a regular algebra and

we are done. Otherwise the theorem can be deduced from Lemma 5.3 as follows. Let U be
the class of E′ containing (u, v). Then U ∈ Cel∗(Ŵ(u,v)) and hence the matrix (A1IUA2)◦J∆

equals A(U)δ where A(U) is the adjacency matrix of the relation U ⊂ V 2 and A1 = IV ⊗JV ,

A2 = JV ⊗ IV . So A(U)δ ∈ Ŵ(u,v) and by (16) we have

(Ŵ(u,v))∆ ≥ [A(U)δ] = [A(U)]δ = (Wp,d′)
δ.

Thus Ŵ(u,v) ≥ Ŵp,d′ according to Lemma 3.2 and we complete the proof by induction.

Theorem 5.4 A cyclotomic scheme on a prime number of points is 4-separable.

Proof. Let W be the adjacency algebra of such a scheme and Ŵ = Ŵ (2).. Then b(Ŵ ) = 1 by

Theorem 5.2. According to Theorem 4.8 we have s(Ŵ ) ≤ 2, which implies by statement (3)
of Theorem 4.6 that s(W ) ≤ 4.

6 Extended algebras and (K,L)-regularity of graphs

6.1. By a colored graph Γ we mean a triple (V, E, c) where V = V (Γ) is a finite set (the
vertex set of Γ), E = E(Γ) is a subset of V 2 (the edge set of Γ) and c = cΓ is a mapping
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from E to Z (the coloring of Γ). The image of an edge with respect to c is called the color
of this edge, the set of all edges of the same color is called a color class of Γ. Two colored
graphs are called isomorphic if there exists a bijection of their vertex sets preserving the
colors of edges. Any such bijection is called an isomorphism of these graphs. The group of
all isomorphisms of Γ to itself is denoted by Aut(Γ) and called the automorphism group of Γ.
A colored graph Γ′ is called a subgraph of Γ if V (Γ′) ⊂ V (Γ), E(Γ′) ⊂ E(Γ) and cΓ′ is the
restriction of cΓ. If V (Γ′) = U and E(Γ′) = E(Γ)∩U2 for some U ⊂ V (Γ), we say that Γ′ is
a subgraph of Γ induced by U .

A mapping g : V (K)→ V (Γ) is called an embedding of a colored graph K into a colored
graph Γ if E(K)g ⊂ E(Γ) and cΓ(ug, vg) = cK(u, v) for all (u, v) ∈ E(K). (The mapping g
is not necessarily an injection.) The set of all embeddings from K into Γ is denoted by
Emb(K, Γ). Let g : U → V (Γ) be a mapping from a subset U of V (K) to V (Γ). Set

qΓ(K, g) = |{h ∈ Emb(K, Γ) : h|U = g}|. (17)

Let L be a subgraph of K and d ≥ 0 an integer. We say that Γ is (K,L)-regular of degree
d if qΓ(K, g) = d for all g ∈ Emb(L, Γ); we do not refer to d if its exact value is of no
interest for us. For example, an ordinary graph is regular iff the corresponding one-color
graph Γ with symmetric edge set is (K,L)-regular of the same degree where V (K) = {1, 2},
E(K) = {(1, 2)}, V (L) = {1}, E(L) = ∅ and cK(1, 2) equals the color of an edge of Γ.

To each cellular algebra W on V we associate a colored graph Γ = Γ(W ) with V (Γ) = V ,
E(Γ) = V 2 and colored classes coinciding with basis relations of W . We observe that this
graph is uniquely determined up to the choice of colors. Obviously, Γ satisfies the 3-vertex
condition. If C is a scheme, we set Γ(C) = Γ(A(C)). Conversely, given a colored graph
Γ = (V, E, c) we set

W (Γ) = [{A(c−1(i)) : i ∈ Z}], C(Γ) = C(W (Γ)).

It is easy to see that W (Γ) ≤ MatV , colored classes of Γ are relations of W (Γ) and
Aut(W (Γ)) = Aut(Γ). If ϕ is a weak isomorphism from W (Γ) to another cellular algebra W ′,
then we set Γϕ = (V ′, E′, c′) where V ′ = V ϕ, E′ = Eϕ and c′ is defined by c−1(i)ϕ = (c′)−1(i),
i ∈ Z.

6.2. Let Γ be a colored graph on the set V = V (Γ) and m be a positive integer. Given
a colored graph K with V (K) ⊂ [3m], a subgraph L of K with V (L) ⊂ [2m] and an integer
d ≥ 0 we set

RΓ(K,L, d) = {(u, v) ∈ (V m)2 : ∃g ∈ Emb(L, Γ) : (qΓ(K, g) = d ∧ (u · v)i = ig, i ∈ V (L))}
(18)

where u · v ∈ V 2m is the composition of u and v. If m = 1 and Γ = Γ(W ) is a colored graph
of a cellular algebra W , then the binary relation (18) is obviously a union (possibly empty)
of colored classes of Γ. (Indeed, in this case the numbers qΓ( , ) equal sums of the structure
constants of W ). The following statement generalizes this observation to an arbitrary m.

Theorem 6.1 Let Γ be a colored graph, W = W (Γ) its cellular algebra and m a positive
integer. Then for all admissible K,L, d the following two statements hold:
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(1) the set RΓ(K,L, d) is a relation of the algebra Ŵ = Ŵ (m),

(2) if ϕ is an m-isomorphism from W to another cellular algebra, then

RΓ(K,L, d)bϕ = RΓϕ(K,L, d)

where ϕ̂ = ϕ̂(m) is the m-extension of ϕ.

Proof. Suppose first that K = L (and so V (K) ⊂ [2m]) and d = 1. In this case we have

RΓ(K,L, d) =
⋂

(i,j)∈E(K)

R̂i,j

where R̂i,j = {(u, v) ∈ (V m)2 : ((u · v)i, (u · v)j) ∈ Ri,j} with Ri,j = c−1
Γ (cK(i, j)) and

V = V (Γ). Thus the required statements follow from the lemma below.

Lemma 6.2 Let W be a cellular algebra on V and R ∈ R(Ŵ ) where Ŵ = Ŵ (m). Then for
all i, j ∈ [2m] the following two statements hold:

(1) the set pri,j(R) = {((u · v)i, (u · v)j)) : (u, v) ∈ R} belongs to R(W ) where W = W
(m)

,

(2) if ϕ is an m-isomorphism from W to another cellular algebra, then

pri,j(R
bϕ) = pri,j(R)ϕ

where ϕ̂ = ϕ̂(m) and ϕ = ϕ(m).

Proof. Without loss of generality we assume that i ∈ [m], j ∈ [m + 1, 2m]. (The case
i ∈ [m + 1, 2m], j ∈ [m] can be treated in a similar way; the other two cases are reduced

to the case in question with R replaced by ∆(X) or ∆(Y ) where X, Y are cells of Ŵ such

that R ⊂ X ×Y .) Apply Lemma 2.1 to Ŵ , R and the equivalences E1 and E2 of Ŵ defined
by the equality of the ith and (j −m)th coordinates respectively. Then the number of the
pairs (u, v) ∈ R such that ui = u, vj−m = v does not depend on the choice of (u, v) ∈ Ri,j

where Ri,j = pri,j(R). So

A(Ri,j)
δ = cJ∆ ◦ (A(E1)A(R)A(E2)) (19)

where c is the above number. This implies that Ri,j is a relation of W . In fact Ri,j is even
a basis relation. Indeed, if S ∈ R(W ) is a proper subset of Ri,j , then obviously the matrix
A(R)◦ (A(E1)A(S)δA(E2)) is not a multiple of A(R), which contradicts the assumption that

R ∈ R(Ŵ ). This proves statement (1). Statement (2) is an immediate consequence of (19).
Let now K,L and d be arbitrary. Set

Q = {(x, y, z) ∈ (V m)3 : cΓ((x · y · z)i, (x · y · z)j) = cK(i, j), i, j ∈ V (K)}
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and
R = pr1,2(Q), S = pr2,3(Q), T = pr1,3(Q). (20)

where prα,β(Q) ⊂ (V m)2 is the (α, β)-projection of Q, α, β ∈ [3]. Then the set RΓ(K,L, d)
consists exactly of the pairs (u, v) ∈ (V m)2 such that

|{(x, y, z) : (u, x) ∈ E1, (x, y) ∈ R, (y, z) ∈ S, (z, v) ∈ E2, (x, z) ∈ T}| = dn3m−|V (K)| (21)

where
El = {(a, b) ∈ (V m)2 : ai = bi, i + (l − 1)m ∈ V (L)}, l = 1, 2.

On the other hand, it is easy to see that the integer in the left side of (21) equals the
(u, v)-entry of the matrix A = (A(E1)A(R)A(S)A(E2)) ◦ A(T ). Besides, it follows from the
definitions that each of the relations R, S, T is of the form RΓ(K′,K′, 1) with V (K′) ⊂ [2m]
and hence both statements of the theorem hold for it due to the first part of the proof. Thus,
A ∈ Ŵ and RΓ(K,L, d) coincides with the union of those basis relations of Ŵ for which the
coefficient at the corresponding basis matrix in the decomposition of A equals the integer in
the right side of (21). This proves the both statements.

It is convenient to weaken the property of a graph to be (K,L)-regular (see Subsection 6.1)
as follows. Let K be a colored graph with V (K) ⊂ [3m] and L a subgraph of K with
V (L) ⊂ [2m]. A colored graph Γ on V is called (K,L)-regular of degree d ≥ 0 with respect
to a binary relation R on V m if

R ∩RΓ(L) ⊂ RΓ(K,L, d)

where RΓ(L) =
⋃

d≥0 RΓ(K,L, d). Thus, Γ is (K,L)-regular of degree d iff Γ is (K,L)-regular
of degree d with respect to (V m)2. We observe that if R ∩ RΓ(L) 6= ∅, then d is uniquely
determined by K,L and R. Otherwise, any nonnegative integer can be taken as d. Clearly,
if Γ is (K,L)-regular of degree d with respect to R1 and R2, then so is Γ with respect
to R1 ∪R2. In this language Theorem 6.1 sounds as follows.

Corollary 6.3 Let Γ, W, m, ϕ and ϕ̂ be as in Theorem 6.1. Then

(1) Γ is (K,L)-regular with respect to any basis relation of Ŵ for all admissible K,L,

(2) if Γ is (K,L)-regular with respect to some relation R of Ŵ , then Γϕ is (K,L)-regular
of the same degree with respect to Rbϕ.

6.3. In this subsection we use the above technique to analyze the t-vertex condition of
graphs. This notion was introduced for strongly regular graphs in [15] and generalized to
colored graphs in [14]. In fact the latter deals with complete colored graphs Γ, i.e. those with
E(Γ) = V (Γ)2. Namely, let t ≥ 2 be a positive integer. A complete colored graph Γ satisfies
the t-vertex condition if given a complete colored graph K with V (K) = [k], 2 ≤ k ≤ t, the
number q∗Γ(K, gu,v) depends only on cΓ(u, v) for all u, v ∈ V (Γ) where gu,v : [l]→ {u, v} with
l = |{u, v}| is the bijection taking 1 to u and q∗Γ(K, gu,v) is defined similarly to qΓ(K, gu,v)
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with additional assumption in (17) that h is an injection. (In terms of [14] the integer
q∗Γ(K, gu,v) divided by the order of the subgroup of Aut(K) leaving fixed the points of [l],
equals the number of the subgraphs of Γ of the type K with respect to the pair (u, v).) It
is convenient to extend this definition to an arbitrary colored graph Γ allowing K to be an
arbitrary colored graph on [k] and replacing q∗Γ(K, gu,v) by qΓ(K, gu,v). This does not lead to
confusion because it is easy to see that for a complete colored graph Γ any number qΓ(K, gu,v)
equals a linear combination of the numbers q∗Γ(K′, gu,v) for some complete colored graphs K′
with |V (K′)| ≤ |V (K)|. One can see that according to the last definition a colored graph Γ
satisfies the t-vertex condition iff Γ is (K,L)-regular for all colored graphs K with at most
t vertices and all its subgraphs L with V (L) = {i, j} and E(L) = {(i, j)}. Clearly, we can
assume that V (K) ⊂ [t] and V (L) ⊂ [2].

Theorem 6.4 A colored graph associated with an m-closed cellular algebra satisfies the 3m-
vertex condition.

Proof. Let Γ be a colored graph satisfying the hypothesis of the theorem. Then it suffices
to prove that Γ is (K,L)-regular for all K,L with V (K) ⊂ [3m], V (L) = {i, j} ⊂ [2m] and
E(L) = {(i, j)}. By statement (1) of Corollary 6.3 the graph Γ is (K,L)-regular of some

degree dR with respect to any R ∈ R(Ŵ (m)). It follows from statement (1) of Lemma 6.2
and the assumption on L that dR can be chosen not depending on R. Denoting this number
by d we see that the graph Γ is (K,L)-regular of degree d with respect to (V m)2, i.e. (K,L)-
regular.

Proof of Theorem 4.3. Let Γ be a colored graph of W and m = dn/3e. Denote by K
a colored graph on the set [n] isomorphic to Γ. Then by statement (1) of Corollary 6.3 the

graph Γ is (K,L)-regular of positive degree with respect to some basis relation R of Ŵ (m)

where L is the graph without vertices. Statement (2) of Corollary 6.3 shows then that given
any weak isomorphism ϕ from W to another cellular algebra the graph Γϕ is also (K,L)-
regular of the same positive degree with respect to Rϕ. This means that Γϕ is isomorphic
to K and also that ϕ is induced by the composition isomorphism from Γ to Γϕ via K. Thus
s(W ) ≤ m. Further, according to Theorem 6.4 a colored graph associated with the m-closure
of W satisfies the 3m-vertex condition and hence the n-vertex condition because n ≤ 3m.
So this graph is associated with a Schurian cellular algebra by [14, Proposition 2.6.2]. Thus
t(W ) ≤ m.

7 Distance-regular graphs

7.1. Throughout the section we use notation from Section 6. A colored graph with symmetric
one-color edge set not meeting the diagonal is treated below as a graph in sense of [4].

Let Γ be a connected graph with vertex set V and edge set R. Let us denote by Ri,
i ∈ [0, d], the binary relation on V “to be at distance i in Γ”, where d is the diameter
of Γ. In particular, R0 = ∆(2)(V ), R1 = R. According to [4, Chapter 1] the graph Γ is
called distance-regular if C(Γ) = (V, {Ri}di=0) where C(Γ) is the scheme of Γ. In this case the
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intersection numbers of C(Γ) are uniquely determined by a part of them, namely by c
Ri−1

R,Ri

and cRi
R,Ri−1

, i ∈ [d], called the intersection numbers or parameters of Γ. The cellular algebra
W (Γ) (coinciding with the Bose-Mesner algebra of C(Γ)) equals C[A0, . . . , Ad] = C[A1] where
Ai = A(Ri), i ∈ [0, d]. In particular, M(W (Γ)) = {Ai}di=0. If distance-regular graphs
Γ and Γ′ have the same intersection numbers, then the mapping A1 7→ A′1 yields a weak
isomorphism from W (Γ) to W (Γ′) taking Ai to A′i, i ∈ [0, d]. Conversely, if ϕ is a weak
isomorphism from W (Γ) to another cellular algebra W ′ ≤ MatV ′, then the corresponding
structure constants of W (Γ) and W ′ coincide and so by [4, Proposition 2.7.1] the graph
Γϕ = (V ′, Rϕ) is distance-regular, (Rϕ)i = (Ri)

ϕ, i ∈ [0, d], the parameters of Γ and Γϕ

coincide and W ′ = W (Γϕ).
Following [4] we say that a distance-regular graph Γ is uniquely determined by parame-

ters if its intersection numbers determine Γ up to isomorphism. Also Γ is called distance-
transitive, if the group Aut(Γ) acts transitively on any of the sets Ri, i ∈ [0, d]. Thus the
following statement trivially holds.

Proposition 7.1 Let Γ be a distance-regular graph and C = C(Γ). Then

(1) Γ is uniquely determined by parameters iff s(C) = 1,

(2) Γ is distance-transitive iff t(C) = 1.

Below we assume that the relation Ri of the scheme C associated with a distance-regular
graph Γ has color i in the colored graph Γ(C).

7.2. Let n, k be nonnegative integers, k ≤ n. The graph Γ = J(n, k) the vertices of which
are k-subsets of [n] and the edges are pairs (u, v) with |u∩v| = k−1 is called a Johnson graph.
It is known that Γ is a distance-transitive graph of diameter d = min(k, n − k). According
to [4, Section 9.1.B] this graph is uniquely determined by parameters unless (n, k) = (8, 2).
In the last case any distance-regular graph with the same parameters as Γ is isomorphic
either to Γ or to one of the three Chang graphs which are not distance-transitive (see [4,
p.105]). Below by J (n, k) we denote the scheme of the graph Γ and call it a Johnson scheme.
Similarly, the scheme of a Chang graph will be called a Chang scheme.

Theorem 7.2 Let C be the scheme of a distance-regular graph with parameters of some
Johnson graph. Then s(C) ≤ 2 and t(C) ≤ 2. More exactly,

(1) if C = J (n, k), then

s(C) =

{
1, if (n, k) 6= (8, 2);
2, otherwise

and t(C) = 1 for all n, k,

(2) if C is a Chang scheme, then s(C) = t(C) = 2.
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Proof. It follows from the above discussion and Proposition 7.1 that statement (1) holds
for (n, k) 6= (8, 2) and also that s(C) ≥ 2, t(C) = 1 if C = J (8, 2) and s(C) ≥ 2, t(C) ≥ 2 if
C is a Chang scheme. Using a computer it can be shown that the 2-closures of the cellular
algebras associated with the Chang graphs are Schurian and their dimensions are 11, 12 and
14. The first part means that t(C) = 2 if C is a Chang scheme. The second part implies
that these algebras are not 2-isomorphic to each other and to the cellular algebra associated
with J(8, 2). Thus, s(C) = 2 if C = J (8, 2) or C is a Chang scheme.

7.3. Let d ≥ 0 and q ≥ 2 be integers. Let us define the Hamming graph Γ = H(d, q) to
be the product of d copies of the complete graph on the set X = [q]. This means that Γ has
vertex set Xd and two vertices of Γ are adjacent iff they differ in precisely one coordinate.
It is known that Γ is a distance-transitive graph of diameter d. According to [4, Section
9.2.B] it is uniquely determined by parameters unless q = 4, d ≥ 2. If q = 4, then any
distance-regular graph having the same parameters as Γ is isomorphic to the graph Da,b

which is the direct product of a copies of the Shrikhande graph (see [4, p.104]) and b copies
of the complete graph on 4 vertices, where a ≥ 0, b ≥ 0 are some integers with 2a + b = d.
Obviously, Γ = D0,d. If a ≥ 1, then the graph Da,b is not distance-transitive. It is called a
Doob graph.

Below the scheme of the Hamming graph H(d, q) will be denoted by H(d, q) and the
scheme of the graph Da,b by Da,b. Thus H(d, 4) = D0,d. The following theorem is an
immediate consequence of the above discussion, Proposition 7.1 and Lemma 7.4 below.

Theorem 7.3 Let C be the scheme of a distance-regular graph with parameters of some
Hamming graph. Then s(C) ≤ 2 and t(C) ≤ 2. More exactly,

(1) if C = H(d, q), then

s(C) =

{
1, if q 6= 4 or d ≤ 1;
2, otherwise

and t(C) = 1 for all d, q,

(2) if C is a scheme of a Doob graph, then s(C) = t(C) = 2.

Let Va,b and Ra,b be the vertex set and the edge set of the graph Da,b. Set ∆a,b = ∆(2)(Va,b),
Ga,b = Aut(Da,b) and Wa,b = W (Da,b).

Lemma 7.4 The following two statements hold:

(1) the sets Ra,0×∆0,b and ∆a,0×R0,b are relations of the algebra W a,b = Wa,b
(2)

. Moreover,

W a,b = Z(Ga,0)⊗Z(G0,b). (22)

(2) If ϕ is a 2-isomorphism from Wa,b to Wa′,b′ and (Ra,b)
ϕ = Ra′,b′, then

(Ra,0 ×∆0,b)
ϕ = Ra′,0 ×∆0,b′ , (∆a,0 ×R0,b)

ϕ = ∆a′,0 ×R0,b′

where ϕ = ϕ(2). Moreover, a = a′ and b = b′.
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Proof. Let Γ = Γa,b be a colored graph associated with Wa,b and K be the complete graph
with V (K) = [4] all edges of which have the color of the relation Ra,b. It is easy to see that
given g ∈ Emb(K, Γ) the vertices of the image of g differ in one fixed coordinate. So the
number qΓ(K, g) equals the corresponding number for the Shrikhande graph (Γ = Γ1,0) or
the complete graph on 4 vertices (Γ = Γ0,1) depending on whether the pair (1g, 2g) belongs
to Ra,0 ×∆0,b or ∆a,0 ×R0,b. Since the last numbers equal 0 and 2 respectively, we see that

Ra,0 ×∆0,b = pr1,2(R(K,L, 0)) ∩Ra,b, ∆a,0 ×R0,b = pr1,2(R(K,L, 2)) ∩Ra,b (23)

where L is the subgraph of K induced by the set [2], the relation R(K,L, d), d = 0, 2, is
defined according to (18) and pri,j(R) is as in statement (1) of Lemma 6.2. Thus the first
part of statement (1) follows from the first statements of Theorem 6.1 and Lemma 6.2.
Equalities (23) due to the second statements of Theorem 6.1 and Lemma 6.2 also imply the
first part of statement (2). The second part follows from the first one, the obvious equalities
d(Ra,0 ×∆0,b) = 6a, d(∆a,0 ×R0,b) = 3b and statement (1) of Lemma 2.2.

Let us prove formula (22). Without loss of generality we assume that a > 0. It is well-
known that the Shrikhande graph D1,0 is edge-transitive and the edge set of its complement
is split into two 2-orbits of the group Aut(D1,0) of degrees 6 and 3. Denote them by S1,0

and T1,0 respectively. Let Sa,0 (resp. Ta,0) be the edge set of the direct product of a copies of
the graph with the edge set S1,0 (resp. T1,0). We will show first that the sets Sa,b = Sa,0×∆0,b

and Ta,b = Ta,0 ×∆0,b are relations of the algebra W a,b.
Denote by K′ the graph obtained from K by recoloring the pairs (1, 2) and (2, 1) in the

color of the relation R′a,b “to be at distance 2 in the graph Da,b”. As above it is easy to see
that given g ∈ Emb(K′, Γ) the number qΓ(K′, g) equals 2 or 0 depending on whether the pair
(1g, 2g) belongs to Sa,b or R′a,b \ Sa,b. So

Sa,b = pr1,2(R(K′,L′, 2)) ∩R′a,b

where L′ is the subgraph of K′ induced by the set [2]. Thus Sa,b is a relation of W a,b. A
straightforward computation shows that

A(R′a,b) ◦ (A(Ra,0 ×∆0,b) · A(Sa,b)) = 2aA(Sa,b) + 4aA(Ta,b) + A(T ′)

where T ′ = R′a,b \ (Sa,b∪Ta,b). Since the left side belongs to W a,b, we conclude that A(Ta,b) ∈
W a,b, which proves the claim.

Now it follows from above that the algebra W a,0 contains the adjacency matrices of the
relations Ra,0, Sa,0 and Ta,0 and hence the smallest cellular algebra containing them. However
the last algebra coincides with the exponentiation W 1,0 ↑ Sym(a) of W 1,0 by Sym(a) as
defined in [11]. By [11, Theorem 3.4 and formula (5)] we have W a,0 = Z(Ga,0). This implies
that W a,b contains Z(Ga,0)⊗{IV0,b

}. On the other hand, by the second of the equalities (23)
and the distance-transitivity of D0,b we see that it also contains {IVa,0} ⊗ Z(G0,b). Thus

W a,b ≥ Z(Ga,0)⊗Z(G0,b). Since the converse inclusion is obvious, we are done.
The following assertion immediately follows from statement (2) of Lemma 7.4.
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Corollary 7.5 The Doob graphs are pairwise nonisomorphic and nonisomorphic to the cor-
responding Hamming graph.

Remark 7.6 It follows from the proof of Lemma 7.4 that the graphs Da,b can be distinguished
by means of the 4-vertex condition.

7.4. Let F be a finite field with q elements, n, k be nonnegative integers, k ≤ n. The
graph Γ = Jq(n, k) the vertices of which are k-subspaces of the n-dimensional linear space
over F and the edges are pairs (u, v) with dim(u∩v) = k−1, is called a Grassmann graph. It
is known that Γ is a distance-transitive graph of diameter d = min(k, n−k). According to [4,
p.272] this graph is uniquely determined by parameters for 2

3
n ≤ k ≤ n− 3, (q, k) 6= (2, 2

3
n).

Theorem 7.7 Let C be the scheme of the Grassmann graph Jq(n, k). Then s(C) ≤ 2 and
t(C) = 1 for all q, n, k. Moreover, s(C) = 1 whenever 2

3
n ≤ k ≤ n− 3, (q, k) 6= (2, 2

3
n).

Proof. By Proposition 7.1 it suffices to prove that s(C) ≤ 2. One can easily find (see also
[4, Section 9.3]) that the graph Γ = Jq(n, k) satisfies the following two conditions:

(1) given two vertices u, v of Γ at distance 2, the subgraph of Γ induced by the set of vertices
adjacent simultaneously to u and v is isomorphic to the Hamming graph H(2, q + 1),

(2) given three pairwise nonadjacent vertices u, v, w of Γ, the subgraph of Γ induced by
the set of vertices adjacent simultaneously to u, v and w has no edges.

This means that the colored graph of the scheme C(Γ) is (Ki,Li)-regular of degree di, i ∈ [6],
where

(Ki,Li, di) =



(K2,1, K2, (q + 1)2), if i = 1;
(K2,1,1, K2,1, 2q), if i = 2;
(K2,1,1,1, K2,1,1, q − 1), if i = 3;
(K2,2,1, K2,2, 2), if i = 4;
(K2,2,1,1, K2,2, 0), if i = 5;
(K3,1,1, K3,1, 0), if i = 6

and Kn1,...,ns is the complete multipartite graph with parts [Ni−1 +1, Ni−1+ni], i ∈ [s], where
Ni =

∑i
j=1 nj.

2 (Here each pair of distinct vertices of the graph Ki has the color of the
adjacency relation of Γ if these vertices are adjacent in Ki, and the color of the relation “to
be at distance 2 in Γ” if they are not.) Indeed, the (Ki,Li)-regularity of degree di, i ∈ [4],
means that the subgraph from condition (1) is a strongly regular graph with parameters
((q + 1)2, 2q, q− 1, 2). It is well-known that this graph is isomorphic to H(2, q + 1) for q 6= 3
(see [6, p.92]). In addition, if q = 3, then it is isomorphic to H(2, 4) or to the Shrikhande
graph. However, the last graph is not (K2,1,1, K2)-regular of degree 0. So the (Ki,Li)-
regularity of degree di, i ∈ [5], is equivalent to condition (1). Finally, the (K6,L6)-regularity
of degree 0 is obviously equivalent to condition (2).

2Thus Kn denotes the graph on the set [n] with no edges, i.e. Kn in notation of [4].
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Let ϕ be a 2-isomorphism of the algebra W = W (Γ) to another cellular algebra W ′.
Then W ′ = W (Γ′) where Γ′ = Γϕ is a distance-regular graph with the same parameters as Γ.
It follows from statement (2) of Corollary 6.3 that Γ′ is (Ki,Li)-regular of degree di for all
i ∈ [6]. So Γ′ satisfies conditions (1) and (2). This implies by [4, Corollary 9.3.8] that it is
isomorphic either to a complete graph, or a Johnson graph, or the quotient of the Johnson
graph J(2k, k) obtained by identifying a k-set with the image of its complement under the
identity mapping or an involution in Sym(2k) with at least 10 fixed points or a Grassman
graph over a finite field. Since q + 1 > 2, we see that Γ′ is isomorphic to Jq(n, k). Thus
ϕ ∈ Isow∞(W, W ′).

It should be remarked that there is a number of distance-regular graphs with parameters
of Grassmann graphs and nonisomorphic to them. For example, given an arbitrary finite
group G there exists a strongly regular graph with the same parameters as J2(n, 2) for
some n and the automorphism group isomorphic to G (see [18]). Finally, we notice that
the 2-separability of the scheme Jq(n, 2) for n ≥ 6 follows also from [15, Lemma 5] and
Theorem 6.4.

7.5. In this subsection we find the Schurity numbers of the coherent configurations
associated with some strongly regular graphs. The computation is based on the following
lemma.

Lemma 7.8 Let W be a cellular algebra and m a positive integer. Assume that any cel-

lular algebra lying between W and W
(∞)

the colored graph of which satisfies the 3m-vertex

condition, coincides with W
(∞)

. Then t(W ) ≤ m.

Proof. According to Theorem 6.4 the colored graph associated with the algebra W
(m)

sat-

isfies the 3m-vertex condition. By the lemma’s hypothesis this implies that W
(m)

= W
(∞)

.
Let Γ be a strongly regular graph with the automorphism group of rank 4. Then there

are exactly two cellular algebras between W and W
(∞)

where W = W (Γ). So the hypothesis
of Lemma 7.8 is satisfied for m = 2 unless Γ satisfies the 6-vertex condition. In this case
it follows that t(W ) ≤ 2. Since obviously t(W ) > 1, we conclude that t(W ) = 2. Such
a situation arises, for instance, if Γ is the Shrikhande graph, one of the graphs from [5,
Theorem 1] for m ≥ 3, q > 2, or the graph on 256 vertices found by A. V. Ivanov (see [17]).
The last graph is especially interesting, since it is the only known to the authors strongly
regular non rank 3 graph satisfying the 5-vertex condition. As it was remarked in [14, p.74]
this graph does not satisfy the 6-vertex condition.

7.6. Let P be a finite projective plane of order q with the point set P and the line set L
(see [8]). Denote by Γ = Γ(P) the bipartite graph with parts P and L and edge set defined by
the incidence relation of P. It is easy to see that Γ is a distance-regular graph of diameter 3
and valency q + 1. Moreover, any distance-regular graph with the same parameters as Γ is
of the form Γ(P ′) for some projective plane P ′ of order q.

Theorem 7.9 Let P be a projective plane of order q and C be the scheme associated with
the graph Γ = Γ(P). Then
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(1) s(C) ≤ O(log log q) and t(C) ≤ O(log log q),

(2) t(C) = 1 iff P is a Galois plane,

(3) s(C) ≤ 6 whenever P is a Galois plane.

Proof. A subset of P ∪L is called a closed set of P if it contains each line (resp. each point)
incident to two different points (resp. lines) of it. If P ∪ L is the minimal closed set of P
containing a set X ⊂ P ∪ L, we say that X is a generating set for P. It is easy to see that
any generating set of P is a base of the cellular algebra W = W (Γ). Now it follows from [8,
Theorem 3.2.17] that a Galois plane is generated by a quadrangle and a suitable point on one
of its sides. So if P is a Galois plane, then b(W ) ≤ 5 and statement (3) is the consequence of
Theorem 4.8. It follows from [8, Theorem 3.2.18] that given a projective plane P of order q
any proper closed set of P containing a quadrangle is a subplane of P of order at most

√
q.

Thus we conclude by induction that b(W ) ≤ O(log log q) and so statement (1) follows from
Theorem 4.8. Finally, the Ostrom-Wagner Theorem implies that P is a Galois plane iff the
subgroup of Aut(W ) leaving fixed P (as a set) acts 2-transitively on P (see [8, Theorems
4.4.20, 1.4.5]). Since the latter is a necessary condition for the Schurity of W , statement (2)
follows.

8 Appendix

8.1. Throughout the section let m be a positive integer, W ≤ MatV be a cellular algebra,

Ŵ = Ŵ (m), W = W
(m)

and ∆(i) = ∆(i)(V ) for all i.

Let Ê = Ê(m) = Ê(m)(W ) and E = E(m) = E(m)(W ) be the equivalences with sup-

ports V m and ∆(m−1)×V defined by the equality of the mth coordinates. Since Ŵ ≥ Zm(V ),

we see that Ê, E ∈ E(Ŵ ). It is easy to see that Ê ⊃ E and their classes are of the form

Ûv = V m−1 × {v}, Uv = ∆(m−1) × {v} (24)

respectively where v ∈ V . Besides, it follows from the definitions that Ŵ
bE ⊂∑

v∈V MatVm−1 ⊗{Iv} and ŴE ⊂
∑

v∈V Mat∆(m−1) ⊗{Iv}. For X ⊂ V set

ÊX =
⋃
v∈X

(Ûv)
2, EX =

⋃
v∈X

(Uv)
2. (25)

Lemma 8.1 The mapping X 7→ ÊX (resp. X 7→ EX) defines a bijection between the cells

of W and the indecomposable components of the equivalence Ê (resp. E).

Proof. It suffices to verify that if X ∈ Cel(W ), then ÊX and EX are indecomposable

equivalences of Ŵ . It follows from Lemma 3.2 that the set R = (V m−1 ×X)2 is a relation

of Ŵ . Since ÊX = Ê ∩ R and EX = E ∩ R, we conclude that ÊX and EX are equivalences
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of Ŵ . Further, if ÊY (resp. EY ) is an indecomposable component of ÊX (resp. EX), then

Y is a cellular set of W by statement (1) of Lemma 6.2 with R = ÊY (resp. R = EY ) and
i = j = m. Thus Y = X and we are done.

For v ∈ V and m ≥ 2 set

r̂v(W ) = r̂(m)
v (W ) = (Ŵ

bE,bUv
)
bζ−1
v , rv(W ) = r(m)

v (W ) = (ŴE,Uv)
ζ−1
v

where ζ̂v : V m−1 → Ûv and ζv : V → Uv are natural bijections.

Lemma 8.2 In the above notation the following statements hold:

(1) the algebra rv(W ) is (m− 1)-closed and also the algebra r̂v(W ) contains the (m− 1)-
extended algebra of rv(W ),

(2) rv(W ) ≥Wv
(m−1) and r̂v(W ) ≥ Ŵv

(m−1).

Proof. It is easy to see that

r̂v(W ) ≥ (Zm(V )
bE,bUv

)
bζ−1
v = Z(Sym(V )v, V

m−1) ≥ Zm−1(V ) (26)

where Sym(V )v is the subgroup of Sym(V ) fixing v and its action on V m−1 is given coordi-
natewise. So statement (1) follows from Lemma 3.2 with W ′ = r̂v(W ) and m − 1 instead
of m. Further, by statement (1) it suffices to prove only the first inequality of statement (2).

It follows from (9) that the algebra Wm−1 ⊗ {IV } is contained in Ŵ and hence in Ŵ
bE. So

by (26) we have Ŵ (m−1) ≤ r̂v(W ) and hence W ≤ rv(W ). Besides, I(v,...,v) = (I
bUv

I∆I
bUv

)
bζ−1
v

whence Iv ∈ rv(W ). Thus

rv(W ) = (r̂v(W )∆(m−1))δ−1 ≥ [W, Iv] = Wv

where δ : V → ∆(m−1) is a natural bijection.

8.2. Let ϕ ∈ Isowm(W, W ′). Then Ê bϕ = Ê′ and E bϕ = E′ where Ê′ = Ê(m)(W ′) and
E′ = E(m)(W ′) (see Lemma 2.2). Let (v, v′) ∈ X ×X ′ where X ∈ Cel(W ), X ′ ∈ Cel(W ′)

with Xϕ = X ′. Then by statement (2) of Lemma 6.2 we have F̂ bϕ = F̂ ′ and F bϕ = F ′ where

F̂ = ÊX , F̂ ′ = Ê′X′ and F = EX , F ′ = E′X′ (see (25)). By Lemma 8.1 these equivalences are

indecomposable: F̂ and F in Ŵ , whereas F̂ ′ and F ′ in Ŵ ′. Set

ϕ̂
bUv,bU ′v′

= π
bF ′,bU ′v′

◦ ϕ̂
bF ◦ π−1

bF ,bUv
, ϕUv,U ′v′ = πF ′,U ′v′ ◦ ϕ̂F ◦ π−1

F,Uv

where ϕ̂
bF : Ŵ

bF → Ŵ ′
bF ′ and ϕ̂F : ŴF → Ŵ ′

F ′ are the restriction isomorphisms induced by

ϕ̂, and Û ′v′ and U ′v′ are the classes of the equivalences F̂ ′ and F ′ corresponding to v′. Then
the mappings

r̂v,v′(ϕ) = (χ̂v′)
−1 ◦ ϕ̂

bUv,bU ′v′
◦ χ̂v, rv,v′(ϕ) = (χv′)

−1 ◦ ϕUv,U ′v′ ◦ χv (27)

belong to Isow(r̂v(W ), r̂v′W
′) and Isow(rv(W ), rv′(W

′)) respectively where χ̂v : r̂v(W ) →
Ŵ

bF ,bUv
and χv : rv(W )→ ŴF,Uv are the weak isomorphisms induced by the bijections ζ̂v and

ζv, and χ̂v′ , χv′ are defined similarly.
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Lemma 8.3 In the above notation the following statements hold:

(1) rv,v′(ϕ) ∈ Isowm−1(rv(W ), rv′(W
′)) and also r̂v,v′(ϕ) extends the (m − 1)-extension of

rv,v′(ϕ),

(2) ϕ can be extended to an (m− 1)-isomorphism ϕv,v′ : Wv → W ′
v′ such that ϕv,v′(Iv) =

Iv′. In addition, rv,v′(ϕ) (resp. r̂v,v′(ϕ)) extends the (m−1)-closure (resp. the (m−1)-
extension) of ϕv,v′ .

Proof. To prove statement (1) we observe that

(I∆(m−1)(V ))
ζv = π

bF ,bUv
(A ◦ I

bX), (I∆(m−1)(V ′))
ζv′ = π

bF ′,bU ′v′
(A ◦ I

bX′)

where A = A(F ), A′ = A(F ′) and X̂, X̂ ′ are the supports of F̂ and F̂ ′. Since A ∈ Zm(V ),
we have

ϕ̂
bF (A ◦ I

bX) = ϕ̂(A) ◦ ϕ̂(I
bX) = A′ ◦ I

bX′ .

Thus
ψ̂v,v′(I∆(m−1)(V )) = I∆(m−1)(V ′) (28)

where ψ̂v,v′ = r̂v,v′(ϕ). Further,

Cζv = π
bF ,bUv

((C ⊗ IV ) ◦ Â), (C ′)ζv′ = π
bF ′,bU ′v′

((C ′ ⊗ IV ′) ◦ Â′)

where C ∈ rv(W )m−1, C ′ ∈ rv′(W
′)m−1 and Â = A(Ê), Â′ = A(Ê′). Besides,

ϕ̂
bF ((C ⊗ IV ) ◦ Â) = ϕ̂(C ⊗ IV ) ◦ ϕ̂(Â) = (ψv,v′)

m−1(C)⊗ IV ′) ◦ Â′,

where ψv,v′ = rv,v′(ϕ), whence

ψ̂v,v′(C) = (ψv,v′)
m−1(C), C ∈ rv(W )m−1. (29)

The equalities (28) and (29) show that the restriction of ψ̂v,v′ to r̂v(W ) is the (m−1)-extension
of ψv,v′ .

To prove statement (2) we note that according to statement (1) and Lemma 8.2 it suffices
to verify only that ψv,v′(A) = ϕ(A), A ∈W , and ψv,v′(Iv) = Iv′ . Let us prove that

ϕ̂(m)(A⊗ IV ) = ϕ̂(m−1)(A)⊗ IV ′ , A ∈ Ŵ (m−1). (30)

Indeed, for A ∈Wm−1 this follows from the second condition of the definition of m-extension
whereas for A = I∆(m−1)(V ) from the first one and the equality

ϕ̂(m)(I∆(m−1)(V ) ⊗ IV ) = I∆(m−1)(V ′) ⊗ I ′V = ϕ̂(m−1)(I∆(m−1)(V ))⊗ IV ′ .

It follows from the definition of ψ̂v,v′ and (30) that ψ̂v,v′(A) = ϕ̂(m−1)(A), A ∈ Ŵ (m−1), and

ψ̂v,v′(I(v,...,v)) = I(v′,...,v′), which completes the proof.

8.3. The following theorem describes the basis relations of the m-closure of W in terms
of the basis relations of the algebras rv(W ), v ∈ V .
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Theorem 8.4 Let X ∈ Cel(W ) and v ∈ X. Then for any basis relation S of the alge-
bra rv(W ) the set

R =
⋃

v′∈X

ψv,v′(S)

is a basis relation of the algebra W where ψv,v′ = rv,v′(idW ).

Proof. Let F = EX and C be the adjacency matrix of the binary relation on V m consisting
of all pairs (u, v) ∈ ∆(m) × (∆(m−1) ×X) such that u1 = v1. Then C ∈ Ŵ and so

ρ : ŴF → Ŵ∆, A 7→ CACT

is a linear mapping. A straightforward check shows that

ρ(A) = (
∑
v′∈X

πF,Uv′ (A)ζ−1
v′ )δ.

Thus it suffices to prove that ρ(A) is a multiple of a basis matrix of Ŵ∆ for any basis matrix

A of Ŵ belonging to ŴF . Let us consider another mapping

τ : Ŵ∆ → ŴF , B 7→ CTBC.

Since CCT = |X|I∆, τ is an injective linear mapping preserving the Hadamard multiplication

and satisfying ρ(τ(B)) = |X|2B for all B ∈ Ŵ∆. The last equality also implies that given

B ∈ M(Ŵ∆) there exists a matrix A′ ∈ ŴF with nonnegative entries such that ρ(A′) = B.
So ρ(A) is a multiple of B for any basis matrix A with A◦A′ = 0. Since obviously each basis

matrix of Ŵ belonging to ŴF can be obtained as A in such a way when B runs overM(Ŵ∆),
we are done.

Corollary 8.5 Let W ≤ MatV . Then

(W )v ≤ rv(W ) ≤ (Wv) (31)

for all v ∈ V .

Proof. To prove the first inclusion it suffices to prove that W ≤ rv(W ), which is a straight-
forward consequence of Theorem 8.4. On the other hand, applying the same theorem to
W = Wv and X = {v} we obtain rv(Wv) = (Wv). Since obviously rv(W ) ≤ rv(Wv), the
right inclusion follows.
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